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The nonexistence of expansive homeomorphisms
of chainable continua

by

Hisao K a t o (Tsukuba)

Abstract. A homeomorphism f : X → X of a compactum X with metric d is
expansive if there is c > 0 such that if x, y ∈ X and x 6= y, then there is an integer
n ∈ Z such that d(fn(x), fn(y)) > c. In this paper, we prove that if a homeomorphism
f : X → X of a continuum X can be lifted to an onto map h : P → P of the pseudo-
arc P , then f is not expansive. As a corollary, we prove that there are no expansive
homeomorphisms on chainable continua. This is an affirmative answer to one of Williams’
conjectures.

1. Introduction. All spaces considered in this paper are assumed to be
separable metric spaces. Maps are continuous functions. By a compactum we
mean a compact metric space. A continuum is a connected, nondegenerate
compactum. A homeomorphism f : X → X of a compactum X with metric
d is called expansive [15] if there is c > 0 such that for any x, y ∈ X and
x 6= y, there is an integer n ∈ Z such that

d(fn(x), fn(y)) > c.

A homeomorphism f : X → X of a compactum X is continuum-wise ex-
pansive [7] if there is c > 0 such that if A is a nondegenerate subcon-
tinuum of X, then there is an integer n ∈ Z such that diam fn(A) > c,
where diamB = sup{d(x, y) | x, y ∈ B} for a set B. Such a positive
number c is called an expansive constant for f . Note that each expansive
homeomorphism is continuum-wise expansive, but the converse assertion is
not true. There are many important continuum-wise expansive homeomor-
phisms which are not expansive (e.g., see [7]). Expansiveness and continuum-
wise expansiveness do not depend on the choice of the metric d of X. These
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notions are important in topological dynamics, ergodic theory and contin-
uum theory.

For closed subsets A,B of a compactum X, we define d(A,B) =
inf{d(a, b) | a ∈ A, b ∈ B} and dH(A,B) = inf{ε > 0 | B ⊂ Uε(A), A ⊂
Uε(B)}, where Uε(A) denotes the ε-neighborhood of A in X. For a contin-
uum X, let C(X) be the set of all nonempty subcontinua of X. Then C(X)
is a continuum with the Hausdorff metric dH (eg., see [10] or [14]). The space
C(X) is called the hyperspace of X. An order arc in C(X) is an arc α in
C(X) such that if A,B ∈ α, then A ⊂ B or B ⊂ A. It is well known that if
X is a continuum, A,B ∈ C(X) and A is a proper subset of B, then there is
an order arc from A to B in C(X) (see [10] or [14]). For a map f : X → Y ,
we define a map C(f) : C(X)→ C(Y ) by C(f)(A) = f(A) for A ∈ C(X).

A chain C = [C1, . . . , Cm] of X is a finite collection of open subsets of X
with the following property: Cl(Ci)∩Cl(Cj) 6= ∅ iff |i− j| ≤ 1. Moreover, if
for each i = 1, . . . ,m, diam(Ci) < ε, i.e., mesh(C) < ε, then we say that the
chain C is an ε-chain. For a chain C = [C1, . . . , Cm] and two points p, q ∈ X,
if p ∈ C1 and q ∈ Cm, we say that C = [C1, . . . , Cm] is a chain from p to q.
A continuum X is chainable if for any ε > 0, there is an ε-chain covering of
X. A continuum X is called a tree-like continuum if for any ε > 0 there is
an onto map g : X → T such that diam g−1(y) < ε for each y ∈ T , where T
is a tree.

Let f : X → X be an onto map of a compactum X. If there exists an
onto map h : Y → Y of a compactum Y and an onto map ψ : Y → X such
that ψh = fψ, then we say that f can be lifted to an onto map h : Y → Y .

The typical nonseparating plane continua are chainable continua. Con-
cerning expansive homeomorphisms, the following conjectures by Williams
remain open:

Conjecture 1.1. No nonseparating plane continuum admits an expan-
sive homeomorphism.

