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1. Introduction. This paper deals with the finite-dimensional algebras
Σ over an algebraically closed field k whose derived category Db(mod(Σ))
of the category mod(Σ) of finite-dimensional modules over Σ is equivalent
—as a triangulated category—to the derived category Db(coh(X)) of the
category coh(X) of coherent sheaves on a (possibly weighted) non-singular
projective curve X over k. As is shown in [13] this only happens if X is
a weighted projective line [5, 6, 17]. Actually each weighted projective
line X = X(p, λ) has a tilting bundle [5] whose endomorphism ring is a
canonical algebra Λ = Λ(p, λ) in the sense of [21], depending on a weight
sequence p = (p1, . . . , pt) of positive integers, and a parameter sequence
λ = (λ1, . . . , λt) of pairwise distinct non-zero elements from the projec-
tive line over k. In view of the equivalence Db(mod(Λ)) = Db(coh(X))
(see [5]), the finite-dimensional representation theory of Λ is then completely
determined by the sheaf theory on the weighted projective line X. In fact the
complexity of the classification problem for coh(X), and hence for mod(Λ),
is largely determined by means of a weighted version of Riemann–Roch’s
theorem by the (virtual) genus

gX = 1 +
1

2

(
(t − 2)p −

t∑

i=1

p/pi

)

of X, where p = l.c.m.(p1, . . . , pt) (see [5]).
For gX < 1, the algebra Λ is concealed of extended Dynkin type; accord-

ingly the problem to classify indecomposable objects in coh(X) and mod(Λ)
is equivalent to the classification of indecomposable modules over a tame
hereditary algebra (cf. [5]) or, according to [6], closely related to the classifi-
cation problem of indecomposable Cohen–Macaulay modules over a simple
surface singularity.
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For gX = 1, the algebra Λ is of tubular type, and the theory links its
representation theory [21] with the classification problem of indecomposable
vector bundles on X (see [5, 15]) which itself relates to Atiyah’s classifica-
tion [2] of indecomposable vector bundles over an elliptic curve.

For gX > 1, the algebra Λ is wild, and the category of vector bundles on
X is—if k is the field of complex numbers—equivalent to the category of Z-
graded Cohen–Macaulay modules over the algebra R of entire automorphic
forms attached to a Fuchsian group of signature (0; p1, . . . , pt; 0) (see [12]),
accordingly the study of coh(X) or mod(Λ) (see [17]) relates to the study

of Cohen–Macaulay modules over the surface singularity R̂ obtained from
R by completion.

In slightly different terminology the canonical algebras and their relatives
(concealed-canonical algebras, almost concealed-canonical algebras [16]) are
obtained as endomorphism algebras of a tilting object in coh(X) which is
an abelian category with the remarkable feature to be hereditary, mean-
ing that all second extension spaces Ext2(X,Y ) vanish. Tilting theory, one
of whose starting points is marked by [9], has left its traces everywhere
in recent representation theory. Tilting is particularly well understood if
it takes place in a module category mod(∆) which is hereditary. Here,
detailed information is available for the module category over the corre-
sponding tilted algebra (i.e. the endomorphism algebra of the tilting ob-
ject) including the shape of Auslander–Reiten components [9, 21, 10, 11].
By contrast, only general information is available for those quasi-tilted al-
gebras [8], arising by tilting from a hereditary abelian category if it is
not a module category. The main known features concern the existence
of a preprojective (resp. preinjective) component [3] and the semiregular-
ity of Auslander–Reiten components if the algebra is quasi-tilted but not
tilted [4].

Here, we present a detailed account of the (representation-infinite) quasi-
tilted algebras Σ of canonical type, i.e. those where Σ can be realized as
the endomorphism ring of a tilting object in a hereditary category H which
is derived-equivalent to a category coh(X) for a weighted projective line X.
We determine the ring structure for such algebras, and as a consequence also
the shape of Auslander–Reiten components and the structure of the module
category. These results are put into proper context by a conjecture raised
in connection with [8] that a hereditary category with a tilting object T is
derived-equivalent either to a category mod(∆) with ∆ hereditary or else
to coh(X), where X is a weighted projective line. We are able to confirm
the conjecture in the tame case, i.e. if the endomorphism ring of T has tame
representation type.

The organization of the paper is as follows: In Section 2 we determine the
hereditary abelian k-categories which are derived-equivalent to a category
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of coherent sheaves on a weighted projective line (Theorem 2.3). Section 3
deals with the structure of the tilting objects for such categories, accordingly
with the algebras which are quasi-tilted of canonical type. The main result
here is Theorem 3.4 characterizing these algebras—in the representation-
infinite case—as semiregular branch enlargements of concealed-canonical
algebras, and equivalently by the property that the module category ad-
mits a sincere separating family of semiregular standard tubes. Section 4
provides the structure of the module category and investigates the K-theory.
Finally, we prove in Theorem 4.7 that a tame quasi-tilted algebra either has
canonical type or is tilted from a hereditary algebra.

Modules in this paper are usually finite-dimensional, and mod(Σ) de-
notes the resulting module category over Σ. We use the notation A∨B for
the union of subcategories A, B to indicate that Hom(B,A) = 0. If also
Hom(A,B) = 0, we use coproduct notation A ∐ B instead; ind(A) denotes
the full subcategory of indecomposables of A.

2. Hereditary categories of canonical type. Let H be a small
abelian hereditary k-category. Our main examples are the categories mod
(∆), ∆ hereditary, and coh(X), X a weighted projective line. A k-category
in the present paper is an additive category equipped with morphism and
extension spaces that are finite-dimensional vector spaces over k, and where
composition is k-bilinear. H is hereditary if all second extension spaces
Ext2(X,Y ) vanish. By Db(H) we denote the derived category (of bounded
complexes) of H. Since H is hereditary, Db(H) is the additive closure of⋃

n∈Z
H[n], where each H[n] is a copy of H with objects denoted X[n],

X ∈ H. Morphisms are determined by Hom(X[m], Y [n]) = Extn−m
H

(X,Y ),
composition is given by the Yoneda composition of Ext, and translation
of Db(H) acts as X[n] 7→ X[n + 1], where X ∈ H. Generally, we use
the notation Z 7→ Z[n], Z ∈ Db(H), for the nth iterate of the translation
functor.

We say that an abelian k-category H has canonical type if it is derived-
equivalent to a category C = coh(X) of coherent sheaves on a weighted
projective line X, i.e. Db(H) ∼= Db(C) as triangulated categories. It is equiv-
alent to require that H is derived-equivalent to mod(Λ) for a canonical al-
gebra Λ. In Db(C) = Db(H), Serre duality holds in the form DHom(X,Y )
= Hom(Y [−1], τXX), accordingly Db(C) has Auslander–Reiten triangles
(see [7] for this notion). By τX we denote the Auslander–Reiten transla-
tion for Db(C), hence for C.

