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On the category of modules of second kind
for Galois coverings

by

Piotr D o w b o r (Toruń)

Abstract. Let F : R→R/G be a Galois covering and mod1(R/G) (resp. mod2(R/G))
be a full subcategory of the module category mod(R/G), consisting of all R/G-modules of
first (resp. second) kind with respect to F . The structure of the categories (mod(R/G))/
[mod1(R/G)] and mod2(R/G) is given in terms of representation categories of stabilizers
of weakly-G-periodic modules for some class of coverings.

0. Introduction. The covering technique in representation theory was
introduced and developed for the investigation of representation-finite alge-
bras and computing their representations (see [G], [Gr], [BG], [R]). It has
been generalized and applied to the study of representation-infinite algebras
(see [DS1], [DLS], [DS2], [P]).

The covering methods in representation theory of algebras over a field k
are based on interpretation of modules over the algebra as representations
of some quiver with relations, or more generally modules over a locally
bounded category. Following [BG] a k-category R is called locally bounded
if all objects of R have local endomorphism rings, the different objects are
nonisomorphic, and both sums

∑
y∈R dimk R(x, y) and

∑
y∈R dimk R(y, x)

are finite for each x ∈ R. R-modules are then contravariant k-linear functors
from R to the category of k-vector spaces. An R-module M is locally finite-
dimensional (resp. finite-dimensional) if dimkM(x) is finite for each x ∈ R
(resp.

∑
x∈R dimkM(x) is finite). We denote by MODR the category of all

R-modules, by ModR (resp. modR) the full subcategory of all locally finite-
dimensional (resp. finite-dimensional) R-modules and by IndR (resp. indR)
the full subcategory of indecomposable objects of ModR (resp. modR). For
any M ∈ MODR, M∗ is the Rop-module dual to M , given by M∗(x) =
Homk(M(x), k) for x ∈ R. The contravariant functor ( )∗ : MODR →
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MODRop mapping M to M∗ induces an equivalence of categories ModR '
(ModRop)op.

Let Λ be a finite-dimensional algebra over an algebraically closed field
k. Then the category of finite-dimensional right Λ-modules is equivalent
to modRΛ for some uniquely determined (up to isomorphism), finite, lo-
cally bounded k-category RΛ. Assume that RΛ is of the form R/G, where
R is some locally bounded k-category and G some group of k-linear au-
tomorphims of R, acting freely on objects. This occurs for example if RΛ
admits some nice group grading (see [Gr]). Then the Galois covering functor
F : R→ R/G induces a pair of functors

MODR
Fλ
À
F•

MOD(R/G),

where F• is the pull-up functor given by F•(M) = M · F for M ∈ MODR,
and Fλ is the push-down functor, the left adjoint to F• (see [BG]). If ad-
ditionally G acts freely on (indR)/', then Fλ induces an injection from
the set ((indR)/')/G of G-orbits of (indR)/' into (ind(R/G))/' (see [G;
3.5]). In some cases the study of the module category for the algebra Λ
completely reduces to an analogous problem for the cover category R of RΛ
(see [G], [DS1], [DS2], [DLS]).

Let R be a locally bounded k-category and G a group of k-linear au-
tomorphisms of R acting freely on the isoclasses of indecomposable finite-
dimensional R-modules. Assume that for any x ∈ R the set Rx consisting
of all y ∈ R such that there exists an indecomposable finite-dimensional
R-module M with nonzero M(x) and M(y), is finite. Then the push-down
functor Fλ : modR → mod(R/G) associated with the Galois covering F :
R→ R/G induces a bijection between the G-orbits of isoclasses of indecom-
posable finite-dimensional R-modules and the isoclasses of indecomposable
finite-dimensional R/G-modules.

In the general case the category mod(R/G) of finite-dimensional R/G-
modules does not necessarily coincide with its full subcategory mod1(R/G)
formed by all modules of the form FλM , M ∈ modR. It was observed
in [DS2] that the structure of the remaining indecomposable R/G-modules
strongly depends on weakly-G-periodic R-modules, i.e. indecomposable
locally finite-dimensional R-modules B such that suppB is contained in
finitely many GB-orbits and GB is infinite, where GB = {g ∈ G : gB ' B}
is the stabilizer of the isoclass of B and suppB = {x ∈ R : B(x) 6= 0} is the
support of B.

The main aim of this paper is to give a description of the full subcategory
mod2(R/G) of mod(R/G) consisting of all modules having no direct sum-
mands from mod1(R/G), for some class of Galois coverings. The elements
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from mod2(R/G) (resp. mod1(R/G)) are usually called modules of the sec-
ond (resp. first) kind with respect to the Galois covering F . The descrip-
tion is given in terms of the factor category mod(R/G)/[mod1(R/G)]. This
category carries essential information about the structure of the category
mod2(R/G), namely has the same indecomposable objects and irreducible
maps (see [AR]).

Recall that for any subcategory V0 of an additive category V, V/[V0]
denotes the factor category of V modulo the ideal [V0] of all morphisms in V
factorizing through a direct sum of some objects of V0. If additionally V is a
Krull–Schmidt category and V0 is closed under direct sums and summands,
then for any v, v′ ∈ V without direct summands in V0, [V0](v, v′) is contained
in the square of the Jacobson radical of the category V, and there exists a
natural bijection between indecomposables from V \ V0 and from V/[V0].

The first result describing the category of modules of the second kind
was the reduction theorem proved in [DS2]:

Let R be a locally bounded k-category and G a group of automorphisms
of R which acts freely on the isoclasses of finite-dimensional indecomposable
modules. Assume that there exists a G-invariant family S of subcategories
of R with the following properties:

(i) for each L ∈ S and each G-orbit O of R, O ∩ L is contained in
finitely many GL-orbits in R, where GL is the stabilizer of L in G,

(ii) for any two different L,L′ ∈ S, L ∩ L′ is locally support-finite,
(iii) for each weakly-G-periodic R-module B there exists L ∈ S containing

suppB.

Then for any fixed set S0 of representatives of the G-orbits of S there
exists an equivalence of factor categories

∐

L∈S0

(mod(L/G))/[mod1(L/GL)] ' (mod(R/G))/[mod1(R/G)].

The above reduction theorem has very interesting consequences in situ-
ations similar to those when the supports of all weakly-G-periodic modules
have linear ordinary quivers. In this case the family of all supports of weakly-
G-periodic modules satisfies the assumptions of the theorem and the cate-
gories L/GL are simply the path categories of quivers of euclidean type Ãn.
Moreover, the supports of any two nonisomorphic weakly-G-periodic mod-
ules are different, and for each weakly-G-periodic R-module B the group
GB coincides with GsuppB and is an infinite cyclic group. Therefore FλB
has the structure of a kGB-R/G-bimodule and induces a functor

ΦB = −⊗k[ξ,ξ−1] FλB : mod k[ξ, ξ−1]→ mod(R/G),
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where mod k[ξ, ξ−1] is the category of finite-dimensional modules over the
algebra of Laurent polynomials in the variable ξ over k.

Let W denote the set of all weakly-G-periodic modules and W0 a fixed
set of representatives of the isoclasses representing G-orbits in W. Then by
the description of the module category for quivers of euclidean type Ãn, the
functors (ΦB)B∈W0 induce equivalences

(∗)L mod k[ξ, ξ−1] ∼→ (mod(L/GL))/[mod1(L/GL)],

and the theorem yields the equivalence
∐

W0

mod k[ξ, ξ−1] ∼→ (mod(R/G))/[mod1(R/G)].

The above equivalence allows us to understand better the structure of
the module category for special biserial algebras. It has many applications
(see [S1]–[S3]). Some generalization of this theorem has been given in [P].

In spite of many applications the reduction theorem is useless in the case
when there exists a weakly-G-periodic R-module with support R, since then
S has to be equal to {R}. This often happens when G is the infinite cyclic
group. The simplest example of this situation is the Z cover R of the algebra
k[x, y]/(x3, y2, xy).