Conjecture 1.2. No chainable continuum admits an expansive homeo-
morphism.

In [5–7], we proved that if X is a tree-like continuum admitting a contin-
uum-wise expansive homeomorphism, it must contain an indecomposable
subcontinuum. Also, Knaster’s chainable continua and the pseudo-arc
admit continuum-wise expansive homeomorphisms. In [9], we proved that
Knaster’s chainable continua admit no expansive homeomorphisms.

The aim of this paper is to give the complete solution of (1.2). In fact, we
prove that if f : X → X is a homeomorphism of a continuum X and f can be
lifted to an onto map h : P → P of the pseudo-arc P , then f is not expansive.
To prove this result, we use a method similar to [9]. In [13, Theorem 4.1],
W. Lewis proved that every onto map between chainable continua can be
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lifted to a homeomorphism of the pseudo-arc P . As a corollary, we obtain
the following main theorem of this paper: Chainable continua admit no
expansive homeomorphisms.

2. There are no expansive homeomorphisms on chainable con-
tinua. A continuum X is decomposable if there are two proper subcontinua
A and B of X such that A ∪ B = X. A continuum X is indecomposable
if it is not decomposable. A continuum X is hereditarily indecomposable if
each subcontinuum of X is indecomposable. For a continuum X and a point
p ∈ X, let

κ(p) = {x ∈ X | there is a proper subcontinuum A of X

such that p, x ∈ A}.
The set κ(p) is called the composant of X containing p. Note that κ(p) is
dense in X. It is well known that if X is an indecomposable continuum, then
X admits an uncountable collection of mutually disjoint composants. The
pseudo-arc is characterized [2] as a (nondegenerate) hereditarily indecom-
posable chainable continuum. The pseudo-arc has many remarkable proper-
ties in topology and chaotic dynamics (e.g., see [1–3, 10–13]). For example,
the pseudo-arc is homogeneous [1], each onto map of the pseudo-arc is a near
homeomorphism [13], and the pseudo-arc admits chaotic homeomorphisms
in the sense of Devaney (see [11]).

First, we shall prove the following theorem.

Theorem 2.1. If f : X → X is a homeomorphism of a continuum X
and f can be lifted to an onto map h : P → P of the pseudo-arc, then f is
not expansive.

To prove the above theorem, we need the following results. By [4], we
know the following.

Lemma 2.2. Every chainable continuum has the fixed point property.

By the proofs of [1, Theorem 12 and 13], we obtain the following (see
also [13, Lemma 3]).

Lemma 2.3. Let P be the pseudo-arc and let C = [C1, . . . , Cm] be a chain
covering of P . Suppose that Pn (n = 1, 2) are nondegenerate subcontinua
of P and pn, qn are two points of Pn (n = 1, 2) respectively , such that
p1, p2 ∈ C1 and q1, q2 ∈ Cm, i.e., the chain C is a chain from p1 (resp.
p2) to q1 (resp. q2), and moreover , pn and qn (n = 1, 2) belong to different
composants of Pn for each n = 1, 2. Then there is a homeomorphism k :
P1 → P2 such that k(p1) = p2, k(q1) = q2, and k(Cj) ⊂ st(Cj ;C)∗ for each
Cj ∈ C (see Figure 1), where st(Cj ;C)∗ =

⋃{Ci ∈ C | Cj ∩ Ci 6= ∅}.
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Fig. 1

Also, we need the following useful theorem [13, Theorem 4.1] which was
proved by W. Lewis.

Theorem 2.4. If f : X → X is an onto map of a chainable continuum
X to itself , then there exists a homeomorphism h : P → P of the pseudo-arc
P and an onto map ψ : P → X such that fψ = ψh. In particular , every
homeomorphism f : X → X of a chainable continuum X can be lifted to a
homeomorphism of the pseudo-arc P .

The next lemma follows from [7, (2.4)].