We recall that Σ is called a tilting object of H if Exti
H(Σ,Σ) = 0 for

all i 6= 0, and moreover Σ generates Db(H) as a triangulated category, i.e.
only the zero object in H satisfies HomDb(H)(Σ[n],X) = 0 for all integers n.
In the following we will always view tilting objects as full subcategories
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consisting of finitely many pairwise non-isomorphic objects, and identify
them with the corresponding endomorphism algebras.

For the rest of the paper C stands for the category coh(X) of coherent
sheaves on a weighted projective line X = X(p, λ), and C+ (resp. C0) denotes
the full subcategory of all vector bundles (resp. sheaves of finite length) on X.
We recall from [5] that C0 decomposes into a coproduct

∐
x∈X

Ux, where Ux

denotes the connected uniserial category of coherent sheaves concentrated
at x. We are going to use the existence of a rank (resp. degree) function
rk (resp. deg) on the Grothendieck group K0(C) = K0(D

b(C)) such that for
an indecomposable X ∈ C we have X ∈ C+ (resp. X ∈ C0) if and only if
rkX > 0 (resp. rkX = 0), and further degX > 0 holds for each non-zero
X ∈ C0 (see [5, Proposition 4.3]).

Proposition 2.1. Let H be a hereditary k-category , derived-equivalent

to a category C = coh(X) of coherent sheaves on a weighted projective line

X = X(p, λ). Then H has a non-zero projective object if and only if H
is equivalent to the category mod(Σ) of finite-dimensional modules over a

tame hereditary algebra Σ. In this case the genus of X is < 1, accordingly

the weight type (p1, . . . , pt) of X (or C) is Dynkin, i.e. satisfies (t − 2) −∑t

i=1 1/pi < 0.

P r o o f. We note that each indecomposable object Z of Db(H) has the
form Z = X[n] with X ∈ H and n ∈ Z. For the purpose of the present
proof, we call n the index of Z, and identify Db(H) and Db(C). Let X be
an indecomposable object from H. Then τXX = Y [n] with Y in H. By
means of a translation in Db(H) we may assume that X ∈ C. Because H is
hereditary, we deduce from

0 6= Ext1C(X, τXX) = HomDb(H)(X,Y [n + 1]) = Extn+1
H

(X,Y )

that n = 0 or n = −1. Therefore, the index is (in direction n → +∞)
decreasing on the τX-orbit

. . . , τ−n
X

X, . . . , τ−1
X

X,X, τXX, . . . , τn
X
X, . . . ,

and in each step the index jumps by at most one. In particular, on each peri-
odic τX-orbit the index is constant. Next, we note that X∈H is H-projective
if and only if for each object Y ∈ H we have 0 = DHomDb(H)(X,Y [1]) =
HomDb(C)(Y, τXX). This happens if and only if τXX 6∈ H, therefore, invoking
the preceding argument, if and only if τXX ∈ H[−1].

In particular, an Auslander–Reiten component of Db(C) which is a tube
cannot contain an H-projective indecomposable object. Hence there are no
such H-projectives of rank zero. Equally there are no non-zero H-projectives
if X has genus one, i.e. has so-called tubular weight type (p1, . . . , pt) with
t−2=

∑t

i=1 1/pi, because in this case τX is periodic of period p=l.c.m.(p1, . . .
. . . , pt). Next, assume that X has genus > 1, accordingly that C has wild
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representation type, and assume the existence of an indecomposable H-
projective P of non-zero rank: By the preceding argument we get τn

X
P =

Xn[−ℓn], where Xn ∈ H and ℓn ≥ 1 for n ≥ 1. In view of [17], or invok-
ing formulae (2) and (3) from Section 2, gX > 1 implies that Hom(P, τn

X
P )

6= 0 for sufficiently large n, hence Hom(H,H[−ℓn]) 6= 0, which is impos-
sible.

We have thus excluded the possibility that C is tubular or wild, which
leaves us with the case of genus < 1, accordingly a tame domestic category
of sheaves C. Here, the indecomposable objects of C+ form an Auslander–
Reiten component D which is the unique component not belonging to the
tubular family formed by the indecomposable objects from C0. Note that D
has a complete slice, and that each complete slice of D has extended Dynkin
type. Let H contain an indecomposable projective object P . Invoking a
translation of Db(C), we may assume that P belongs to D. Consider an
irreducible map X → P , and the corresponding part of the component D:

· · · · · · · · · · · ·
τXP P

ր ց ր ց
τXX X τ−1

X
X

· · · · · · · · · · · ·

By assumption, τXP ∈ H[−1], P ∈ H, and further Hom(τXX, τXP ) 6= 0,
Hom(τXP,X) 6= 0, Hom(X,P ) 6= 0, Hom(P, τ−1

X
X) 6= 0. We thus get

τ−1
X

X ∈ H[n], n ≥ 0, X ∈ H or X ∈ H[−1]. Moreover, if X ∈ H then τXX
belongs to H[−1]. Therefore either X or τ−1

X
X is projective in H, and this

projective object is connected to P by an irreducible map. Continuing, and
invoking connectedness and stability of D, we obtain a complete slice Σ of D
consisting of H-projective objects. Since Σ generates Db(C)=Db(H), we see
that Σ is a tilting object for H. Since H is hereditary, the associated torsion
theory splits, and so mod(Σ)—viewed as a full subcategory of Db(H)—is
the additive closure of X ∪ Y[1], where X = {X ∈ H | Ext1H(Σ,X) = 0}
and Y = {Y ∈ H | HomH(Σ,Y ) = 0}. Since Σ is projective in H, we have
X = H, therefore Y = 0. Therefore mod(Σ) = H as claimed.

By a cut in C we understand a pair (C′, C′′) of extension-closed sub-
categories C′ and C′′ of C such that Hom(C′′, C′) = 0, and moreover each
indecomposable object of C either belongs to C′ or to C′′. (It amounts to
the same to require that (C′′, C′) is a splitting torsion pair for C.)

Proposition 2.2. (i) Let H be a hereditary abelian k-category and

C = coh(X). Each equivalence Db(H) = Db(C) of triangulated categories

produces a cut (C′, C′′) for C such that H is equivalent to the additive clo-

sure of C′′ ∨ C′[1].
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(ii) For each cut (C′, C′′) in C, the additive closure H of C′′ ∨ C′[1] in

Db(C) is a hereditary abelian k-category which is derived-equivalent to C
and has a tilting object.

P r o o f. (i) If H contains a non-zero projective, we are done by the
preceding proposition. We may hence assume that ind(H) consists of full
Auslander–Reiten components of Db(C). We fix a simple sheaf S which is
concentrated in an ordinary point, and assume—by means of a translation in
Db(H) = Db(C)—that S belongs to H. Each non-zero F from C+ satisfies
Hom(F, S) 6= 0, therefore heredity of H implies that C+ belongs to the
additive closure of H[−1]∨H. There are two cases to consider: C+ ⊆ H and
C+ ∩H[−1] 6= 0.