In the general case many weakly-G-periodic modules can have the same
support L and we cannot expect that the equivalence (∗)L holds. The de-
scription of the category mod2(R/G) in this situation cannot depend so
strongly on the properties of supports of weakly-G-periodic modules and
therefore some different approach is necessary. In this paper we propose
a new strategy. It relies on a direct reduction to representation theory of
stabilizers of weakly-G-periodic modules, without intermediate steps of the
form L/G and any knowledge of the module categories mod(L/GL). The
conditions imposed on weakly-G-periodic modules are expressed in terms of
their tensor products and homomorphisms. We prove the following result
(see Theorem 4.1):

Let R be a locally bounded k-category , where k is algebraically closed , G
a group of automorphisms of R acting freely on the isoclasses of indecom-
posable finite-dimensional R-modules, W the set of all weakly-G-periodic
R-modules and W0 a fixed set of representatives of the G-orbits in W up to
isomorphism. Assume that R satisfies the following two conditions:

(i) for each B ∈ W the stabilizer GB is an infinite cyclic group and the
endomorphism ring EndR(B) is isomorphic to k,

(ii) for any two different B1, B2 ∈ W such that GB1 ∩GB2 is nontrivial
the tensor product B1⊗RB∗2 of B1 and the k-dual of B2 is a finitely generated
free module over the group algebra k(GB1 ∩GB2).
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Then the functors

ΦB : mod k[ξ, ξ−1] ΦB−→mod(R/G)→ (mod(R/G))/[mod1(R/G)],

B ∈ W0, are full and faithful , the functor

Φ :
∐

B∈W0

mod k[ξ, ξ−1]→ (mod(R/G))/[mod1(R/G)]

induced by (ΦB)B∈W0 is dense, and Φ admits a left quasi-inverse

Ψ : (mod(R/G))/[mod1(R/G)]→
∐

B∈W0

mod k[ξ, ξ−1]

whose kernel KerΨ is an ideal contained in the Jacobson radical of the cat-
egory (mod(R/G))/[mod1(R/G)]. In particular , Φ and Ψ induce a decom-
position

(mod(R/G))/[mod1(R/G)] '
∐

B∈W0

mod k[ξ, ξ−1]⊕KerΨ

and a bijection between the corresponding sets of isomorphism classes of
indecomposable objects, and KerΨ restricted to the image of ΦB is zero for
each B ∈ W0.

The class of examples covered by this theorem is not essentially larger
than that covered by the previous one. The simplest example illustrating
the theorem is the covering of the algebra k[x, y]/(x3, y2, xy) with the group
Z×Z. In a subsequent publication a more general version of the above result
without so strong restrictions on endomorphism rings of weakly-G-periodic
R-modules will be proved.

The paper is organized as follows. Section 1 contains notations, terminol-
ogy and the basic facts concerning Galois coverings of representation-infinite
algebras. In Section 2 the operations on R-modules with R-actions of groups
are studied and later applied to the description of the functors ΦB and their
adjoints in terms of R-modules. In Section 3 some technique for verifying
whether certain representations of the infinite cyclic group are free is intro-
duced. The whole Section 4 is devoted to the proof of the Theorem.

The methods we use here are very elementary. We assume the basic
results on Galois coverings proved in [G] and [DS2], elementary properties
of adjoint functors [M], the Krull–Warfield decomposition theorem [W], the
description of indecomposable finitely generated modules over principal ideal
domains and an elementary knowledge of representations of groups [L].

Some of the results have been obtained during the author’s visit at FB
17 Uni-GH Paderborn. The author whishes also to express his gratitude to
Daniel Simson for his constant support during the work on this topic. Finally,
he would like to thank Mr. Słupski for careful typing of this manuscript.
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1. Basic definitions and facts

1.1. Throughout this paper we denote by k an algebraically closed field,
by R a locally bounded k-category (see [BG], [G]) and by G a group of
k-linear automorphisms of R. Then G acts on MODR by translations g(−)
which assign to each M ∈ MODR the R-module gM = M ◦ g−1. For each
M ∈ MODR we denote by GM the stabilizer {g ∈ G : gM 'M}. Through-
out this paper we assume that G acts freely on (indR)/'.

By MODGR we denote the category of R-modules with an R-action of
G. The objects of MODGR are pairs (M,µ), where M ∈ MODR and µ is a
family of R-homomorphisms (µg : M → g−1

M)g∈G such that g−1
1 µg2 · µg1 =

µg2g1 for all g1, g2 ∈ G. The set of morphisms from (M,µ) to (M ′, µ′) in
MODGR, denoted by HomG

R(M,M ′), consists of all f ∈ HomR(M,M ′) such
that µ′g · f = g−1

f · µg for all g ∈ G.

ModGf R is the full subcategory of MODGR formed by all (M,µ) ∈
MODGR such that M ∈ ModR and (suppM)/G is finite. Then the pull-
up functor F• : MOD(R/G) → MODR associated with a Galois covering
F : R→ R/G induces an equivalence of categories [G; p. 94]

mod(R/G) ∼→ModGf R.

The group G can also be interpreted as a group of k-linear automor-
phisms of Rop. Then the functor F op : Rop → (R/G)op is also a Galois cov-
ering since (R/G)op = Rop/G. The corresponding pull-up and push-down
functors are briefly denoted by F op

• and F op
λ .

The group Gop opposite to G is isomorphic to G via the map ( )−1 :
Gop → G. Therefore Gop can also be regarded as a group of k-linear auto-
morphisms of R and Gop acts on MODR by translations g

−1
(−), g ∈ Gop.

1.2. Let ind1(R/G) be the full subcategory of the category ind(R/G) of
indecomposable finite-dimensional R-modules consisting of all objects iso-
morphic to FλM for some M ∈ indR, and let ind2(R/G) be the full subcat-
egory of ind(R/G) formed by the remaining indecomposables. It is known
[DS; 2.2] that a module X ∈ ind(R/G) belongs to ind1(R/G) if F•X has
a finite-dimensional direct summand. Since each module M ∈ ModR has a
decomposition into a direct sum of indecomposables (with local endomor-
phism rings), therefore a module X ∈ mod(R/G) belongs to mod2(R/G) if
there exists a decomposition F•X =

⊕
i∈I Bi in ModR with all Bi weakly-

G-periodic (see [DS2; 2.3]).

1.3. For any k-algebra A we denote by MODA the category of all left
A-modules and by modA the full subcategory of MODA formed by all
finite-dimensional A-modules. By Aop we denote the algebra opposite to A
and by ( )∗ the standard duality Homk(−, k) : MODA→ MODAop.
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2. A description of the functors ΦBH and their adjoints. Let H be
a subgroup of G and B = (B, ν) ∈ MODHR. Then for each orbit Gx ∈ R/G,
FλB(Gx) =

⊕
y∈GxB(y) carries via ν the structure of a free module over the

group algebra kH ofH, which is finitely generated in case (Gx∩suppB)/H is
finite and B ∈ ModR. In fact, FλB has the structure of a kH-R/G-bimodule
and induces a functor

ΦBH = −⊗kH FλB : MOD kH → MOD(R/G)

(see [DS2; 3.6]). If additionally B ∈ ModHf (R/G) then the restriction of ΦBH
to mod kH factors through mod(R/G). In case H = GB we write ΦB = ΦBGB .
In this section we will study these functors and their adjoints in terms of
the category MODGR.

2.1. Let A be a k algebra, C a k-category and Q : C → MODAop an A-
C-bimodule. Then we denote by QA : Cop → MODA the Aop-Cop-bimodule
defined by QA(x) = Q(x)A, where Q(x)A = HomA(Q(x), A). In particular,
if A = k then QA = Q∗.

For any subgroup H of G denote by ( )−1 : MOD kH → MOD(kH)op

the canonical isomorphism of categories given by V −1 = V and h ·v = vh−1

for V ∈ MOD kH, h ∈ H, v ∈ V . The inverse functor is denoted in the same
way. We set

( )~ = ( )−1 ◦ ( )∗ : MOD kH → MOD kH.