Lemma 2.5. Let f : X → X be a continuum-wise expansive homeomor-
phism. Then there is δ > 0 such that for each γ > 0 there is a natural number
N > 0 satisfying the following condition: if A ∈ C(X) and diamA ≥ γ, then
diam fn(A) ≥ δ for all n ≥ N or diam f−n(A) ≥ δ for all n ≥ N .

P r o o f o f T h e o r e m 2.1. Suppose, on the contrary, that f : X → X
is an expansive homeomorphism. Let c > 0 be an expansive constant for f
and let c/2 > ε > 0. First, we prove that f has the following property (∗):
(∗) For any τ > 0 there are two points x, y of X and a natural num-

ber n(τ) such that d(x, y) ≤ τ , d(fn(τ)(x), fn(τ)(y)) ≤ τ , and ε ≤
sup{d(f j(x), f j(y)) | 0 ≤ j ≤ n(τ)} ≤ 2ε.

By the assumption, there is an onto map h : P → P of the pseudo-arc P
and an onto map ψ : P → X such that ψh = fψ. Since P is chainable, by
Theorem 2.4, we may assume that h is a homeomorphism. By Lemma 2.2,
there is a fixed point p of h, i.e., h(p) = p. Consider the following set:

Cp = {A ∈ C(P ) | p ∈ A} ⊂ C(P ).

Since P is hereditarily indecomposable, Cp is the unique order arc from {p}
to P in C(P ) (see [10] or [14]). Note that C(h)|Cp : Cp → Cp is a homeo-
morphism of the arc Cp. Since C(ψ)|Cp : Cp → C(ψ)(Cp) is a monotone
map from an arc Cp, A = C(ψ)(Cp) is an arc from ψ(p) to X in C(X).
Note that C(f)(A) = A. Also, we can choose the subcontinuum P0 ∈ Cp
(i.e., p ∈ P0) such that ψ(P0) = ψ(p) and if A is any subcontinuum of P
such that A contains P0 as a proper subset, then ψ(A) is nondegenerate.
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Note that P0 6= P and h(P0) = P0. Also, since f is a continuum-wise ex-
pansive homeomorphism, P0 is an isolated point of the set of fixed points
of the homeomorphism C(h)|Cp : Cp → Cp. Hence we can choose P1 ∈ Cp
such that P1 contains P0 as a proper subset, h(P1) = P1 and the homeo-
morphism C(h)|[P0, P1] : [P0, P1] → [P0, P1] has the only two fixed points
P0 and P1, where [P0, P1] denotes the order arc from P0 to P1. We may
assume that C(h)|[P0, P1] is increasing. If necessary, we consider C(h−1).
Note that if A ∈ (P0, P1) = [P0, P1] − {P0, P1}, then limn→∞ hn(A) = P1,
and limn→∞ h−n(A) = P0.

Let τ > 0. Choose an open covering U of X with mesh(U) ≤ τ . Choose
a subcontinuum A ∈ (P0, P1) such that 0 < diamψ(A) = τ1 ≤ τ . Since
limn→∞ diam f−n(ψ(A)) = 0 and f is expansive, we can choose a natural
number N1 > 0 such that if x, y ∈ ψ(A) and d(x, y) ≥ τ1/3, then

sup{d(f i(x), f i(y)) | 0 ≤ i ≤ N1} > c.

Choose a point a ∈ A such that d(ψ(p), ψ(a)) > τ1/3. Choose two subcon-
tinua E,K of A such that d(ψ(E), ψ(K)) > τ1/3, E contains P0 as a proper
subset, i.e., ψ(E) is nondegenerate, K contains the point a, and ψ(K) is a
nondegenerate subcontinuum of X. Then we shall show the following claim:

Claim. The set lim supn→∞ hn(K) contains a point q ∈ P1 such that q
is not contained in the composant of P1 containing p.

Suppose, on the contrary, that the claim is not true. Then there is
ε1 > 0 such that dH(hn(K), P1) ≥ ε1 for all n ≥ 0. Take a subsequence
{n(i) | i = 1, 2, . . .} of natural numbers such that limi→∞ hn(i)(K) = K0.
By the assumption, K0 is contained in the composant of P1 containing p.
Choose a subcontinuum K ′ ⊃ K0 such that K ′ is contained in the com-
posant of P1 containing p. Since limn→∞ diam f−n(ψ(K ′)) = 0, we see that
limn→∞ diam f−n(ψ(K0)) = 0.