Assume first that C+ ⊆ H. Then for each non-zero X ∈ C0 there exists
a non-zero morphism from (an object of) H to X which shows that C0,
hence C, belongs to the additive closure of H ∨ H[1]. Next, we deal with
the case when there exists a non-zero object F in C+ ∩ H[−1]. Since each
Auslander–Reiten component of C0 is a stable tube, it contains a τX-stable
member U . This implies Hom(F,U) 6= 0, hence the component of U belongs
to H[−1] ∨ H. Summarizing, we obtain that C is contained in the additive
closure of H[−1]∨H in this case. Invoking a translation we can assume this
to be true in general, and put C′ = C ∩H[−1], C′′ = H∩C. By construction
C′′ ∨ C′[1] is contained in H. Conversely, for each indecomposable H of H
there exist C ∈ C, n ∈ Z with C = H[n], implying n = 0 (resp. n = 1), and
accordingly H ∈ C′′ ∨ C′[1].

(ii) In view of [8, Corollary 1.2.2], for each cut (C′, C′′) in C the ad-
ditive closure H of C′′ ∨ C′[1] is abelian; moreover, H is hereditary since
HomDb(C)(X,Y [2]) = 0 for X,Y ∈ H. Since, by construction of H, the
indecomposable objects of

∨
n∈Z

H[n] and
∨

n∈Z
C[n] coincide, it follows

Db(H) = Db(C). It remains to show that H has a tilting object. Because
of Proposition 2.1, this is clear if H has a non-zero projective object. If H
has no non-zero projectives we claim that C′′ is stable under τX. Indeed,
otherwise there would be indecomposable objects X ′ ∈ C′, X ′′ ∈ C′′ with
τXX ′′ = X ′, hence because of τXX ′′ ∈ H[−1], X ′′ would be projective in H,
which we have discarded. Let now Σ be any tilting object in C. Writing Σ
in the form Σ′ ∨ Σ′′ with Σ′ ⊆ C′, Σ′′ ⊆ C′′ it follows that τXΣ′′ ∨ Σ′[1] is
a tilting object in H.

Let X′ ∐ X′′ be a decomposition of X into disjoint subsets, and let C′
0 =∐

x∈X′ Ux, C′′
0 =

∐
x∈X′′ Ux. Obviously, (add(C+ ∨ C′′

0 ), C′
0) is a cut of C,

accordingly the additive closure C(X′, X′′) of C′
0[−1] ∨ C+ ∨ C′′

0 in Db(C) is
hereditary abelian with a tilting object and is derived-equivalent to C. Note
that C(∅, X) (resp. C(X, ∅)) agrees with C (resp. Cop). If both X′ and X′′ are
non-empty then—in contrast to coh(X) and mod(∆)—the category H =
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C(X′, X′′) does have non-zero (decomposable) objects whose class vanishes
in the Grothendieck group K0(H): Take S′[−1]⊕S′′, where S′ (resp. S′′) is
a simple sheaf concentrated in an ordinary point of X′ (resp. X′′).

C''0
C+C'0[-1]

Fig. 1. The shape of C(X′,X′′)

Recall from [5] that for each non-zero X ∈ C its slope is defined as
µX = degX/rkX. If X has genus one, hence the sheaf category C has tubu-
lar weight type, then for each q ∈ Q ∪ {∞}, the additive closure C(q) of
indecomposable objects of C of slope q is a uniserial category whose inde-
composables form a tubular family, parametrized by X (see [15]). Note that
C(∞) agrees with C0. Let r denote an irrational number, and let C′

r (resp.
C′′

r ) be the additive closure of all C(q) with q < r (resp. r < q ≤ ∞), then
(C′

r, C
′′
r ) is a cut in C, and the additive closure C〈r〉 of C′′

r ∪ C′
r[1] in Db(C) is

abelian hereditary with a tilting object and is derived-equivalent to C.
Recall that the Euler form on K0(C) is given on (classes of) objects from

C by

〈X,Y 〉 = dimk Hom(X,Y ) − dimk Ext1(X,Y ).

The weighted form of Riemann–Roch’s theorem [14] then states

1

p
〈〈X,Y 〉〉 = (1 − gX)rkX rkY +

1

p

∣∣∣∣
rkX rkY
degX degY

∣∣∣∣(1)

= rkX rkY

(
1 − gX +

1

p
(µY − µX)

)
,(2)

where p = l.c.m.(p1, . . . , pt), 〈〈X,Y 〉〉 =
∑p−1

j=0 〈τ
j
X
X,Y 〉, and gX = 1 +

(p/2)δX with δX = (t − 2) −
∑t

i=1 1/pi. Note, moreover, that

(3) µ(τXF ) = µF + pδX.

Theorem 2.3. Let H be a hereditary k-category derived equivalent to

C = coh(X), for a weighted projective line X. Then H is equivalent to

exactly one of the following three types:

(i) mod(∆), where ∆ is tame hereditary ,
(ii) C(X′, X′′) for some decomposition X = X′ ∐ X′′ of the set X,
(iii) C〈r〉, where r is an irrational number , and C is of tubular type.
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P r o o f. By Proposition 2.1, we only need to deal with the case when H
does not have any non-zero projective object, therefore ind(H) is a union
of full Auslander–Reiten components of Db(C). Next, we fix an equivalence
Db(H) = Db(C), and consider a cut (C′, C′′) of C such that H equals the
additive closure of C′′∨C′[1]. By assumption, ind(C′) and ind(C′′) consist of
full Auslander–Reiten components from Db(C).

C a s e 1: gX < 1. Here, the indecomposable objects from C+ form a
single Auslander–Reiten component, thus C+ lies in C′ or in C′′. If C+ ⊆ C′′,
then Hom(C′′,X) 6= 0 for each X ∈ C0, hence C0 belongs to C′′, and C = C′′

follows. Otherwise C+ is contained in C′; we then denote by X′ (resp. X′′)
the set of all x ∈ X such that Ux ⊆ C′′ (resp. Ux ⊆ C′). It follows that
C′ = add(C+ ∨ C′′

0 ), C′′ = add(C′
0), and hence H = C(X′, X′′).

C a s e 2: gX = 1. Assume first that there exists q ∈ Q ∪ {∞} such
that C(q) ∩ C′ 6= 0 and C(q) ∩ C′′ 6= 0. By means of an automorphism of
Db(C) (a sequence of mutations [15]), we may assume q = ∞. This shows
that C+ ⊆ C′, and we continue as in case 1 to show that H is of the form
C(X′, X′′).