Analogously we denote by ( )−1 : MODHR → MODHop
R the iso-

morphism given by (M,µ)−1 = (M,µ−1) for (M,µ) ∈ MODHR, where
(µ−1)h = µh−1 for h ∈ H. The inverse functor will be denoted in the same
way.

The usual duality ( )∗ induces the contravariant functor ( )∗ : MODHR

→ MODHop
Rop mapping M = (M,µ) ∈ MODHR to M∗ = (M∗, µ∗) ∈

MODHop
Rop, where (µ∗)h : M∗ → h(M∗) for each h ∈ H is given by the

R-homomorphism

M∗ = h(h
−1
M∗)

h((µh)∗)−−−−−→ h(M∗).

We set

( )~ = ( )−1 ◦ ( )∗ : MODHR→ MODHRop.

The composed functor ( )~ maps M = (M,µ) ∈ MODHR to M~ =
(M∗, µ~), where µ~

h for each h ∈ H is the R-homomorphism

M∗ = h−1
(hM)∗

h−1
((µh−1 )∗)−−−−−−→ h−1

M∗.

Lemma. Let B ∈ ModHf R. Then the R/G-kH-bimodules F op
λ B∗ and

FλB
kH are isomorphic.
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P r o o f. For any a ∈ R/G fix a set Wa of representatives of the H-orbits
in a∩ suppB. Then there exists a sequence of natural isomorphisms of right
kH-modules

FλB
kH(a) = HomkH(FλB(a), kH) ' HomkH

(
kHkH⊗k

( ⊕
x∈Wa

B(x)
)
, kH

)

' Homk

( ⊕
x∈Wa

B(x),HomkH(kHkH, kH)
)
' Homk

( ⊕
x∈Wa

B(x), kHkH

)

'
( ⊕
x∈Wa

B(x)
)∗
⊗k kHkH = F op

λ B∗(a).

Corollary. The three functors

−⊗R/G FλB,HomR/G(FλBkH ,−),HomkH(F op
λ B∗,−) :

mod kH → mod(R/G)

are isomorphic.

P r o o f. Since, for each a ∈ R/G, FλB(a) is a finitely generated free
kH-module, using Lemma 2.1 for any V ∈ mod kH we obtain a sequence of
natural isomorphisms of R/G-modules

HomkH(F op
λ B∗, V )(a) ' HomkH(FλBkH(a), V )

= HomkH(FλB(a)kH , V ) ' V ⊗kH (FλB(a)kH)kH

' V ⊗kH FλB(a) = (V ⊗kH FλB)(a).

2.2. Let (M,µ) ∈ MODHR and V ∈ MOD (kH)op. Then we denote by
V ⊗k M the object (V ⊗k M,V ⊗k µ) ∈ MODHR defined as follows:
(V ⊗k M)(x) = V ⊗k M(x) if x ∈ R, (V ⊗k M)(α) = idV ⊗kM(α) if α is a
morphism in R, and (V ⊗k µ)h : V ⊗k M → h−1

(V ⊗k M) for each h ∈ H
is the R-homomorphism given by ((V ⊗ µ)h(x))(v ⊗m) = hv ⊗ (µh(x))(m)
for x ∈ R, m ∈M(x) and v ∈ V .

Let (N, ν) ∈ MODHRop and V ∈ MOD (kH)op. Then by Homk(N,V )
we mean the object (Homk(N,V ),Homk(ν, V )) ∈ MODHR defined as
follows: Homk(N,V )(x) = Homk(N(x), V ) if x ∈ R, Homk(N,V )(α) =
Homk(N(α), V ) if α is a morphism in R, and Homk(N, ν)h : Homk(N,V )→
h−1

(Homk(N,V )) for each h ∈ H is the R-homomorphism given by
(Homk(N, ν)h(x))(fx) = fx · νh−1(hx) for x ∈ R and f ∈ Homk(N(x), V ).

Lemma. Let B ∈ ModHR. Then the two functors

−⊗k B,Homk(B~,−) : MOD (kH)op → MODHR

are isomorphic. If B ∈ ModHf R then the functor − ⊗k B restricted to
mod(kH)op factors through ModHf R.
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P r o o f. Since, for each x ∈ R, B(x) is finite-dimensional, it follows that
V ⊗k B(x) ' V ⊗k B(x)∗∗ ' Homk(B(x)∗, V ) = Homk(B~, V )(x) for any
V ∈ MOD (kH)op.

2.3. Consider the restriction functor

RH : MODGR→ MODHR

mapping N = (N, ν) ∈ MODGR to (N, ν|H) ∈ MODHR. Instead of RH(N)
we will simply write N . We give an explicit formula for its adjoint, the
induction functor

ΘH : MODHR→ MODGR.

Denote by SH a fixed set of representatives of the left cosets GmodH.
We define ΘH(M,µ) = (

⊕
g∈SH

gM, µ̃) for M = (M,µ) ∈ MODHR. Here

the maps µ̃g :
⊕

g1∈SH
g1M →⊕

g2∈SH
g−1g2M , g ∈ G, are the R-homomor-

phisms defined by the family g1µh : g1M → g−1g2M , g1 ∈ SH , where g2 ∈ SH
and h ∈ H are determined by the equality gg1 = g2h.

Lemma. Let M = (M,µ) ∈ MODHR and N = (N, ν) ∈ MODGR. Then
there exists a natural isomorphism HomH

R (M,N) ' HomG
R(ΘH(M), N).

Moreover , if (suppM)/H is finite then also the isomorphism HomH
R (N,M)

' HomG
R(N,ΘH(M)) holds.

P r o o f. Take M,N as above. Then for any f ∈ HomH
R (N,M) denote by

f̃ :
⊕

g1

g1M → N the R-homomorphism defined by the family

g1M
g1f−→ g1N

g1νg1−−→N, g1 ∈ SH .
It is easy to check that f̃ ∈ HomG

H(ΘH(M), N) and that the map f 7→ f̃
gives the required natural isomorphism. If now (suppM)/H is finite then⊕

g1∈SH
g1M =

∏
g1∈SH

g1M (see [DS2; 2.3]). For any f ∈ HomH
R (N,M)

denote by
≈
f : N →⊕

g1∈SH
g1M the R-homomorphism defined by the family

N
ν
g
−1
1−−−−→ g1N

g1f−→ g1M, g1 ∈ SH .

It is easy to check that
≈
f ∈ HomG

H(N,ΘH(M)) and that the map f 7→
≈
f

gives the second isomorphism.

Proposition. Let B be an object in ModHf R.

(i) The two functors

F•(−⊗kH FλB), ΘH((−)−1 ⊗k B) : mod kH → ModGf R

are isomorphic.
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(ii) The two functors

F•HomkH(FλBkH ,−), ΘH(Homk(B~, (−)−1)) : mod kH → ModGf R

are isomorphic.

P r o o f. (i) By Lemma 2.3 it is enough to construct a natural family of
morphisms fV : V −1⊗kB → F•(V ⊗kHFλB), V ∈ mod kH in MODHR, and
to show that all R-homomorphisms f̃V : ΘH(V −1⊗k B)→ F•(V ⊗kH FλB)
are isomorphisms.

Take any V ∈ mod kH and x ∈ R. Define the k-linear map fV (x) :
V ⊗k B(x) → V ⊗kH (

⊕
y∈GxB(y)) by setting fV (x)(v ⊗ b) = v ⊗ b,

where v ∈ V and b ∈ B(x). It is easy to verify that for each V the family
(fV (x))x∈R defines a morphism fV in MODHR, the family (fV )V ∈mod kH

induces a natural transformation of functors and all R-homomorphisms
f̃V : ΘH(V ⊗k B)→ F•(V ⊗kH FλB) induced by families (g1µg1 · g1f)g1∈SH
are isomorphisms, where µ for each V denotes the standard R-action of G
on F•(V ⊗kH FλB).

(ii) The proof is analogous.

R e m a r k. The above isomorphisms are compatible with those from
Lemma 2.2 and Corollary 2.1.

