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CHARACTERIZATIONS OF COMPLEX SPACE FORMS
BY MEANS OF GEODESIC SPHERES AND TUBES

BY

J. G I LLARD (LEUVEN)

We prove that a connected complex space form (Mn, g, J) with n ≥ 4 can
be characterized by the Ricci-semi-symmetry condition R̃XY · %̃ = 0 and by
the semi-parallel condition R̃XY · σ = 0, considering special choices of tan-
gent vectors X, Y to small geodesic spheres or geodesic tubes (that is, tubes
about geodesics), where R̃, %̃ and σ denote the Riemann curvature tensor,
the corresponding Ricci tensor of type (0, 2) and the second fundamental
form of the spheres or tubes and where R̃XY acts as a derivation.

1. Introduction. In a previous article [1] the following question was
stated: which are the Riemannian manifolds all of whose small geodesic
spheres or geodesic tubes are semi-symmetric? In fact, one investigated the
weaker Ricci-semi-symmetry condition R̃XY ·%̃ = 0 and also the semi-parallel
condition R̃XY ·σ = 0 for these hypersurfaces, in view of the strong similari-
ties shown in [2], [4] between the intrinsic geometry determined by the Ricci
tensor %̃ and the extrinsic properties related to the second fundamental form
σ of the geodesic sphere or tube. The main result was that a connected Rie-
mannian manifold (Mn, g) with n ≥ 4 is a real space form if and only if its
small geodesic spheres are Ricci-semi-symmetric or semi-parallel, where for
small geodesic tubes it was sufficient that these conditions are satisfied for
the so-called horizontal tangent vectors X, Y to the tube. As a consequence,
these properties cannot hold for complex space forms, except when they are
flat.

In this paper we look for a special class of tangent vectors X, Y to the
tubes or spheres which makes each of the two conditions R̃XY · %̃ = 0 and
R̃XY ·σ = 0 characteristic for complex space forms. It will turn out that the
appropriate tangent vectors are the horizontal ones (in the sense of Section
3 and 4), where in the case of geodesic tubes one has additionally to restrict
to special points (see Section 2).
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2. Preliminaries. Let (M, g) be an n-dimensional, connected, smooth
Riemannian manifold, with n ≥ 4. Denote by ∇ the Levi-Civita connection
and by R and % the corresponding Riemannian curvature tensor and Ricci
tensor, respectively. We use the sign convention

RXY = ∇[X,Y ] − [∇X ,∇Y ]

for tangent vector fields X, Y on M .
Next, we treat some general aspects of complex space forms. Suppose

that (M, g, J) is a Kähler manifold , that is, J is a (1, 1)-tensor field on M
such that

(1) J2 = −I, g(JX, JY ) = g(X, Y ), ∇J = 0

for all tangent vector fields X, Y on M . The holomorphic sectional curvature
H(u) for a unit tangent vector u ∈ TxM,x ∈ M is the sectional curvature
of the plane spanned by {u, Ju}. So, H(u) = RuJuuJu = g(RuJuu, Ju).
If H(u) is independent of u then it is independent of x, i.e., H(u) = c, c ∈ R
and then (M, g, J) is called a space of constant holomorphic sectional cur-
vature c or a complex space form. Further, a Kähler manifold of constant
holomorphic sectional curvature c is characterized by the following curvature
tensor:

RXY Z =
c

4
{g(X, Z)Y − g(Y, Z)X(2)

+ g(JX, Z)JY − g(JY, Z)JX + 2g(JX, Y )JZ}.

(See for example [11].) We also have another useful characterization:

Theorem 2.1 [8]. Let (Mn, g, J) be a connected Kähler manifold with
dimension n ≥ 4. Then M is a complex space form if and only if RXJXX
is proportional to JX for any vector X tangent to M .