Next, assume that for each q∈Q∪{∞} we have C(q)⊆C′ or C(q)⊆C′′. If
all C(q) belong to C′′ then H = C, otherwise we define r as the supremum (in
R∪{∞}) of all q with C(q)⊆C′. If r∈Q∪{∞}, then by an automorphism of
Db(C) we can assume r = ∞, resulting in the cut (C+, C0) (resp. (C, 0)), hence
in H = C(∅, X) (resp. C(X, ∅)). We may thus assume that r is irrational,
where in view of (2) we get C′ = C′

r, C
′′ = C′′

r , thus H = C〈r〉.
C a s e 3: gX > 1. By (2) and (3), for any two components A, B of C

there exist non-zero morphisms from A to B (and from B to A). Hence C+

is either contained in C′ or in C′′. As in case 1 this implies that H is of type
C(X′, X′′).

3. Quasi-tilted algebras of canonical type. Following [16], a k-
algebra Σ is called quasi-canonical if it is derived-equivalent to a canonical
algebra. A special case are the concealed-canonical (resp. almost concealed-

canonical) algebras defined as the endomorphism algebras of tilting bundles
(resp. tilting sheaves) on a weighted projective line X = X(p, λ) or equiva-
lently as the endomorphism algebras of tilting modules T over a canonical al-
gebra Λ = Λ(p, λ), where T is built from indecomposable modules of strictly
positive rank (resp. of modules of non-negative rank). In [18] the concealed-
canonical algebras are further characterized as the connected algebras whose
module category admits a sincere separating family of standard stable tubes.
The property of being quasi-canonical (resp. concealed-canonical) is pre-
served when passing from Σ to its opposite algebra Σop, whereas the cor-
responding statement holds for an almost concealed-canonical algebra only
if it is already concealed-canonical. We note that the representation-infinite
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algebras derived-equivalent to tame canonical algebras are described com-
pletely in [1].

Definition 3.1. An algebra Σ that can be realized as the endomor-
phism ring of a tilting object for a hereditary category H of canonical type
will be said to be quasi-tilted of canonical type.

It amounts to the same to say that Σ is quasi-tilted and quasi-canonical.
In particular, Σ is quasi-tilted of canonical type if and only if Σop is.

We need a result on tilting objects in a category of type C(X′, X′′) as
defined in the preceding section.

Proposition 3.2. Let C = coh(X), and let Σ+, Σ′
0, Σ′′

0 be full subcate-

gories of C+, C′
0 and C′′

0 , respectively , consisting of pairwise non-isomorphic

indecomposable objects given by a decomposition X = X′∐X′′. The following

assertions are equivalent :

(i) Σ′
0[−1] ∨ Σ+ ∨ Σ′′

0 is a tilting object in C(X′, X′′).

(ii) Σ+, Σ′
0, Σ′′

0 are partial tilting objects in C+, C′
0 and C′′

0 , respectively ,

Σ+ belongs to the the category ⊥Σ′
0∩Σ′′

0
⊥

, and the number of indecomposable

objects of Σ′
0 ∪ Σ′′

0 ∪ Σ+ equals the rank of K0(X).

(iii) Σ+ ∨ (τ−1
X

Σ′
0 ∐ Σ′′

0 ) is a tilting sheaf in C = coh(X).

P r o o f. (i)⇔(ii). Since there are no extensions between C′
0 and C′′

0 ,
and Ext1H(C+, C0) = 0, the condition Ext1H(Σ,Σ) = 0 is equivalent to the
empty condition 0 = Ext1H(Σ′

0[−1], Σ+) = Ext2C(Σ′
0, Σ+), and the two

additional conditions 0 = Ext1H(Σ+, Σ′
0[−1]) = HomC(Σ+, Σ′

0) and
0 = Ext1H(Σ′′

0 , Σ+) = Ext1C(Σ′′
0 , Σ+). In view of Ext1C(C+, C0) = 0 =

HomC(C0, C+) the two conditions can be expressed as Σ+ ∈ Σ′′
0
⊥

and
Σ+ ∈ ⊥Σ′

0.

(ii)⇔(iii). Because of Serre duality, HomC(Σ+, Σ′
0) = 0 if and only if

Ext1C(τ−1
X

Σ′
0, Σ+) = 0.

We recall from [17] that a concealed canonical algebra Σ can be charac-
terized by the existence of a trisection of mod(Σ) into extension- and τ±-
closed subcategories mod+(Σ) ∨ mod0(Σ) ∨ mod−(Σ) such that mod0(Σ)
is an exact abelian subcategory of mod(Σ), projectives (resp. injectives)
belong to mod+(Σ) (resp. mod−(Σ)) and moreover for each M 6= 0 in
mod+(Σ) (resp. N 6= 0 in mod−(Σ)) there exists a non-zero morphism
from M to mod0(Σ) (resp. from mod0(Σ) to N). It is equivalent to as-
sert the existence of a separating tubular family (Tx)x∈X of standard stable
tubes [17] (see also [23] for a related treatment).

Next we are going to deal with so-called semiregular branch enlargements
of a concealed-canonical algebra. An example is given below by means of
the quiver
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◦ ◦ ◦

◦ • • ◦ ◦

◦ ◦ • • • • ◦ ◦

◦ • • ◦

β // αoo

x1 //

y1~~~~~ ??

x1

�����
��

αoo

α // z3 //

β

__�����
x2 //

x3

�����
��

x1~~~~~ ??

x2 // x2 // y2 //

y1~~~~~ ??

β //

z3 // x3 //

x3~~~~~??
α

__�����
where we require that in addition to the relations x3

1 + x3
2 + x3

3 = 0, yixi =
0 = xizi (i = 1, 2, 3) all possible relations βα = 0 do hold.

By definition, a semiregular tube is an Auslander–Reiten component con-
taining an oriented cycle but not both a projective and an injective object.
As is shown in [19], the semiregular tubes are just the tubes arising from a
stable tube by either ray insertions or else by coray insertions. It is not dif-
ficult to see (compare [21]) that it is equivalent to deal with the components
arising from a stable tube by either coray deletions or ray deletions. We are
going to deal with the topic in more detail in the case when the tubes in
question are additionally standard [21].

Let thus T be a standard stable tube of rank p, accordingly U = add(T )
be a connected uniserial subcategory where the simples form an Auslander–
Reiten orbit (τ jS)j∈Zp

of period p. A proper subset τaS, τa+1S, . . . , τ bS
of this orbit is called a segment , said to be of length ℓ = b − a + 1. Two
segments are called non-adjacent if their union is not a segment and is not the
whole orbit. We select pairwise non-adjacent segments S(j), j = 1, . . . , h,
each consisting of ℓ(j) simple objects T (j), τT (j), . . . , τ ℓ(j)−1T (j). Note

that
∑h

j=1 ℓ(j) < p, further that the Ext-spaces between simple objects
from non-adjacent segments vanish. Since ℓ(j) < p, we further have for
0 ≤ a, b ≤ ℓ(j) − 1 that Ext1U (τaT (j), τ bT (j)) = k if b = a + 1, and 0
otherwise. Hence the full subcategory C(j) of U consisting of all objects
having a finite filtration with factors from the segment S(j) is uniserial,
in fact equivalent to the category of k-linear representations of the quiver
◦ → ◦ → . . . → ◦ → ◦ of type An, n = ℓ(j). Accordingly the Auslander–
Reiten quiver of C(j) is a wing.