2.4. In order to interpret the right and left adjoint functors

HomR/G(FλB,−),−⊗R/G F op
λ B∗ : mod(R/G)→ MOD kH

to ΦHB in terms of MODGR, we first have to endow the homomorphism
space and the tensor product of two modules from MODHR with the struc-
ture of a left kH-module. Given (M,µ), (N, ν) ∈ MODHR the map H ×
HomR(M,N)→ HomR(M,N), (h, f) 7→ hνh · hf ·µh−1 , defines the structure
of a kH-module on HomR(M,N) with a corresponding H-action denoted
by HomR(µ, ν).

Recall that for given M ∈ MODR and N ∈ MODRop the tensor product
of M and N over R is the factor space M ⊗R N = (M ⊗k N)/I, where
M⊗kN =

⊕
x∈RM(x)⊗kN(x) and I = I(M,N) is the subspace of M⊗kN

generated by all vectors of the form M(α)(my)⊗ nx −my ⊗N(α)(nx), for
all α ∈ R(x, y), nx ∈ N(x), my ∈M(y).

Let now M = (M,µ) ∈ MODHR and N = (N, ν) ∈ MODHRop. Then
the maps µh(x) ⊗k νh(x) : M(x) ⊗k N(x) → M(hx) ⊗k N(hx), h ∈ H,
x ∈ R, furnish an action of H on M ⊗k N denoted by µ⊗k ν. The subspace
I remains H-invariant under this action so µ ⊗k ν induces an H-action
µ ⊗R ν on M ⊗R N and in consequence the structure of a left kH-module
on M ⊗R N .
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R e m a r k. M ⊗k N is a free kH-module and can serve for a projective
cover of M ⊗R N , usually not minimal. Moreover, it is finitely generated if
M ∈ ModHR and N ∈ ModHf R

op.

Lemma. (i) Let M ∈ MODHR, N ∈ MODHRop and V ∈ MOD (kH)op.
Then there exist canonical natural isomorphisms of left kH-modules
Homk(M ⊗R N,V ) ' HomR(M,Homk(N,V )) and (V ⊗k M) ⊗R N '
V ⊗k (M ⊗R N). In particular , there exists a natural isomorphism of left
kH-modules (M ⊗R N)~ ' HomR(M,N~).

(ii) Let M ∈ MODHR and V ∈ MOD (kH)op. Then there exists a
canonical natural isomorphism of left kH-modules HomR(V ⊗k M,N) =
Homk(V,HomR(M,N)).

P r o o f. (i) Use the isomorphisms

Homk(M(x)⊗k N(x), V ) ' Homk(M(x),Homk(N(x), V ))

and

(V ⊗kM(x))⊗k N(x) ' V ⊗k (M(x)⊗k N(x)), x ∈ R.
(ii) Use the isomorphism

Homk(V ⊗kM(x), N(x)) ' Homk(V,Homk(M(x), N(x))), x ∈ R.

Corollary. (i) Let M ∈ MODHR and N ∈ MODHRop. Then there
exists a canonical natural embedding of kH-modules M ⊗R N ↪→
HomR(M,N~)~.

(ii) Let M ∈ MODHR and N ∈ MODHR. Then there exists a natu-
ral isomorphism of kH-modules HomR(M,N) ' (M ⊗R N~)~ and an
embedding M ⊗R N~ ↪→ HomR(M,N)~, which is an isomorphism if
dimk HomR(M,N) is finite.

P r o o f. Use the standard embedding V ↪→V ~~ for V ∈ MOD (kH)op.

2.5. Proposition. Let M∈MODHR, N∈MODHop
Rop, X∈mod(R/G)

and Y ∈ MOD (R/G)op. Then the following natural isomorphisms of left
kH-modules hold.

(i) HomR/G(FλM,X)−1 ' HomR(M,F•X).
(ii) FλM ⊗R/G Y 'M ⊗R F op

• Y .
(iii) (X ⊗R/G F op

λ N)−1 ' F•X ⊗R N−1.

P r o o f. (i) This is a simple verification of H-invariance of the adjointness
formula for the pair of functors (Fλ, F•) (see [BG; 3.2]).
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(ii) Take M and Y satisfying the assumptions. Then the canonical iso-
morphisms

FλM(Gx)⊗k Y (Gx) =
( ⊕
y∈Gx

M(y)
)
⊗k Y (Gx) ' ⊕

y∈Gx
M(y)⊗k Y (Gx)

=
⊕
y∈Gx

M(y)⊗ F op
• Y (y)

are H-invariant and induce an isomorphism of kH-modules f : M⊗kF•Y ∼→
FλM⊗RY . Since f(I(M,F•X)) ⊂ I(FλM,Y ) the homomorphism f induces
an epimorphism f : M ⊗R F•Y → FλM ⊗R/G Y . By Corollary 2.4(i) and
(i), f has to be an isomorphism.

(iii) Follows immediately from (ii).

Corollary. Let B = (B, ν) be an object in ModHf R.

(i) The two functors

HomR/G(FλB,−), (HomR(B,F•(−)))−1 : mod(R/G)→ MOD kH

are isomorphic.
(ii) The two functors

(−⊗R/G FλBkH), (F•(−)⊗R B~)−1 : mod(R/G)→ MOD kH

are isomorphic.

P r o o f. (i) Obvious by Proposition 2.5(i).
(ii) Follows from Proposition 2.5(ii) and Lemma 2.1.

3. Free representations of an infinite cyclic group

3.1. In this section we will find some sufficient condition for a finitely
generated module over the group algebra of an infinite cyclic group to be
free.

Let φ : W →W be a k-linear automorphism of a vector space W . Then
to any decomposition W =

⊕
j∈JWj into a direct sum of subspaces we

attach an oriented graph Γ (φ, J) of components of φ defined as follows. The
set of points of Γ (φ, J) is J . The arrow j1 → j2 in Γ (φ, J) exists if and only
if pj2φ(Wj1) 6= 0, where pj : W → Wj denotes the standard projection for
each j ∈ J .

Proposition. Let H be an infinite cyclic group and U be a finitely
generated left kH-module. If for some h ∈ H there exists a k-vector space
decomposition U =

⊕
j∈J Uj such that Γ (h·, J) has no oriented cycles, then

U is a finitely generated free kH-module.

For the proof we need the following elementary facts.

Lemma. Let φ : W →W be a k-linear automorphism.
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(i) If φ has a nonzero eigenvalue then so has each φn, n ∈ N.
(ii) If W admits a decomposition W =

⊕
j∈J Wj such that Γ (φ, J) has

no oriented cycles then φ has no nonzero eigenvalue.

P r o o f. (i) φ(w) = λw implies φn(w) = λnw.
(ii) The assumption of (ii) implies that J is partially ordered with respect

to the relation �, where j1 � j2 if and only if j1 = j2 or there exists
an oriented path from j1 to j2 in Γ (φ, J). Assume now that φ(w) = λw,
where λ ∈ k and 0 6= w =

∑
j∈J wj ∈ W =

⊕
j∈JWj . The nonempty,

finite set J0 = {j ∈ J : wj 6= 0} has some minimal element j0. Then
λw = φ(w) ∈⊕j∈J1

Wj , where J1 is the set of direct successors of elements
from J0. Since Γ (φ, J) has no oriented loops the minimality of j0 yields
λ = 0.

P r o o f o f t h e P r o p o s i t i o n. Since kH is a principal ideal domain
and k is algebraically closed, a module U in mod (kH)op is free if and only
if it has no simple submodule isomorphic to kH/(h0 − λ) for some λ ∈ k∗,
where h0 is any fixed generator of H. In other words, U is free if and only if
the map h0· : U → U has no nonzero eigenvalue. Now given h ∈ H satisfying
the assumptions, we choose a generator h0 of H such that h = hn0 for some
n ∈ N. Then by the Lemma, h· : U → U and h0· : U → U have no nonzero
eigenvalues, and therefore the kH-module U is free.