Now, let m be a point in an arbitrary Riemannian manifold M and γ a
geodesic parametrized by arc length such that γ(0) = m. Denote u = γ′(0).
Next, let {E1, . . . , En} be the parallel orthonormal frame field along γ with
E1(0) = u. Let Gm(r) denote the geodesic sphere centered at m and with
radius r < i(m), the injectivity radius at m. For a point p = γ(r) =
expm(ru) ∈ Gm(r) we have the following expansions for the curvature tensor
R̃, the Ricci tensor %̃ and the second fundamental form σ of Gm(r) with
respect to {E1, . . . , En}:
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(3) R̃abcd(p) =
1
r2

(δacδbd − δadδbc)

+
{

Rabcd−
1
3
(Rubudδac + Ruaucδbd−Rubucδad−Ruaudδbc)

}
(m) + O(r),

(4) %̃ab(p) =
n− 2

r2
δab +

(
%ab −

1
3
%uuδab −

n

3
Ruaub

)
(m)

+ r

(
∇u%ab −

1
4
∇u%uuδab −

n + 1
4

∇uRuaub

)
(m)

+ r2

(
1
2
∇2

uu%ab −
1
10
∇2

uu%uuδab −
n + 2
10

∇2
uuRuaub

+
1
9
Ruaub%uu −

1
45

n∑
λ,µ=2

R2
uλuµδab

− n + 2
45

n∑
λ=2

RuauλRubuλ

)
(m) + O(r3),

(5) σab(p) =
1
r
δab −

r

3
Ruaub(m) + O(r2)

for a, b, c, d = 2, . . . , n, where Rabcd = g(REaEb
Ec, Ed) and similarly for the

other tensors. We refer to [2], [5], [6], [9] for more details.
Since we are working in a Kähler manifold we can make a specific choice

for E2 by means of the initial condition E2(0) = Ju = Jγ′(0). Hence,
E2 = JE1 = Jγ′. When (Mn, g, J) is a space of constant holomorphic
sectional curvature c, we can write down complete formulas for R̃, %̃ and σ.
Using the technique of Jacobi vector fields [9] we find

(6) σ = λg + µη ⊗ η.

This together with (2) and the Gauss equation yields

R̃XYZW =
(

c

4
+ λ2

)
{g(X, Z)g(Y, W )− g(X, W )g(Y, Z)}(7)

+
c

4
{g(JX, Z)g(JY,W )− g(JY, Z)g(JX, W )

+ 2g(JX, Y )g(JZ, W )}
+ µλ{g(X, Z)η(Y )η(W ) + g(Y, W )η(X)η(Z)
− g(X, W )η(Y )η(Z)− g(Y, Z)η(X)η(W )}.

By contraction we then obtain

(8) %̃ =
{

(n− 2)λ2 + (n + 1)
c

4
+ µλ

}
g +

{
(n− 3)µλ− 3c

4

}
η ⊗ η,
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where g denotes the induced metric and λ =
√

c
2 cot

√
c

2 r, µ+λ =
√

c cot
√

c r
for c > 0, η(X) = g(X, E2(r)) and X, Y, Z,W are tangent vectors to Gm(r).
When c < 0 one has to replace cot by coth and the formulas for c = 0 are
obtained by taking the limit as c → 0.

Now, we will consider geodesic tubes, that is, tubes about a geodesic
curve. We refer to [4], [5], [7], [9], [10] for more details. Let σ : [a, b] → M
be a smooth embedded geodesic curve and let Pr denote the tube of radius
r about σ, where we suppose r to be smaller than the distance from σ to
its nearest focal point. In that case, Pr is a hypersurface of M . Let σ be
parametrized by the arc length and denote by {e1, . . . , en} an orthonormal
basis of Tσ(a)M such that e1 = σ̇(a). Further, let E1, . . . , En be the vector
fields along σ obtained by parallel translation of e1, . . . , en. Then E1 = σ̇
and {E1, . . . , En} is a parallel orthonormal frame field along the geodesic
σ. Next, let p ∈ Pr and denote by γ the geodesic through p which cuts
σ orthogonally at m = σ(t). We parametrize γ by arc length such that
γ(0) = m and take (E2, . . . , En) such that E2(t) = γ′(0) = u. Finally, let
{F1, . . . , Fn} be the orthonormal frame field along γ obtained by parallel
translation of {E1(t), . . . , En(t)} along γ.