A tilting object B(j) in C(j) consisting of indecomposable objects is
known [21, p. 205] to be a branch consisting of ℓ(j) elements. Recall that
a complete branch is the category given by the infinite quiver whose objects
are the words in the two letters α−1, β. There are two types of arrows
β : w → βw and α : α−1w → w; moreover, we require the relations β◦α = 0.
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The empty word 1 is called the root of the complete branch:

1

β α−1

β2 α−1β βα−1 α−2

β3 α−1β2 βα−1β α−2β β2α−1 α−1βα−1 βα−2 α−3

β

vvnnnnnnnnnnnnn
β

~~|||||| α

ggPPPPPPPPPPPPP
β

~~||||||
β

ÆÆÆÆÆ�� β
ÆÆÆÆÆ��α

``BBBBBB
β

ÆÆÆÆÆ�� β
ÆÆÆÆÆ��α

`B̀BBBBB
α

XX00000 α

XX00000 α

XX00000 α

XX000000
A finite connected full subquiver B of ℓ vertices (and the corresponding

subcategory) containing 1 is called a branch of length ℓ rooted in 1.
By a system of branches in a standard stable tube T we understand

a system (B(j))j=1,...,h as described before. If B =
⋃h

j=1 B(j), then the

subcategory U ′ = B⊥ of U right perpendicular to B (see [6]), agreeing with

the category right perpendicular to
⋃h

j=1 S(j), viewed as a full subcategory
of U is again connected uniserial, accordingly T ′ = U ′ ∩ T is a standard

stable tube with p′ = p −
∑h

j=1 ℓ(j) simple objects. Since ⊥B = (τ−1B)
⊥

,
a corresponding assertion holds for the left perpendicular category U ′′ =
⊥B with corresponding stable tube T ′′ = U ′′ ∩ T . Note that the condition
Ext1(B,X) = 0 (resp. Hom(B,X) = 0) amounts to coray deletions (resp.
ray deletions) in T , and defines a semiregular standard tube T ′ (resp. T ′′)
where B (resp. τB) consists of the Ext-projectives (resp. the Ext-injectives)
of T ′ (resp. T ′′) which hence are branches.Alternatively,T ′ (resp.T ′′) arises
from the standard stable tube T ′ (resp. T ′′) by ray (resp. coray) insertions.

Let Σ+ be a concealed-canonical algebra, realized as a tilting bundle on a
weighted projective line Y. We fix a sequence λ′

1, . . . , λ
′
r, λ

′′
1 , . . . , λ′′

s , of pair-
wise distinct points of Y, containing all the exceptional points of Y but pos-
sibly also ordinary points, and let pi (resp. qj) denote the weight of λ′

i (resp.
λ′′

j ). For each i = 1, . . . , r (resp. j = 1, . . . , s) we select a possibly empty
sequence (S′

i(a)), a = 1, . . . , h′
i, (resp. (S′′

j (b)), b = 1, . . . , h′′
j ) of pairwise

non-isomorphic simple objects from mod0(Σ+) = coh0(Y), concentrated
at λ′

i (resp. λ′′
j ) and abstract branches B′

i(a), a = 1, . . . , h′
i (resp. B′′

j (b),
b = 1, . . . , h′′

j ). Note that we allow that pi or qj equals one, accordingly that
S′

i(1) (resp. S′′
j (1)) is an ordinary simple object from mod0(Σ+) = coh0(Y).

The algebra Σ obtained from Σ+ by first forming the multi-point extension-
coextension

a=1,...,h′

i

i=1,...,r [DS′
i(a)]Σ+[S′′

j (b)]
b=1,...,h′′

j

j=1,...,s ,
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and then rooting each branch B′
i(a) (resp. B′′

j (b)) in DS′
i(a) (resp. in S′′

j (b))
is said to be obtained from Σ+ by semiregular branch enlargement . Here,
D denotes the standard duality Homk(−, k). Let ℓ′i(a) (resp. ℓ′′j (b)) denote
the number of points of B′

i(a) (resp. B′′
j (b)), and put

(4) pi = pi +

h′

i∑

a=1

ℓ′i(a), i = 1, . . . , r and qj = qj +

h′′

j∑

b=1

ℓ′′j (b), j = 1, . . . , s.

Moreover, we let X be the weighted projective line which attaches the
weights p1, . . . , pr, q1, . . . , qs to the points λ′

1, . . . , λ
′
r, λ′′

1 , . . . , λ′′
s . Note that,

here, we are identifying the sets underlying X and Y with the projective line
over k.

Proposition 3.3. Let Σ be an algebra obtained from a concealed-cano-

nical algebra Σ+ by means of a semiregular branch enlargement. With the

above notations consider a decomposition X′ ∐ X′′ of X such that each λ′
i

belongs to X′ and each λ′′
i belongs to X′′. Then Σ can be realized as a tilting

object of the category C(X′, X′′).

P r o o f. For each i = 1, . . . , r (resp. j = 1, . . . , s) we arrange the S′
i(a)

(resp. the S′′
j (b)) in such a way that S′

i(a) = τ
−m′

i(a)
Y

S′
i (resp. S′′

j (b) =

τ
−m′′

j (b)

Y
S′′

j ), where S′
i (resp. S′′

j ) are simple sheaves on Y concentrated at λ′
i

(resp. λ′′
j ) and where

m′
i(1) < m′

i(2) < . . . < m′
i(hi) ≤ pi,(5)

0 < m′′
j (1) < m′′

j (2) < . . . < m′′
j (hj) ≤ qj .(6)

We further put

m′
i(a) = m′

i(a) +
a∑

c=1

ℓ′i(c), m′′
j (b) = m′′

j (b) +
b∑

d=1

ℓ′′j (d).

In view of (4) we can select mutually non-adjacent segments

S ′
i(a) = {T ′

i (a), τXT ′
i (a), . . . , τ

ℓ′i(a)−1
X

T ′
i (a)}, a = 1, . . . , h′

i,

S ′′
j (b) = {T ′′

j (b), τXT ′′
j (b), . . . , τ

ℓ′′j (b)−1

X
T ′′

j (b)}, b = 1, . . . , h′′
j ,

where T ′
i (a) = τ

−m̄′

i(a)
X

S′
i (resp. T ′

j(b) = τ
−m̄′′

j (b)

X
S′′

j ) for some simple sheaf S′
i

(resp. S′′
j ) on X concentrated at λ′

i (resp. at λ′′
j ). Since the subcategory C′

i(a)
(resp. C′′

j (b)) generated by Si(a) (resp. S ′′
j (b)) has ℓ′i(a) (resp. ℓ′′j (b)) simple

objects, the branch B′
i(a) (resp. B′′

j (b)) can be realized as a tilting object

B′
i(a) in C′

i(a) (resp. B′′
j (b) in C′′(b)) with root T ′

i (a)[ℓ
′

i(a)] (resp. T ′′
j (b)[ℓ

′′

j (b)]).