On the other hand, by Lemma 2.5, there is a natural number N2 > 0 such
that if n ≥ N2, then diam fn(ψ(K)) ≥ δ for some δ > 0, since K is contained
in the composant of P1 containing p and hence limn→∞ diam f−n(ψ(K)) =
0. Since limi→∞(n(i) − N2) = ∞, diam fn(ψ(K)) ≥ δ for all n ≥ N2 and
limi→∞ fn(i)(ψ(K)) = limi→∞ ψ(hn(i)(K)) = ψ(K0), we can prove that

diam f−n(ψ(K0)) ≥ δ for all n ≥ 0.

In fact, suppose, on the contrary, that there is n0 ≥ 0 such that

diam f−n0(ψ(K0)) < δ.

Choose δ1 > 0 such that (I) if T ∈ C(X) and dH(T, ψ(K0)) < δ1, then
diam f−n0(T ) < δ. Since limi→∞ fn(i)(ψ(K)) = ψ(K0), there is a suffi-
ciently large natural number n(i0) such that (II) n(i0) − n0 ≥ N2 and
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dH(fn(i0)(ψ(K)), ψ(K0)) < δ1. By (I) and (II),

δ > diam f−n0(fn(i0)(ψ(K))) = diam fn(i0)−n0(ψ(K)).

However, n(i0)−n0 ≥ N2 implies that diam fn(i0)−n0(ψ(K)) ≥ δ. Therefore
we see that diam f−n(ψ(K0)) ≥ δ for all n ≥ 0. This is a contradiction.
Hence the claim is true.

Since p and q are points belonging to different composants of P1, we
can choose a chain covering C = [C1, . . . , Cm] of P1 such that st(C) =
{st(Cj ;C)∗ | Cj ∈ C} is a refinement of ψ−1(U) = {ψ−1(U) | U ∈ U},
and C is a chain from p to q, i.e., p ∈ C1 and q ∈ Cm (see the proof of [1,
Theorem 13]). Since limn→∞ hn(E) = P1, there is a natural number N > N1

such that hN (E)∩Cm 6= ∅ and hN (K)∩Cm 6= ∅. Choose two points u ∈ E
and v ∈ K such that hN (u), hN (v) ∈ Cm. Since A is indecomposable and
each composant of A is dense in A, we can choose two points q1, q2 ∈ A
such that q1 is sufficiently near to u, q1 is not contained in the composant
of A containing p, q2 is sufficiently near to v, and q2 is not contained in
the composant of A containing p. We may assume that d(ψ(q1), ψ(q2)) >
τ1/3 and hN (q1), hN (q2) ∈ Cm. By Lemma 2.3, there is a homeomorphism
k : hN (A) → hN (A) such that k(p) = p, k(hN (q1)) = hN (q2) and for each
x ∈ hN (A), k(x) and x are contained in an element st(Cj ;C)∗ of st(C).
Choose a sufficiently small γ > 0. Then we can choose a γ-chain covering
D = [D1, . . . , Ds] of hN (A) from hN (p) = p to hN (q1), because hN (p) = p is
not contained in the composant of hN (A) containing hN (q1) (see the proof
of [1, Theorem 13]). Since γ > 0 is sufficiently small, we may assume that
if Di ∈ D (i = 1, . . . , s), then k(Di) and Di are contained in an element
st(Cj ;C)∗ of st(C). Set

D(1) = ψh−N (D) = [ψh−N (D1), . . . , ψh−N (Ds)] = [D(1)1, . . . , D(1)s],

D(2) = ψh−N (k(D)) = [ψh−N (k(D1)), . . . , ψh−N (k(Ds))]

= [D(2)1, . . . , D(2)s].