For the hypersurface Pr one then has the following expansions with re-
spect to this parallel frame field [4], [10]:

R̃1abc(p) =
(

R1abc −
1
2
R1ubuδac +

1
2
R1ucuδab

)
(m)(9)

+ r

(
∇uR1abc −

1
3
∇uR1ubuδac +

1
3
∇uR1ucuδab

)
(m)

+ r2

(
1
2
∇2

uuR1abc +
1
6
R1ubuRaucu −

1
6
R1ucuRaubu

− 1
8
∇2

uuR1ubuδac +
1
8
∇2

uuR1ucuδab

− 1
8
R1u1uR1ubuδac +

1
8
R1u1uR1ucuδab

− 1
24

n∑
λ=3

R1uλuRbuλuδac

+
1
24

n∑
λ=3

R1uλuRcuλuδab

)
(m) + O(r3),

R̃abcd(p) =
1
r2

(δacδbd − δadδbc) + Rabcd(m)(10)

− 1
3
(Rbuduδac −Rbucuδad + Raucuδbd −Rauduδbc)(m)

+ O(r),
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%̃11(p) = %11(m)− (n− 1)R1u1u(m) + O(r),(11)

%̃1a(p) = %1a(m)− n− 1
2

R1uau(m)(12)

+ r

(
∇u%1a −

n

3
∇uR1uau

)
(m)

+ r2

(
1
2
∇2

uu%1a −
n + 1

8
∇2

uuR1uau +
1
6
%uuR1uau

− 3n− 5
24

R1u1uR1uau −
n + 1
24

n∑
λ=3

R1uλuRauλu

)
(m)

+ O(r3),

%̃ab(p) =
n− 3

r2
δab +

(
%ab −

n− 1
3

Raubu(13)

− 1
3
%uuδab −

2
3
R1u1uδab

)
(m) + O(r),

σ11(p) = O(r),(14)

σ1a(p) = − r

2
R1uau(m) + O(r2),(15)

σab(p) =
1
r
δab + O(r)(16)

for a, b, c, d ∈ {3, . . . , n}.
Now, suppose that (Mn, g, J) is a Kähler manifold. Then, a point p =

expm(ru) on the geodesic tube Pr will be called a special point when u =
Jσ̇(t), that is, F2 = JF1. For complex space forms of holomorphic sectional
curvature c, computing the second fundamental form of Pr by means of the
technique of Jacobi vector fields at such a special point yields [7]

(17) σ(p) = λ g + µ η ⊗ η,

where g denotes the induced metric and λ=
√

c
2 cot

√
c

2 r, µ+λ=−
√

c tan
√

c r
for c > 0. The values for c < 0 are obtained as usual by replacing the
trigonometric functions by the corresponding hyperbolic functions and for
c = 0 one has to take the limit c → 0. The tensor η in this case is determined
by η(X)(p) = g(X, F1(r)) for tangent vectors X to Pr at the special point
p. Since σ has the same form as in (6), proceeding in the same way results
in formally the same expressions for R̃ and %̃ as in (7) and (8), respectively.
One only has to keep in mind that in the case of geodesic tubes, these
formulas are only valid for the special points.

3. Horizontally Ricci-semi-symmetric and horizontally semi-
parallel geodesic spheres. A vector X ∈ TpGm(r) is called horizontal if
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X is orthogonal to Jγ′|p, where γ denotes the unit speed geodesic connecting
m and p. This means that η(X) = 0. Moreover, the space of horizontal
tangent vectors to Gm(r) at p is spanned by E3(r), . . . , En(r).

Then a small geodesic sphere Gm(r) is said to be horizontally Ricci-semi-
symmetric if R̃XY · %̃ = 0 for all horizontal tangent vectors on Gm(r).

The notion of horizontally semi-parallel geodesic spheres is defined in a
similar way by means of the condition R̃XY · σ = 0.

First, we prove the following result for complex space forms.

Theorem 3.1. Let (Mn, g, J), n ≥ 4, be a complex space form. Then
the small geodesic spheres in M are horizontally Ricci-semi-symmetric and
horizontally semi-parallel.

P r o o f. Using (8) it is easy to see that

−(R̃XY · %̃)(W,W ) = 2µ2η(R̃XY W )η(W ),

where µ2 = (n − 3)µλ − 3c/4. But η(R̃XY W ) = −g(R̃XY E2,W ). So, we
have to show that

(18) R̃XY E2 = 0

for horizontal tangent vectors to Gm(r).
Using (6) we see in the same way that (18) implies R̃XY · σ = 0.
By means of (7) it is easy to verify that (18) is indeed satisfied for

horizontal tangent vectors.

Next, we prove the converse theorems.

Theorem 3.2. Let (Mn, g, J), n ≥ 4, be a Kähler manifold such that
its small geodesic spheres are horizontally semi-parallel. Then (M, g, J) is
a complex space form.