Here, S[n] denotes the unique indecomposable sheaf of length n with simple
top S.
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It follows from [6] that the category

(7)
⊥( r,h′

i⋃

i=1,a=1

S ′
i(a)

)
∩

( s,h′′

j⋃

j=1,b=1

S ′
j(b)

)⊥

is equivalent to the category of coherent sheaves on a weighted projec-
tive line with the weight (resp. parameter) data p1, . . . , pr, q1, . . . , qs (resp.
λ′

1, . . . , λ
′
r), λ′′

1 , . . . , λ′′
s , hence to coh(Y). Accordingly Σ+ can be realized

as a tilting bundle on Y. From now on we will identify coh(Y) with the
subcategory (7) of coh(X).

By construction,

Ω =
( r,h′

i∐

i=1,a=1

B′
i(a)[−1]

)
∨ Σ+ ∨

( s,h′′

j∐

j=1,b=1

B′′
j (b)

)

belongs to H = C(X′, X′′), further there are no extensions between any two
members of Ω. Moreover, Ω consists of pairwise non-isomorphic indecom-
posable objects whose number agrees with the rank of the Grothendieck
group K0(H) = K0(C). In view of Proposition 3.2, Ω is a tilting object
in H. We need to show that Ω is isomorphic to Σ. This follows from the
definition of a branch enlargement (resp. branch coenlargement) as in [16]
in view of the following facts:

(a) The object T ′′
j (b)[ℓ+1], ℓ = ℓ′′j (b), belongs to coh(Y), and agrees with

the simple sheaf S′′
j (b) from coh(Y).

(b) The natural epimorphism T ′′
j (b)[ℓ+1] → Tj(b)

[ℓ] with kernel τ ℓ
X
T ′′

j (b)

induces an isomorphism HomX(F, T ′′
j (b)[ℓ+1]) → HomX(F, Tj(b)

[ℓ]) for each

vector bundle F on Y, i.e. S′′
j (b) = r(T ′′

j
[ℓ]

(b)), where r is the right adjoint
to inclusion coh(Y) →֒ coh(X) (see [6]).

Assertion (b) follows because for each bundle F on Y we have Ext1
X
(T, F )

= 0 = HomX(F, τXT ) and further Ext1
X
(F, τXT ) = 0 for each T ∈ C′′

j (b). The
argument for the branch enlargement part of Ω is dual.

According to [8, Corollary 2.3.6] any representation-finite, quasi-tilted
algebra Σ is tilted, and those of canonical type are obtained through tilting
from extended Dynkin type [9, 21]. To characterize the quasi-tilted algebras
of canonical type we may thus restrict to the representation-infinite case.

Theorem 3.4. The following assertions are equivalent for a k-algebra Σ.

(i) Σ is representation-infinite and quasi-tilted of canonical type.

(ii) Σ is isomorphic to the endomorphism ring of a tilting object in a

category C(X′, X′′).
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(iii) Σ is a semiregular branch enlargement of a concealed-canonical al-

gebra.

(vi) The category mod(Σ) admits a sincere separating family of semireg-

ular standard tubes.

P r o o f. (i)⇒(ii). Assume Σ is realized as a tilting object for a hereditary
category H which is derived-equivalent to coh(X) for some weighted projec-
tive line X. According to Theorem 2.3, besides being of shape C(X′, X′′),
there are two further possibilities for H: H ∼= mod(∆) or H ∼= C〈r〉.

In the first case, ∆ is hereditary of extended Dynkin type. Accordingly
Σ is either representation-finite tilted, which we have excluded, or else Σ is
tame concealed, hence has a realization as a tilting bundle for a category of
type coh(X). Next, we assume that C has tubular type, and H ∼= C〈r〉 for
some irrational number r. Recall C〈r〉 is the additive closure of C′′

r ∨ C′
r[1],

therefore a suitable shift moves Σ to C′′
r , hence realizes Σ as a tilting object

of coh(X). Summarizing, we may in each case assume that Σ is a tilting
object in a category of type C(X′, X′′).

(ii)⇒(iii). As in Proposition 3.2, Σ has the form Σ′
0[−1]∨Σ+ ∨Σ′′

0 , and
Σ+∨Σ′′

0 is a tilting object in the category ⊥Σ′
0 which is a category of coherent

sheaves on a weighted projective line Xr. According to [16], Σr = Σ+ ∨Σ′′
0

is a branch coenlargement of Σ+ by Σ′′
0 . Dually, Σℓ = Σ′

0[−1] ∨ Σ+ is a
branch enlargement of Σ+ by Σ′

0, and by construction no tube is involved
in both a branch enlargement and a branch coenlargement.

(iii)⇒(i). See Proposition 3.3.

(ii)⇒(iv). See Proposition 4.3.

(iv)⇒(iii). Let B′ (resp. B′′) denote the full subcategories consisting of a
representative system of indecomposable projectives (resp. injectives) from
the separating family; in view of semiregularity, B′ and B′′ are branches.
Since, moreover, inclusion from M = B′⊥ ∩ ⊥B′′ into mod(Σ) has a left
adjoint [6], M is equivalent to the module category mod(Σ+) for a finite-
dimensional algebra Σ+. Moreover, the hypothesis implies that the inter-
section of M with the separating family of Σ is a sincere separating tubular
family consisting of standard stable tubes for mod (Σ+). In view of [18], this
implies that Σ+ is concealed-canonical, accordingly that Σ is a semiregular
branch enlargement of Σ+.

Corollary 3.5. The following are equivalent for a k-algebra Σ:

(i) Σ is almost concealed-canonical.

(ii) The category mod(Σ) admits a sincere separating family of standard

tubes not containing injectives.

P r o o f. (i)⇒(ii) follows from [16]. For (ii)⇒(i) we represent Σ as above
in the form Σ′

0[−1] ∨ Σ+ ∨ Σ′′
0 . The absence of injectives in the separating
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tubular family constructed in the proof of Proposition 4.3 implies that Σ′
0

is empty, hence Σ = Σ+ ∨ Σ′′
0 is actually a tilting sheaf, accordingly Σ is

almost concealed-canonical.

4. Module category and K-theory. Let Σ be a connected, repre-
sentation-infinite, quasi-tilted algebra of canonical type. According to The-
orem 3.4 we fix a realization of Σ as a tilting object Σ′

0[−1]∨Σ+ ∨Σ′′
0 in a

category H = C(X′, X′′), and identify mod(Σ) with the full subcategory of
Db(H)= Db(C) consisting of all objects X satisfying HomDb(C)(Σ,X[n])= 0
for all integers n 6= 0. Because H is hereditary, mod(Σ) lies in the additive
closure of H∨H[1], accordingly in the additive closure of C′[−1]∨C+ ∨C0 ∨
C+[1] ∨ C′′

0 [1].