Then D(n) is a covering of ψ(A) from ψ(p) to ψ(qn) for each n = 1, 2.
We may assume that if x, y ∈ D(n)i ∪ D(n)i+1 for i = 1, . . . , s − 1 and
n = 1, 2 respectively, then sup{d(f j(x), f j(y)) | 0 ≤ j ≤ N} < ε/2. Choose
sequences ψ(p) = a1, . . . , as−1, as = ψ(q1) and ψ(p) = b1, . . . , bs−1, bs =
ψ(q2) of points of A such that ai ∈ D(1)i, bi ∈ D(2)i for each i = 1, . . . , s.
Note that d(fN (ai), fN (bi)) < τ for each i. Consider the finite sequence ri
(i = 1, . . . , s) of positive numbers defined by

ri = sup{d(f j(ai), f j(bi)) | 0 ≤ j ≤ N}.
Then |ri − ri+1| < ε and r1 = 0 < ε and rs > c > 2ε. We can choose i
such that ε ≤ ri ≤ 2ε. Then the two points ai = x and bi = y satisfy the
conditions of (∗). Hence the property (∗) is satisfied.



Nonexistence of expansive homeomorphisms 125

Let {εi}∞i=1 be a sequence of positive numbers such that limi→∞ εi = 0.
By (∗), there are two points xi, yi of X and a natural number n(i) such that
d(xi, yi) < εi, d(fn(i)(xi), fn(i)(yi)) < εi and

ε ≤ sup{d(f j(xi), f j(yi)) | 0 ≤ j ≤ n(i)} ≤ 2ε.

Choose 0 < m(i) < n(i) such that d(fm(i)(xi), fm(i)(yi)) ≥ ε. We may
assume that {fm(i)(xi)} and {fm(i)(yi)} are convergent to x0 and y0, re-
spectively. Note that

lim
i→∞

(n(i)−m(i)) =∞ = lim
i→∞

m(i).

Then x0 6= y0 and d(fn(x0), fn(y0)) ≤ 2ε < c for all n ∈ Z. This is a
contradiction.

By Theorems 2.1 and 2.4, we obtain the following main theorem of this
paper.

Theorem 2.6. Chainable continua admit no expansive homeomorphisms.
In other words, if X is any chainable continuum and f : X → X is any
homeomorphism of X, then for any ε > 0 there exist two different points
x, y ∈ X such that d(fn(x), fn(y)) < ε for all n ∈ Z.

A continuum X is weakly chainable ([3] or [12]) if it is a continuous image
of a chainable continuum, in particular an image of the pseudo-arc P . Note
that there exists a tree-like continuum which is not weakly chainable. In
[13], W. Lewis posed the following problem:

Problem 2.7. If X is a weakly chainable, tree-like continuum and f :
X → X is an onto map, does there exist an onto map ψ : P → X of the
pseudo-arc P and a homeomorphism h : P → P such that ψh = fψ?

Concerning tree-like continua, we have the following problem:

Problem 2.8. Does there exist a tree-like continuum X admitting an
expansive homeomorphism?

A positive answer to Problem 2.7 would show that weakly chainable,
tree-like continua admit no expansive homeomorphisms.

Let f : X → X be a map of a compactum X. Consider the following
inverse limit space:

(X, f) = {(xn)∞n=1 | xn ∈ X and f(xn+1) = xn}.
Define the shift map f̃ : (X, f) → (X, f) of f by f̃(x1, x2, . . . , ) =
(f(x1), x2, . . . , ).

In [6, (2.9)], we obtained the following.

Proposition 2.9. If f : G → G is an onto map of a finite graph G

such that the shift map f̃ : (G, f) → (G, f) is expansive, then each point
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x̃ ∈ (G, f) is contained in an arc in (G, f). In particular , (G, f) is not
hereditarily indecomposable.

Concerning this proposition, the following problem arises naturally.

Problem 2.10. Does there exist a hereditarily indecomposable continuum
admitting an expansive homeomorphism?

The author would like to thank the referee for his helpful comments.
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