P r o o f. Using (3) and (5) and considering the coefficient of r−1 in the
power series expansion of

(R̃ab · σ)cd = 0
for a, b = 3, . . . , n and c, d = 2, . . . , n yields

−δacRdubu + δbcRduau − δadRcubu + δbdRcuau = 0.

Next, take a = d 6= b and c = Ju (that is, c = 2). Then we also have
a 6= c, b 6= c since a, b ≥ 3, and we get RJuubu = 0 for b ≥ 3. This implies
that RuJuux = 0 for x orthogonal to Ju. Hence, Theorem 2.1 yields that
(M, g, J) is a complex space form.

Theorem 3.3. Let (Mn, g, J), n ≥ 4, be a Kähler manifold such that its
small geodesic spheres are horizontally Ricci-semi-symmetric.Then (M, g,J)
is a complex space form.
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P r o o f. The assumption in the theorem yields (R̃ab · %̃)cd = 0 for a, b =
3, . . . , n and c, d = 2, . . . , n. Using the power series expansions (3) and (4)
and considering the coefficient of r−2, r−1 and r0 gives three conditions in
which we make the choice b = d 6= a and c = Ju (that is, c = 2). This leads
to the following conditions:

%aJu =
n

3
RauJuu,(19)

(∇u%)aJu =
n + 1

4
(∇uR)auJuu,(20)

0 =
1
2
(∇2

uu%)aJu −
n + 2
10

(∇2
uuR)auJuu(21)

+
1
9
RauJuu %uu −

n + 2
45

n∑
λ=2

RλuJuuRλuau

for a orthogonal to span{u, Ju}.
These three conditions are exactly those needed in the proof of Theo-

rem 12 of [3, pp. 198–201]. Applying the same method (polarization and
summation procedures) therefore leads to the required result.

4. Horizontally Ricci-semi-symmetric and horizontally semi-
parallel geodesic tubes. In [1] a tangent vector X to a small geodesic
tube Pr is said to be horizontal if X is orthogonal to F1, the parallel translate
of σ̇ along γ.

Now, if (Mn, g, J) is a Kähler manifold, for special points p ∈ Pr we see
that X ∈ TpPr is horizontal if X is orthogonal to Jγ′|p. Hence, a horizontal
vector X at a special point p is determined by the condition η(X) = 0 and
the spaces of horizontal vectors at p are spanned by F3, . . . , Fn at p.

Next, a small geodesic tube Pr will be called horizontally Ricci-semi-
symmetric for special points if R̃XY · %̃ = 0 for all horizontal tangent vectors
X, Y at special points, and similarly Pr is said to be horizontally semi-
parallel for special points if R̃XY · σ = 0 for the same choice of vectors
X, Y .

We then have

Theorem 4.1. Let (Mn, g, J), n ≥ 4, be a complex space form. Then
the small geodesic tubes in M are horizontally Ricci-semi-symmetric and
horizontally semi-parallel for special points.

P r o o f. In the same way as in Theorem 3.1 we find that R̃XY F1 = 0
implies R̃XY · %̃ = 0 and R̃XY · σ = 0 for X, Y tangent to Pr. So, we have
to show that

R̃XY F1 = 0(22)
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for horizontal tangent vectors at special points. But at special points R̃ has
the same form as in (7). Using the horizontality of X, Y , it is easy to see
that (22) holds.

Finally, we consider the converse theorems.

Theorem 4.2. Let (Mn, g, J), n ≥ 4, be a Kähler manifold all of whose
geodesic tubes are horizontally semi-parallel for special points. Then (M, g,J)
is a complex space form.

P r o o f. The assumption yields (R̃ab · σ)1c = 0 for a, b, c = 3, . . . , n.
Using the power series expansions (9), (10), (14)–(16) and considering the
coefficient of r−1 yields R1cab = 0. Now, take b = c = Ja. Then, since
F1(0) = −Ju, we get RJuJaaJa = 0 and hence RuaJaa = 0, for a orthogonal
to the plane (u, Ju). Since this must hold for all tubes, the result follows
from Theorem 2.1.

Theorem 4.3. Let (Mn, g, J), n ≥ 4, be a Kähler manifold all of whose
geodesic tubes are horizontally Ricci-semi-symmetric for special points. Then
(M, g, J) is a complex space form.