3.2. Let I be a set. We denote by S0(I) the set of all finite subsets of
I. Then to any subset A ⊂ S0(I) and any map f : I → I we attach the
oriented graph Γ (f,A) of intersections of A via f defined as follows. The
set of points of Γ (f,A) is just A. For any A,B ∈ A there exists an arrow
A→ B in Γ (f,A) if and only if f(A) ∩B is nonempty.

Proposition. Let H be an infinite cyclic group and U be a finitely gener-
ated left kH-module. Assume that the k-vector space U has a decomposition
U =

⊕
j∈J Uj , and there exists a function s : J → S0(I) and a free action

• : H × I → I of H on the set I with the following properties:

(i) there exists a nontrivial subgroup H ′ ⊂ H such that s(J) is H ′-stable
and s(J)/H ′ is finite,

(ii) for each h ∈ H, s induces an oriented graph morphism

s : Γ (h·, J)→ Γ (h•, s(J)).

Then U is a finitely generated free kH-module.

P r o o f. The proof follows immediately from Proposition 3.1 and the
lemma below.

Lemma. Let • : H ′ × I → I be a free action of an infinite cyclic group
H ′ on some set I, and A be an H ′-stable subset of S0(I) such that A/H ′ is
finite. Then there exists h ∈ H ′ such that Γ (h•,A) has no oriented cycle.
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P r o o f. Without loss of generality we can assume H ′ = Z. Since A/H ′
is finite there exists a finite subset D′ ⊂ I such that for any A ∈ A, h′ • A
is contained in D′ for some h′ ∈ H ′. Denote by D the union of all sets
h′ • D′, where h′ ∈ H ′ is such that h′ • D′ ∩ D′ 6= ∅. Since D is finite the
set H ′1 consisting of all h′ ∈ H ′ such that h′ • D ∩ D 6= ∅ is finite. Let h
be the smallest element of H ′ = Z such that h > |h′| for all h′ ∈ H ′1. In
order to prove that Γ (h•,A) has no oriented cycles it is enough to show
that for any A0, A1, . . . , An ∈ A, n ∈ N, such that A0 ∩ A1 6= ∅, A1 ∩ A2 6=
∅, . . . , An−1 ∩An 6= ∅ we have An ∩ nh •A0 = ∅.

Take A0, A1, . . . , An as above. Then there exist h0, h1, . . . , hn ∈ H ′ such
that Ai ⊂ hi • D′ for each i = 0, 1, . . . , n. Since Ai ∩ Ai+1 6= ∅, both Ai,
Ai+1 are contained in hi •D, and hi+1− hi ∈ H ′1 for any i = 0, 1, . . . , n− 1.
Without loss of generality we can assume h0 = 0. Then A0∪A1∪ . . .∪An ⊂⋃
h′∈H′2 h

′ • D, where H ′2 = {h′ ∈ H ′ : (1− n)h ≤ h′ ≤ (n− 1)h}. Therefore
An ∩ nh • D and consequently An ∩ nh • A0 are empty, and the proof is
finished.

3.3. Let M ∈ ModR, N ∈ ModRop, H be a subgroup of G and (µh :
M → h−1

M)h∈H and (νh : N → h−1
N)h∈H be families of R-homomorphisms.

For any h ∈ H we denote by µh ⊗R νh the composed homomorphism

M ⊗R N µh⊗Rνh−−−−→ h−1
M ⊗R h−1

N 'M ⊗R N.
Observe that in case (µh)h∈H and (νh)h∈H are both R-actions of H, for
any h ∈ H the map µh ⊗R νh is equal to the value of the action µ⊗R ν on
M ⊗R N at h (see 2.4).

Proposition. Let H be an infinite cyclic group, (N, ν) ∈ ModHf R
op

and M ∈ ModR a module such that GM contains H. Assume that M has
a decomposition M =

⊕
t∈T Mt with the following properties:

(i) for each t ∈ T , all indecomposable direct summands of Mt are iso-
morphic,

(ii) for any two different t1, t2 ∈ T the modules Mt1 and Mt2 have no
isomorphic direct summand ,

(iii) for each t ∈ T such that suppMt∩suppN is nonempty and GMt∩H
is nontrivial there exists an Rop-action νt of GMt∩H on N and an R-action
µt of GMt∩H on Mt such that Mt⊗RN with the action µt⊗Rνt is a finitely
generated free k(GMt ∩H)-module.

Then for any family of R-homomorphisms (µh : M → h−1
M)h∈H such

that (µh ⊗R νh)h∈H gives rise to an H-action on M ⊗R N , the finitely
generated kH-module M ⊗R N is free.
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This proposition is crucial for the main result of this paper. The rest of
this section will be devoted to the preparation for the proof of Proposition 3.3
and the proof itself (given in 3.7).

3.4. Let π : V → U =
⊕

j∈J Uj be a k-linear map. For any subspace V ′

of V denote by tπ(V ′) the set consisting of all j ∈ J such that pj(π(V )) 6=
0, where pj : U → Uj denotes the canonical projection for each j ∈ J .
Observe that tπ(V ′) is a finite set if dimk V

′ is finite. Assume that V has
a decomposition V =

⊕
i∈I Vi into a direct sum of subspaces. Then for any

j ∈ J we denote by oπ(Uj) the set of all i ∈ I such that pj(π(Vi)) 6= 0. More-
over, observe that if π is surjective then for any finite-dimensional subspace
U ′ ⊂ U there exists a finite subset I0 of I such that U ′ ⊂ ∑

i∈I0 π(Vi).
The following simple fact explains the role of the above notation.

Lemma. Let π :
⊕

i∈I Vi →
⊕

j∈J Uj and π′ :
⊕

i′∈I′ V
′
i′ →

⊕
j′∈J′ Uj′

be a surjective homomorphism of k-vector spaces, ϕ :
⊕

i∈I Vi →
⊕

i′∈I′ V
′
i′

be the k-linear homomorphism induced by a family ϕi : Vi → Vf(i), i ∈ I,
where f : I → I ′ is some function, and ψ :

⊕
j∈J Uj →

⊕
j′∈J′ U

′
j′ be the

homomorphism induced by a family of linear maps ψ(j′,j) : Uj → U ′j′ , j ∈ J ,
j′ ∈ J ′. Assume that ψπ = π′ϕ. Then for any j ∈ J , j′ ∈ J ′ and I0 ⊂ I
such that ψ(j′,j) 6= 0 and Uj ⊂

∑
i∈I0 π(Vi), the intersection f(I0)∩ oπ′(U ′j′)

is nonempty.

P r o o f. Obvious.

3.5. Let V = kH ⊗k V , U = kH ⊗k U and π : V → U be a kH-
homomorphism, where V =

⊕r
α=1 V α and U =

⊕s
β=1 Uβ are k-vector

spaces with some fixed decompositions into a finite direct sum of subspaces.
Let us fix the notation I = H × {1, . . . , r}, J = H × {1, . . . , s}, V(h,α) =
kh ⊗k V α and U(h,β) = kh ⊗k Uβ for (h, α) ∈ I and (h, β) ∈ J . The group
H acts on I and J in an obvious way compatible with multiplication by
elements of H.

Lemma. Let π :
⊕

i∈I Vi →
⊕

j∈J Uj be as above.

(i) If the free kH-module V is finitely generated then all sets oπ(Uj),
j ∈ J , are finite and oπ(Uhj) = h · oπ(Uj) for any j ∈ J and h ∈ H.

(ii) If the free kH-module U is finitely generated and π is surjective then
there exists a finite subset I0 ⊂ I such that U(h,β) ⊂

∑
i∈hI0 π(Vi) for any

h ∈ H and β = 1, . . . , s.