C+C'0[-1]
C''0

C''0[1]C+[1]

C'0

Fig. 2. The position of Σ and mod(Σ) in Db(C)

Proposition 4.1. Each indecomposable Σ-module M belongs to one of

the subcategories

(a) modℓ
0(Σ), consisting of all X[−1] where X ∈C′

0 satisfies HomC(Σ+,X)
= 0 = Ext1C(Σ′

0,X),

(b) mod+(Σ), consisting of all X from Σ′′
0
⊥∩C+ satisfying Ext1C(Σ+,X)

= 0,
(c) modc

0(Σ), consisting of all X from C0 satisfying HomC(Σ′
0,X) = 0

and Ext1C(Σ′′
0 ,X) = 0,

(d) mod−(Σ), consisting of all Z[1] with Z ∈ Σ′
0
⊥ ∩ C+ satisfying

HomC(Σ+, Z) = 0,
(e) modr

0(Σ), consisting of all Z[1] with Z ∈ C0 satisfying HomC(Σ+,X)
= 0 = HomC(Σ′′

0 ,X).

The objects from the additive closure of Σ (resp. τXΣ[1]) are the projec-

tive (resp. injective) Σ-modules; moreover , the following equivalences hold :

(a) M ∈ modℓ
0(Σ) ⇔ rkM = 0, degM < 0, and 〈M,Y 〉 > 0 for some

Y ∈ mod−(Σ),
(b) M ∈ mod+(Σ) ⇔ rkM > 0,
(c) M ∈ modc

0(Σ) ⇔ rkM = 0 and degM > 0,
(d) M ∈ mod−(Σ) ⇔ rkM < 0,
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(e) M ∈ modr
0(Σ) ⇔ rkM = 0, degM < 0, and 〈X,M〉 > 0 for some

X ∈ mod+(Σ).

Further , in the ordering modℓ
0(Σ), mod+(Σ), modc

0(Σ), mod−(Σ),
modr

0(Σ) there are no non-zero morphisms from right to left.

P r o o f. An indecomposable object X of Db(H) = Db(C) belongs to
mod(Σ) if and only if

(8) HomDb(H)(Σ[n],X) = 0 for each non-zero integer n.

Since H is hereditary, only indecomposable objects X from H or H[1], i.e.
from

C′
0[−1] ∨ C+ ∨ C0 ∨ C+[1] ∨ C′′

0

can satisfy this condition. It is then straightforward to check that (8)
amounts to the alternatives listed above.

The isolation of the parts through K-theoretic properties then easily
follows from the fact that for an indecomposable member of C the rank
function is > 0 (resp. 0) on indecomposable members from C+ (resp. C0)
and that the degree function is strictly positive on indecomposable members
from C0. The last assertion is obvious.

Note that Σℓ = Σ′
0[−1] ∨ Σ+ (resp. Σr = Σ+ ∨ Σ′′

0 ) are full convex
subcategories of Σ. Moreover, Σr is a tilting object in the subcategory
⊥(τXΣ′

0) of coh(X) left perpendicular to τXΣ′
0 which itself is a category of

the form coh(Xr) for a weighted projective line Xr. Accordingly Σr and
Σop

ℓ are almost concealed-canonical.

Proposition 4.2. Let Σ be a representation-infinite quasi-tilted algebra

of canonical type.

(i) The support of an indecomposable Σ-module either belongs to Σℓ or

else to Σr.

(ii) Σ is tame if and only if both Σℓ and Σr are tame.

P r o o f. (i) In more detail we read from the position of Σ and mod(Σ)
in Db(C) that:

1. M ∈ modℓ
0(Σ) ⇒ supp(M) ⊆ Σ′

0[−1],
2. M ∈ mod+(Σ) ⇒ supp(M) ⊆ Σℓ,

3. M ∈ modc
0(Σ) ⇒

{
supp(M) ⊆ Σr if M ∈ C′′

0 ,
supp(M) ⊆ Σℓ if M ∈ C′

0,
4. M ∈ mod−(Σ) ⇒ supp(M) ⊆ Σr,
5. M ∈ modr

0(Σ) ⇒ supp(M) ⊆ Σ′′
0 .

Assertion (ii) is an immediate consequence of (i).

Let modℓ(Σ) (resp. modr(Σ)) denote the additive closure of modℓ
0(Σ)∨

mod+(Σ) (resp. mod−(Σ) ∨ modr
0(Σ)). Note that each indecomposable
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Σ-module belongs to exactly one of the subcategories modℓ(Σ), modc
0(Σ),

modr(Σ); moreover, in this ordering there are no non-zero morphisms from
right to left.

Proposition 4.3. Let Σ be a representation-infinite quasi-tilted algebra

of canonical type.

(i) indc
0(Σ) decomposes into a tubular family of semiregular tubes, in-

dexed by the projective line over k.

(ii) Each morphism from a module M of modℓ(Σ) to a module N from

modr(Σ) factors through a module U from modc
0(Σ).

(iii) Each Auslander–Reiten component of mod(Σ) has support in Σr

or Σℓ.

(iv) mod(Σ) has a unique preprojective (resp. preinjective) component ,
agreeing with the preprojective component of mod(Σℓ) (resp. the preinjec-

tive component of mod(Σr)).

(v) The categories modℓ
0(Σ) (resp. modr

0(Σ)) have only finitely

many (non-isomorphic) indecomposable objects belonging to the preprojec-

tive (resp. preinjective) component.

(vi) If Σℓ (resp. Σr) is tame, each component in modℓ(Σ) (resp.
modr(Σ)) different from the preprojective (resp. preinjective) component is

a stable tube or obtained from a stable tube by ray (resp. coray) insertions.

(vii) If Σℓ (resp. Σr) is wild , each component in modℓ(Σ) (resp.
modr(Σ)) different from the preprojective (resp. preinjective) component is

of type ZA∞ or obtained from ZA∞ by ray (resp. coray) insertions.

P r o o f. (i) is shown in the preceding section.

(ii) Let C0 =
∐

x∈X
Ux and Tx = ind(U)x denote the tube correspond-

ing to Ux. For x in X′ (resp. X′′) the intersection T ′
x = Tx ∩ modc

0(Σ) is
a semiregular standard tube without projectives (resp. injectives). More-
over, the family (T ′

x)x∈X is sincere and separating: Let M ∈ modℓ(Σ),
N ∈ modr(Σ) be indecomposable modules. If f : M → N is a non-zero
morphism, the assertion on supports in Proposition 4.2 implies that M (resp.
N) has support in Σℓ (resp. Σr). Accordingly, f reduces to a morphism be-
tween modules having support in mod+(Σ), hence for any x ∈ X factors
through a module from Ux having support in Σ+.

(iii) follows from the description of supports in the proof of Proposi-
tion 4.2 and the fact that ind0(Σ) is a union of full components.