P r o o f. Using (9)–(13) we can write down the power series expansion
for (R̃ab · %̃)1a = 0, a, b = 3, . . . , n.

Considering the coefficient of r−2 and taking b = Ja results in %(u, a) =
RaJuuJu + (n − 3)RuJaaJa for any unit tangent vectors a, u on M , with a
orthogonal to u and Ju. Switching a and u and subtracting the equations
obtained yields, for n 6= 4 and a, u as above, that %(u, a) = (n− 4)RuJaaJa

and hence %(a, Ju) = (n− 4)RauJuu. Although the coefficient of RauJuu in
this expression is different from the one in (19), using a similar polarization
and summation procedure as in the first part of the proof of Theorem 12 in
[3, p. 198] gives the result for n 6= 4. (We omit the details.)

For n = 4 we consider the coefficient of r0. In this expression we regroup
equal terms and use the identity ∇2

uu%1a = ∇2
uuR1uau +∇2

uuR1bab. Finally,
taking b = Ja results in

0 = (2RuaJaa + RauJuu)(RJuuJuu −RJuaJua)
+ RauJau(2RuJaaJa −RaJuuJu)

for a, u unit tangent vectors on M , with a orthogonal to u and Ju.
First, we replace a and u by a/‖a‖ and u/‖u‖ respectively. Then we

obtain a homogeneous expression which is also valid for non-unit vectors a
and u.

Next, we polarize this expression, replacing a by αa+βu, which we may
do, since αa + βu is orthogonal to u, Ju if a is orthogonal to u, Ju. Writing
down the coefficient of α3β2 and β5 yields

(23) AB + DC = 0, DB −AC = 0,
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where
A = 2RuaJaa + RauJuuu,

B = RJuuJuu −Rauau,

C = RauJau,

D = RaJuuJu − 2RuJaaJa.

Since (23) is a homogeneous system of linear equations with determinant
different from zero if A 6= 0, we always get AB = 0. Explicitly, this means

(24) (2RuaJaa + RauJuu)(RJuuJuu −Rauau) = 0

for unit tangent vectors a, u on M , with a orthogonal to u, Ju.
Again, we homogenize (24) and polarize, replacing a by αa + βu and u

by βa − αu. Writing down the coefficients of the polynomial obtained by
this procedure gives

(25)



(2H + G)X = 0,
2(2H + G)E + 3KX = 0,
(2H + G)Z + 24KE − (G−H)X = 0,
2(2H + G)F + 3K(Z + X)− 2(G−H)E = 0,
(2H + G)Y + 24K(F + E)− (G−H)Z − (2G + H)X = 0,
2(2G + H)E − 3K(Z + Y ) + 2(G−H)F = 0,
(2G + H)Z − 24KF + (G−H)Y = 0,
2(2G + H)F − 3KY = 0,
(2G + H)Y = 0,

where
X = RJuuJuu −Rauau,

Y = RJaaJaa −Rauau,

Z = 2RJuuJaa + 4RJuaJua − 2Rauau,

E = RaJuuJu, F = RuJaaJa,

G = RauJuu, H = RuaJaa, K = RauJau.

First we suppose that 2H + G = 0. The last two equations in (25) then
yield that HF = 0. On the contrary, if 2H + G 6= 0, we can use the first
four equations to derive that F = 0. So, in both cases we obtain HF = 0,
which means that RuaJaaRuJaaJa = 0 for all a, u tangent to M with a
orthogonal to u, Ju. Replacing u by u + Ju in this condition eventually
leads to RuaJaa = 0. Then the result for n = 4 follows by Theorem 2.1.
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ifolds, Kōdai Math. Sem. Rep. 25 (1973), 190–201.
[9] L. Vanhecke, Geometry in normal and tubular neighborhoods, Rend. Sem. Fac.

Sci. Univ. Cagliari, Supplemento al Vol. 58 (1988), 73–176.
[10] L. Vanhecke and T. J. Wi l lmore, Interaction of tubes and spheres, Math. Ann.

263 (1983), 31–42.
[11] K. Yano and M. Kon, Structures on Manifolds, Ser. in Pure Math. 3, World Sci.,

Singapore, 1984.

Department of Mathematics
Katholieke Universiteit Leuven
Celestijnenlaan 200B
B-3001 Leuven, Belgium
E-mail: jurgen.gillard@wis.kuleuven.ac.be

Received 26 September 1995