P r o o f. (i) The assumption of (i) is equivalent to dimk Vα being finite
for any α = 1, . . . , r. Therefore all sets tπ(Vi), i ∈ I, are finite. Take any
j ∈ J and suppose oπ(Uj) is infinite. Then there exists α ∈ {1, . . . , r} and
an infinite sequence of pairwise different elements hn ∈ H, n ∈ N, such that
pjπ(V(hn,α)) 6= 0. Since hnπ(V(e,α)) = π(V(hn,α)), we have ph−1

n jπ(V(e,α)) 6= 0
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for each n ∈ N and thus tπ(V(e,α)) is infinite. This is a contradiction and
therefore all sets oπ(Uj), j ∈ J , are finite. The second part of (i) is obvious.

The proof of (ii) is easy and we leave it to the reader.

3.6. Lemma. Let H1 and H2 be subgroups of G, L1 be an H1-invariant
subset of R, and L2 an H2-invariant subset of R, such that H1 ∩H2 = {e}
and L1/H, L2/H are finite. Then L1 ∩ L2 is finite.

P r o o f. Suppose L1 ∩ L2 is infinite. Since L1/H1 is finite there exists
x ∈ L1 ∩ L2 such that H1x ∩ L1 ∩ L2 is infinite. Analogously there exists
y ∈ H2x ∩ L1 ∩ L2 such that H1x ∩H2y ∩ L1 ∩ L2 is infinite. Hence there
exists z ∈ L1 ∩ L2 and nontrivial elements h1 ∈ H1 and h2 ∈ H2 such that
h1z = h2z and we get a contradiction. Therefore L1 ∩L2 has to be finite.

Let now (N, ν) ∈ ModHf R
op and M ∈ ModR be modules such that

(suppM)/GM is finite, where H is an infinite cyclic group. Denote by H1

the intersection H ∩ GM and by L the intersection suppM ∩ suppN . The
free kH1-module M ⊗k N =

⊕
i∈LM(i) ⊗k N(i) is finitely generated for

any R-action of H1 on M , if H1 is nontrivial. Assume that M admits some
R-action µ1 of H1 on itself such that µ1⊗R ν induces the structure of a free
kH1-module on M ⊗R N . Then for the subspace U spanned by the set of
free kH1-generators of M ⊗R N we obtain a k-vector space decomposition
M ⊗R N =

⊕
h∈H1

Uh, where Uh = h · U for each h ∈ H1. Therefore the
canonical projection π : M ⊗kN →M ⊗RN can be viewed as a linear map
π :
⊕

x∈LM(x)⊗k N(x)→⊕
h∈H1

Uh.

Corollary. With the notation above, for any U there exists a finite
subset s(U) of L such that Uh ⊂

∑
i∈s(U) π(M(hi)⊗k N(hi)) and oπ(Uh) ⊂

hs(U) for each h. In particular , if H1 is trivial then U = M ⊗R N and one
can take the whole L for s(U).

P r o o f. In case H1 is nontrivial, the free kH-module M ⊗k N is finitely
generated since (suppN)/H is finite and H1 has a finite index in H. There-
fore the assertion follows immediately from Lemma 3.5. In case H1 is trivial
the assertion follows from Lemma 3.6.

3.7. P r o o f o f P r o p o s i t i o n 3.3. In order to show that for given M
and N satisfying the assumptions the finitely generated kH-module M⊗R N
is free we shall apply Proposition 3.2. Therefore we have to define a decompo-
sition M⊗RN =

⊕
j∈J Uj , an action • : H×I → I and a map s : J → S0(I)

satisfying the required conditions.
Let M =

⊕
t∈T Mt be a decomposition as in the assumption of the

proposition. Denote by T ′ the set of all t ∈ T such that suppMt∩suppN 6= ∅.
The group H acts on T ′ by the action ∗ : H×T ′ → T ′ given by the formula
h ∗ t = t′, where t′ is the unique element of T ′ such that hMt ' Mt′ . Since
(suppN/H) is finite, M ∈ ModR and H is an infinite cyclic group, the
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H-invariant subset T0 ⊂ T ′ consisting of all elements with trivial stabilizers
Ht = H ∩GMt in H consists only of finitely many H-orbits and T1 = T ′ \T0

is finite. By assumption (iii) and Lemma 3.6 all Mt ⊗R N , t ∈ T ′, are
finitely generated kHt-modules. Therefore for each t ∈ T ′ there exists a
finite-dimensional subspace Ut ⊂ Mt ⊗R N such that the k-vector space
Mt⊗RN has a decomposition Mt⊗RN =

⊕
h∈Ht U(t,h), where U(t,h) = h·Ut

for any h ∈ Ht. Then the k-vector space M ⊗R N =
⊕

t∈T ′Mt ⊗R N has
a decomposition M ⊗R N =

⊕
j∈J Uj , where J is the disjoint union of Ht,

t ∈ T ′.
We now set I = suppN . Then H acts on I in an obvious way. We

define a function s : J → S0(I) by setting s(t, h) = h · s(Ut) if t ∈ T1 and
s(t, h) = suppMt∩I if t ∈ T0 (see Corollary 3.6). Observe that the nontrivial
intersection H ′ =

⋂
t∈T1

Ht satisfies the assumption (i) of Proposition 3.2,
because H ′ has a finite index in H and in all Ht, t ∈ T1. In order to verify the
assumption (ii) of Proposition 3.2 one has to show that, for any j1, j2 ∈ J ,
h ∈ H, if the (j1, j2)th component (µh⊗R νh)(j2,j1) : Uj1 → Uj2 of µh⊗R νh
is nonzero then hs(j1) ∩ s(j2) is nonempty. For any t1, t2 ∈ T ′ denote by
µ

(t2,t1)
h : Mt1 → h−1

Mt2 the (t2, t1)th component of µh : M → h−1
M . Fix any

elements j1 = (t1, h1), j2 = (t2, h2) of J and assume (µh ⊗R νh)(j2,j1) 6= 0.
Then (µh⊗Rνh)(j2,j1) is the (h2, h1)th component of the (t2, t1)th component

µ
(t2,t1)
h ⊗R νh : Mt1 ⊗R N →Mt2 ⊗R N of µh ⊗R νh. Now we set

ψ = µ
(t2,t1)
h ⊗R νh :

⊕
h′1∈Ht1

U(t1,h′1) →
⊕

h′2∈Ht2
U(t2,h′2)

and

ϕ =
⊕
x∈R

µ
(t1,t2)
h (x)⊗k νh(x) :

⊕
x∈R

Mt1(x)⊗kN(x)→ ⊕
x∈R

Mt2(hx)⊗kN(hx).

Then by Lemma 3.4 and Corollary 3.6, hs(j1) ∩ s(j2) is nonempty. It fol-
lows that both assumptions of Proposition 3.2 are satisfied and the finitely
generated kH-module M ⊗R N is free.

4. The Main Theorem. In this section we first explain some technical
details concerning the formulation of the main theorem and then we give a
full proof.

4.1. We need the following fact.

Lemma. (i) Let M ∈ MODR be such that GM is an infinite cyclic group
with a generator g. Then (µg′)g′∈GM 7→ µg defines a bijective correspondence
between the set of all R-actions of GM on M and the set of all isomorphisms
f ∈ HomR(M, g

−1
M).

(ii) Let H be an infinite cyclic group and let (M,µ), (M,µ′) ∈ MODHR
and (N, ν), (N, ν′) ∈ MODHRop be such that EndR(M) ' k ' EndRop(N).
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Then the left kH-module (M ⊗R N,µ ⊗R ν) is free if and only if so is
(M ⊗R N,µ′ ⊗R ν′).

P r o o f. Obvious.