(iv) follows from the arguments of [24] (compare also [16, 20]).

(v) Each module in modℓ
0(Σ) has support in the representation-finite

algebra Σ′[−1]; the proof for modr
0(Σ) is dual.

(vi) In view of (iii) the assertion reduces to the case when Σ is almost
concealed-canonical, accordingly Σ′ is empty. Since Σ is tame, we have to
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deal with the cases gX < 1, where Σ is tame concealed, and gX = 1, where
the assertion follows from [15, 21].

(vii) As in (vi) we reduce to the case of an almost concealed-canonical
algebra where the assertion follows from [16, 20].

We refer to [16] for the notion of the weight type of a quasi-canonical
algebra. For the algebras Σ+, Σℓ, Σr, Σ associated with a representation-
infinite quasi-tilted algebra Σ of canonical type these weights are given by
the following data:

Σ+ : p1, . . . , pr, q1, . . . , qs

Σℓ : p1, . . . , pr, q1, . . . , qs

Σr : p1, . . . , pr, q1, . . . , qs

Σ : p1, . . . , pr, q1, . . . , qs.

In each case the weight data above can be recovered from a separating
tubular family as follows: For a tube without injectives (resp. projectives)
pi (resp. qj) equals the number of rays (resp. corays) in the tube, whereas
pi (resp. qj) equals pi (resp. qj) minus the number of projectives (resp.
injectives) in the tube and agrees with the number of corays (resp. rays).
Accordingly, we form the invariants deciding on the genus of weighted pro-
jective lines associated with Σ+, Σℓ, Σr and Σ:

δ(Σ+) = (r + s − 2) −

( r∑

i=1

1

pi

+
s∑

j=1

1

qj

)
,

δ(Σℓ) = (r + s − 2) −

( r∑

i=1

1

pi

+

s∑

j=1

1

qj

)
,

δ(Σr) = (r + s − 2) −

( r∑

i=1

1

pi

+

s∑

j=1

1

qj

)
,

δ(Σ) = (r + s − 2) −

( r∑

i=1

1

pi

+

s∑

j=1

1

qj

)
.

Proposition 4.4. Let Σ be a representation-infinite quasi-tilted algebra

of canonical type.

(i) The Grothendieck group K0(Σ) with the attached Euler form

〈−,−〉Σ , and the attached quadratic form qΣ , is uniquely determined—up

to isomorphism—by the weight sequence p1, . . . , pr, q1, . . . , qs of Σ attached

to a sincere separating family of semiregular standard tubes.
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(ii) The characteristic polynomial of the Coxeter transformation for Σ
is given as

χΣ(T ) = (T − 1)2
r∏

i=1

T p̄i − 1

T − 1

s∏

j=1

T q̄j − 1

T − 1
.

Accordingly all roots of χΣ are roots of unity , and the spectral radius of the

Coxeter transformation equals one.

(iii) The radical of qΣ has rank one (resp. two) according as δ(Σ) 6= 0
(resp. δ(Σ) = 0).

(iv) qΣ is positive semi-definite (resp. indefinite) if and only if δ(Σ) ≤ 0
(resp. δ(Σ) > 0).

(v) qΣ is weakly non-negative, i.e. qΣ([M ]) ≥ 0 for each M ∈ mod(Σ)
if and only if δ(Σℓ) ≤ 0 and δ(Σr) ≤ 0.

P r o o f. Assertions (i)–(iv) deal with invariants under derived equiva-
lence, and are known for categories of coherent sheaves on weighted pro-
jective lines [14, 17]. (v) follows from Proposition 4.2 together with the
fact that an almost concealed-canonical algebra is tame if and only if its
quadratic form is non-negative.

Corollary 4.5. Assume that Σ is a tame quasi-tilted algebra of canon-

ical type X. Then the number of exceptional points of X is bounded by 8.

We present some examples of quasi-tilted algebras of canonical type with
unusual K-theoretic properties.

Example 4.6. Consider the algebra Σ = Σ(r, s), given by the quiver

◦ ◦

◦ ◦
... ◦ ◦

...

◦ ◦

a1

LLLLLLLLLLL&&
a2

VVVVVVVVVVV++ u1 //
u2

//
b3

VVVVVVVVVVV ++

b2hhhhhhhhhhh 33
b1rrrrrrrrrrr 88

arhhhhhhhhhhh33

with relations

(u2 − λ′
iu1) ◦ ai = 0, bi ◦ (u2 − λ′′

j u1) = 0, i = 1, . . . , r, j = 1, . . . , s,

where λ′
1, . . . , λ

′
r, λ′′

1 , . . . , λ′′
s are pairwise distinct elements of k. Note that

Σ(r, s) is quasi-canonical of weight type (2, 2, . . . , 2) (r + s entries). Note
that δ(Σℓ) = r/2−2, δ(Σr) = s/2−2, and δ(Σ) = (r+s)/2−2. Accordingly,
Σ is tame if and only if r, s ≤ 4.

(i) The algebra Σ(2, 2) is tame domestic, its Auslander–Reiten quiver
consists of just one tubular family and two further components, a prepro-
jective component and a preinjective component, each having a slice of ex-
tended Dynkin type D̃4. Since Σ(2, 2) is quasi-canonical of weight type
(2, 2, 2, 2), the quadratic form qΣ is non-negative, and the radical of qΣ
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has rank two. Accordingly Σ(2, 2) is not derived-equivalent to a hereditary
algebra.

(ii) The algebra Σ = Σ(4, 4) is tame, since Σℓ and Σr are both tubular
algebras of type (2, 2, 2, 2). All but a finite number of components of ind(Σ)
are stable tubes, and there are an infinite number of tubular families. The
quadratic form qΣ is weakly non-negative, but indefinite. Despite the pres-
ence of an infinite number of tubular families, the radical of qΣ has rank
one. Note that the restriction of qΣ to the two convex subcategories Σℓ and
Σr results in quadratic forms qΣℓ

and qΣr
having radicals of rank two.

It follows from [22] that a quasi-tilted algebra Σ of tame representation
type which is not tilted, is a semiregular branch enlargement of a tame
concealed algebra. Invoking the theorem of the previous section, Σ is hence
realizable as a tilting object in a hereditary category of type C(X′, X′′), and
is quasi-canonical. The following result solves the tame case of a problem
arising in connection with [8].

Theorem 4.7. Let H be a hereditary category with a tilting object Σ
whose endomorphism ring is tame. Then H is derived-equivalent to a

category of type mod(∆), ∆ a hereditary algebra, or of type coh(X), X a

weighted projective line.

P r o o f. If Σ is tilted then it can be realized as a tilting object on a
module category mod(∆) where ∆ is a hereditary algebra. Otherwise the
quoted result [22] shows that Σ is a semiregular branch of a concealed-
canonical algebra, hence in view of Theorem 3.4 is quasi-tilted of canonical
type.
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