Let W be the set of all weakly-G-periodic R-modules, W0 a fixed subset
of nonisomorphic modules fromW whose isoclasses form a set of representa-
tives of the G-orbits of isoclasses ofW, andW1 the subset ofW consisting of
all B ∈ W such that GB is an infinite cyclic group; let W1

0 =W1 ∩W0. For
each B ∈ W1

0 fix some R-action νB of GB on B, some generator gB of GB
and some set SB of representatives of left cosets GmodGB , containing the
unit element e of G. Thus FλB is endowed with the structure of a left free
kGB-module, in fact a kGB-R/G-bimodule. We can also identify kGB and
k[ξ, ξ−1] by mapping gB onto ξ. Denote by mod(R/G) the residue category
(mod(R/G))/[mod1(R/G)] and by

ΦB : mod kGB → mod(R/G)

the functor induced by ΦB = −⊗kGB FλB : MOD kGB → MOD(R/G) (see
Section 2). Let

Φ :
∐

B∈W1
0

mod k[ξ, ξ−1]→ mod(R/G)

be the functor induced by the family (ΦB)B∈W1
0
, which maps the object

(VB)B∈W1
0

to the finite direct sum
⊕

B∈Ω Φ
B(VB), where Ω = {B ∈ W1

0 :
VB 6= 0}.

Theorem. Let R be a locally bounded k-category , where k is algebraically
closed , G a group of k-linear automorphisms of R acting freely on (indR)/',
and W, W0 as above. Assume that

(i) for each B ∈ W, GB is an infinite cyclic group and EndR(B) ' k,
(ii) for any two different B1, B2 ∈ W such that GB1 ∩GB2 is nontrivial

the tensor product B1 ⊗R B~
2 of B1 and the k-dual B~

2 of B2 with the
structure defined above is a free left finitely generated module over k(GB1 ∩
GB2).

Then for any B ∈ W the functor

ΦB : mod kGB → (mod(R/G))/[mod1(R/G)]

is full and faithful. The functor

Φ :
∐

B∈W0

mod k[ξ, ξ−1]→ (mod(R/G))/[mod1(R/G)]
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induced by (ΦB)B∈W0 is dense, and Φ has a left quasi-inverse

Ψ : (mod(R/G))/[mod1(R/G)]→
∐

B∈W0

mod k[ξ, ξ−1]

with kernel contained in the Jacobson radical of (modR/G)/[mod1(R/G)].
In particular , Φ and Ψ induce a decomposition

(mod(R/G))/[mod1(R/G)] '
∐

B∈W0

mod k[ξ, ξ−1]⊕KerΨ

and a bijection of the two corresponding sets of isoclasses of indecomposable
objects, and KerΨ restricted to the image of ΦB is zero for each B ∈ W0.

Corollary. (i) The functor Φ :
∐
B∈W0

mod k[ξ, ξ−1] → mod2(R/G)
induced by the family of functors (ΦB)B∈W0 yields a bijection between the
sets of indecomposable objects of both categories.

(ii) The Auslander–Reiten quiver ΓR/G of R/G (see [AR]) is isomorphic
to a disjoint union of translation quivers ΓR/G t (

∐
B∈W0

Γk[ξ,ξ−1]), where
ΓR (resp. Γk[ξ,ξ−1]) is the Auslander–Reiten quiver of R (resp. of k[ξ, ξ−1]).

4.2. The proof of the Theorem will be done in several steps. For the rest
of this section we will assume that

(i′) for each B ∈ W1, EndR(B) ' k,
(ii′) for any two different B1, B2 ∈ W1 the left finitely generated k(GB1∩

GB2)-module B1 ⊗B~
2 is free.

R e m a r k. (i) If W = W1, then by Lemma 3.6 the conditions (ii) and
(ii′) are equivalent.

(ii) The condition (i′) implies by Corollary 2.4(ii) that for any (B, νB)
with B ∈ W1, the kGB-module B ⊗R B~ is isomorphic to the trivial kGB-
module k.

Given V ∈ MOD kGB we denote by t(V ) the maximal torsion submodule
of V .

Let now B ∈ W1
0 . Then we define the functor

ΨB : mod(R/G)→ MOD kGB

by setting ΨB(X) = t(X ⊗R/G FλBkGB ), where X ∈ mod(R/G).

Lemma. For each B ∈ W1
0 the functor ΨB induces a functor

ΨB : mod(R/G)→ mod kGB .

P r o o f. The functor ΨB factors through mod kG, since FλB is a finitely
generated left kGB-module. Let now X ∈ mod1(R/G) be any module.
Since by [DS2; 2.2], F•X is a direct sum of finite-dimensional R-modules,
Corollary 2.5 and Proposition 3.3 yield ΨB(X) = t(X ⊗R/G FλB

kGB ) '
t((F•X ⊗R B~)−1) = 0 and therefore ΨB is well defined.
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4.3. Lemma. Let B,B′ ∈ W1
0 . Then

ΨB
′
ΦB '

{
idmod kGB if B = B′,
0 if B 6= B′.

P r o o f. Take any V ∈ mod kGB . If B = B′ then by the formulas of
Section 2, Remark 4.2(ii) and Proposition 3.3 we obtain a sequence of natural
isomorphisms of right kGB-modules

ΨBΦB(V ) = t((V ⊗kGB FλB)⊗R/G FλBkGB )

' t((F•(V ⊗kGB FλB)⊗R B~)−1)

' t
((
V −1 ⊗k B ⊕

⊕
g∈SB , g 6=e

g(V −1 ⊗k B)
)
⊗R B~

)−1

' (V −1 ⊗k (B ⊗R B~))−1 ' (V −1 ⊗k k)−1 ' V.
Now if B 6= B′ then using analogous arguments we show that

ΨB
′
ΦB(V ) = t

( ⊕
g∈SB

(V −1 ⊗k B)⊗R (B′)~
)

= 0.

Let

Ψ : mod(R/G)→
∏

B∈W1
0

mod kGB

be the functor defined by the family of functors (ΨB)B∈W1
0

and

I :
∐

B∈W1
0

mod kGB →
∏

B∈W1
0

mod kGB

be the canonical embedding.

Corollary. The functors I and ΨΦ are isomorphic.

4.4. Proposition. (i) ΦB is full for each B ∈ W1
0 .

(ii) If W = W1, then Ψ factors through
∐
B∈W1

0
mod kGB and Φ is

dense.

P r o o f. First we show that for any indecomposable X ∈ mod2(R/G)
such that all weakly-G-periodic direct summands of F•X ∈ MODR belong
toW1, ΦBΨB(X) is a nonzero direct summand of X for some B ∈ W1

0 . Take
X ∈ mod2(R/G) as above. Then there exists B ∈ W1

0 such that F•X has a
decomposition F•X ' Bn⊕M in ModR, where M has no direct summand
isomorphic to B. Denote by µ the induced R-action of G on Bn⊕M , by H
the group GB and by ν the action νB . Then the results of Section 2 yield

ΨB(X) = t(X ⊗R/G FλBkH) ' t(X ⊗R/G F op
λ B∗)

' t((F•X ⊗R B~)−1) ' t(((Bn ⊕M)⊗R B~)−1).
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Observe that Bn⊗B~ is an H-invariant subspace of (Bn⊕M)⊗RB~, since
for any h ∈ H the component

µM,Bn

h ⊗R ν~
h : Bn ⊗R B~ h−1

−−→M ⊗R h−1
B~

of the map µh⊗Rν~
h is zero by Corollary 2.4 and the assumption EndR(B) '

k. Denote by VX the kH-module Bn⊗RB~, by i′ : VX → (Bn⊕M)⊗RB~

the canonical embedding and by PX the cokernel Coker i′ = M ⊗R B~. By
Proposition 3.3, PX is a free finitely generated left kH-module. Therefore
i′ admits a retraction p = (p1, p2) : (B ⊕M) ⊗R B~ → VX and ΨB(X) =
V −1
X . Denote by pX : X → HomkH(FλBkH , V −1

X ) the map adjoint to the
composed map

p̃X : X ⊗R/G FλBkH ∼→ ((Bn ⊕M)⊗R B~)−1 p→ V −1
X .

We shall prove that pX , or equivalently F•(pX), has a section. To this
end, consider the canonical embedding j : B ⊗R (Bn)~→B ⊗R (Bn ⊕M)~.
As above, B ⊗R (Bn)~ is an H-invariant subspace with respect to the
action ν ⊗R µ~ and j has an H-equivariant retraction. Applying ~ we
conclude by Corollary 2.4 that the kernel of the canonical projection p′ :
HomR(B,Bn ⊕ M) → HomR(B,Bn) is H-invariant with respect to the
action HomR(ν, µ) and p′ has an H-invariant section i =

(
i1
i2

)
. Denote by

iX : HomR(B,Bn)−1 ⊗kH FλB → X the R/G-homomorphism adjoint to
the composed map

ĩX : HomR(B,Bn)−1 i→HomR(B,Bn ⊕M)−1 ∼→HomR/G(FλB,X).

Now we prove that F•(pX) ◦ F•(iX) is an invertible R-homomorphism.
Observe that via the isomorphisms F•X ' Bn ⊕M ,

F•HomkH(FλBkH , (Bn ⊗R B~)−1) ' ⊕
g∈SB

g(Hom(B~, Bn ⊗R B~))

and

F•((HomR(B,Bn))−1 ⊗kH FλB) ' ⊕
g∈SB

g(HomR(B,Bn)⊗k B)

(see Proposition 2.3), the morphisms F•(iX) and F•(pX) are defined by the
families of morphisms

ϕg : g(HomR(B,Bn)⊗k B)
g ĩ−→ g(Bn ⊕M)

gµg−→Bn ⊕M, g ∈ G,
and

ψg : Bn ⊕M µg−1−−−→ g(B ⊕M)
g p̃−→ g(Homk(B~, Bn ⊗R B~)), g ∈ G,

where

ĩ =
(
ĩ1
ĩ2

)
: HomR(B,Bn)⊗k B → Bn ⊕M
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and

p̃ = (p̃1, p̃2) : Bn ⊕M → Homk(B~, Bn ⊗R B~)

are the maps adjoint to i and p.
By [DS2; 2.1(iii)], it remains to show that all maps ψgϕg = g(p̃̃i), g ∈ SB ,

are invertible. Since EndR(B) ' k, by Lemma 2.2 the map p̃2ĩ2 is zero. Both
i1 and p1 are identity maps, therefore the map p̃1ĩ1 : HomR(B,Bn)⊗kB →
Homk(B~, Bn ⊗R B~) is given by (p̃1ĩ1(x)(f ⊗ bx))(γx) = f(x)(bx) ⊗ γx,
where x ∈ R, bx ∈ B(x), γx ∈ B~(x), f ∈ HomR(B,Bn), and moreover it
is invertible because EndR(B) ' k. Therefore p̃̃i is invertible, F•(pX) is a
splittable epimorphism and consequently ΦBΨBX is a direct summand of
X. Now (ii) follows immediately.

For the proof of (i), for each B ∈ W1
0 denote by IB the full subcategory

of mod(R/G) consisting of all X such that all weakly-G-periodic summands
belong up to isomorphism to the G-orbit of B. Since ΦB factors through IB
we shall prove that the restriction ΨB |IB : IB → mod kH of ΨB to IB is a
quasi-inverse for ΦB . For this purpose it is enough to check that the homo-
morphisms pX : X → ΦBΨBX, X ∈ IB , produce a natural transformation
of functors idIB → ΦBΨB |IB , since pX is an isomorphism for each X ∈ IB .
Take any X,Y ∈ IB and f ∈ HomR/G(X,Y ). One has to show that the map

u = HomkH((FλBkH , ΨB(f))◦pX)−pY ◦f : X → HomkH(FλBkH , ΨB(Y ))

belongs to the ideal [mod1(R/G)]. But u corresponds to the morphism

v = ΨB(f) ◦ p̃X − p̃Y ◦ (f ⊗R FλBkH) : X ⊗R/G FλBkH → ΨB(Y ).

Since v restricted to ΨB(X) = V −1
X is zero, v factors through P−1

X and
in consequence u factors through HomR/G(FλBkH , P−1

X ) which is isomor-
phic to FλBm for some m ∈ N. Therefore by the Lemma below the residue
class of u in mod(R/G) is zero and the functors ΦB and ΨB |IB are quasi-
inverse.

Lemma. For any module X ∈ IB each homomorphism f ∈ HomR/G(X,
FλB) factors through a module from mod1(R/G).

P r o o f. Take any X ∈ IB . Then there exists V ∈ mod(kH)0, where
H = GB , such that X ' V −1 ⊗kH FλB. Using the results of Section 2 and
[G; 3.2] we obtain

HomR/G(X,FλB) ' HomG
R(F•(V −1 ⊗R FλB), F•FλB)

' HomG
R

( ⊕
g∈SB

g(V ⊗k B),
⊕
g∈G

gB
)
' HomH

R

(
V ⊗k B,

⊕
g∈G

gB
)

= HomH
R

(
V ⊗k B,

⊕
g1∈UB

( ⊕
h∈H

hg1B
))
,
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where UB is a fixed set of representatives of the right cosets GmodH.
By Lemma 2.3 it is enough to prove that for each f ∈ HomH

R (V ⊗k B,⊕
g1∈UB (

⊕
h
hg1B)), given by the family fg : V ⊗k B → gB, g ∈ G, the

subobject
⊕

g∈G Im fg =
⊕

g1∈UB (
⊕

h∈H Im fhg1) of
⊕

g∈G
gB in MODHR,

containing Im f , is a direct sum of finite-dimensional R-modules. Fix such
an f . Then the left kH-module

⊕
x∈suppB V ⊗B(x) is finitely generated and

free. Therefore there exist g1, . . . , gr ∈ UB such that fhg = 0 for all h ∈ H
and g ∈ UB \ {g1, . . . , gr}, and hence

⊕
g∈G Im fg =

⊕r
i=1(

⊕
h∈H Im fhgi).

Now it remains to prove that dim Im fg or equivalently supp(Im fg) is
finite for each g ∈ G. This is obvious in case GgB ∩ H = {e} since then
suppB ∩ supp gB is finite by Lemma 3.6. Assume that GgB ∩H 6= {e} and
suppose supp(Im fg) is infinite. Since (suppB)/(GgB ∩ H) is finite there
exists x ∈ suppB and an infinite sequence hn, n ∈ N, of pairwise different
elements of H ∩ GgB such that hnx ∈ supp(Im fg). Then fhng 6= 0 for all
n ∈ N, and we get a contradiction with the fact that dimk(V ⊗k B(x)) is
finite. Therefore all spaces Im fg, g ∈ G, have finite dimension. This finishes
the proof of the Lemma and of the main Theorem.

R e m a r k. In fact, we proved that if R satisfies only the conditions (i′)
and (ii′) then all functors ΦB , B ∈ W1

0 , are full and faithful and Φ induces
an injection on the isomorphism classes of indecomposable objects.

4.5. P r o o f o f C o r o l l a r y 4.1. The first assertion is obvious. To
prove the second recall that by [G; 3.6] the indecomposable modules of the
first and the second kind are contained in different components of ΓR/G and
that the union (ΓR/G)1 of components containing indecomposable modules
of the first kind has the form ΓR/G.

It remains to show that the functor ΦB preserves Auslander–Reiten se-
quences for any B ∈ W0. The functor ΦB is exact and by Lemma 4.3 sends
nonsplittable exact sequences into nonsplittable ones, therefore we only need
to substantiate the preserving of the lifting property.

Denote by JR/G (resp. J ) the Jacobson radical of the category
mod(R/G) (resp. mod k[ξ, ξ−1]). Observe that if X ∈ ind(R/G) belongs to
mod1(R/G) or to the image of ΦB

′
, where B′ ∈ W0 and B′ 6= B, then the

functor JR/G(X,ΦB(−)) coincides with HomR/G(X,ΦB(−)), which by the
results of Section 2 and Proposition 3.3 is exact. Moreover, if X = ΦB(V ) for
some indecomposable V ∈ mod k[ξ, ξ−1] then by Theorem 4.1 the functor
ΦB induces an isomorphism of functors

JR/G(X,ΦB(−)) ' [mod1(R/G)](X,ΦB(−))⊕ J (V,−).

The observation implies that ΦB preserves the lifting property for exact
sequences and in consequence Auslander–Reiten sequences, and the proof is
finished.
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