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Abstract. Let Hd be the set of all rational maps of degree d ≥ 2 on the Riemann
sphere, expanding on their Julia set. We prove that if f ∈Hd and all, or all but one, critical
points (or values) are in the basin of immediate attraction to an attracting fixed point
then there exists a polynomial in the component H(f) of Hd containing f . If all critical
points are in the basin of immediate attraction to an attracting fixed point or a parabolic
fixed point then f restricted to the Julia set is conjugate to the shift on the one-sided
shift space of d symbols. We give exotic examples of maps of an arbitrary degree d with a
non-simply connected completely invariant basin of attraction and arbitrary number k≥2
of critical points in the basin. For such a map f ∈Hd with k<d there is no polynomial in
H(f). Finally, we describe a computer experiment joining an exotic example to a Newton’s
method rational function (for a polynomial) with a 1-parameter family of rational maps.

Introduction. In the space Qd of rational maps of degree d ≥ 2 of
the Riemann sphere C denote by Hd the set of maps which are expanding
on their Julia set. Expanding means that there exists n > 0 such that for
every z in the Julia set, |(fn)′(z)| > 1, derivative in the standard spherical
Riemann metric. We call z ∈ C a critical point if f ′(z) = 0. We call v a
critical value if v = f(z) for a critical point z.

In Section 1 we prove the following:

Theorem A. Let f ∈ Hd. Suppose that all , or all but one, critical

values of f are in a basin B(f) of immediate attraction to one attracting
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f-fixed point p. Then the component H(f) of Hd containing f also contains

a polynomial.

(The critical values in Theorem A are counted without multiplicities.
However, throughout the paper, critical points are counted with multiplici-
ties.)

Corollary B. If all critical points of f are in B(f) then f restricted to

the Julia set J(f) is conjugate to the full one-sided shift.

Theorem C. Let f ∈ Qd, p be a parabolic fixed point and B(f) be a

basin of immediate attraction to p adjacent to p such that f(B(f)) = B(f)
(which is equivalent to f ′(p) = 1). Suppose that all critical points of f are

in B(f). Then f restricted to J(f) is conjugate to the full one-sided shift.

The proof of Theorem C is similar to that of Corollary B so it will only
be sketched.

It is much easier to prove that, under the assumptions of Corollary B
or Theorem C, J(f) is Cantor, f |J(f) is conjugate to a topological Markov
chain and fn|J(f) is conjugate to a 1-sided shift for some n > 0, than to
prove that f |J(f) itself is conjugate to a full 1-sided shift. See Remarks 1.5
and 1.6.

The questions answered in Corollary B and Theorem C were posed to
me by John Milnor. In the case of the basin of a sink he suggested to
join critical values to the sink along trajectories of the gradient flow, Morse
curves, described below. This was a fruitful idea. After proving Theorem A
and Corollary B, I learned that these facts were proved by P. Makienko (1)
in his PhD paper but stayed unpublished (1). Corollary B is also stated in
[GK] but proved only for d = 2.

Note that Corollary B and Theorem C depend on holomorphic phenom-
ena. Indeed, there exists a 1-sided topological Markov chain T with each
point having 10 preimages which has the same ζ-function as the full 1-sided
shift S10 on 10 symbols and whose sufficiently high power T n is conjugate
to Sn

10, but T itself is not conjugate to S10 [Boy].
If B, the immediate basin of attraction to an attracting fixed point, is

simply connected, then the number of critical points of f in B is equal
to deg(f |B) − 1 (because f pulled back to the unit disc D by a Riemann
mapping is a Blaschke product which has deg(f |B) − 1 critical points in D,
and the same number outside).

If B is the basin of attraction to ∞ for a polynomial and B is not simply
connected, then the number of critical points of f in B is at least deg(f |B)
(including ∞ as a (deg(f) − 1)-multiple critical point).

(1) Recently his proof appeared in the preprint [M]. It influenced our revised version
of the paper. Also our Theorem C is proved in [M].
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Surprisingly this is false in general. The “proof” that if the basin is not
simply connected then it contains at least as many critical points as the
degree of f on it, given in [P], is erroneous for degree larger than 2: the
corresponding Lemma in [P] is false.

In Section 2, with the use of the quasiconformal surgery technique [D],
we prove the existence of exotic basins:

Theorem D. There exists a rational function f of an arbitrary degree

d ≥ 3 with a completely invariant (i.e. invariant under f−1) non-simply

connected basin of immediate attraction to an attracting fixed point , and

with an arbitrary number k, 2 ≤ k ≤ 2d − 2, of critical points in the basin.

The conclusion is that the assumption that all, or all but one, critical
values are in the basin in Theorem A, is essential. Namely, for k ≤ d − 1
Theorem D yields

Corollary E. For every d ≥ 3 there exists f ∈ Hd with a completely

invariant basin of immediate attraction to an attracting fixed point such that

H(f) contains no polynomial.

Neither in Theorem A nor in Corollary E does it matter that f ∈ Hd.
Only the basin B(f) matters. The reader will find appropriate precise as-
sertions in Sections 1 and 2.

I checked with computer that f(z) = z2+c+b/(z−a) for c = −3.121092,
a = 1.719727 and b = .3142117 is an exotic example for d = 3 whose ex-
istence is asserted in Corollary E. I am grateful to Ben Bielefeld and Scott
Sutherland for their help in producing several computer pictures of Julia sets
for such f ’s and related pictures in the parameter space. Ben invented the
parametrization in which the pictures were done. Our 1-parameter families
join exotic examples of the above type with d = 3, having two superattract-
ing fixed points and a critical point of period 2, to functions having three
superattracting fixed points. It is easy to see (and well known) that the
latter functions must be Newton’s method rational functions for degree 3
polynomials.

(If f ∈ Qd has d superattracting fixed points then in appropriate holo-
morphic coordinates on C it is Newton’s for a degree d polynomial. Hint to
the proof: Change first the coordinates on C by a homography so that the
unique repelling fixed point becomes ∞.)

1. Rearranging critical values. Proofs of Theorem A and Corol-

lary B. Let B(f) be the immediate basin of attraction to an attracting fixed
point p for a rational map f ∈ Hd. Suppose f ′(p) 6= 0.

In this section we shall make the following types of perturbation of such
maps in Hd:
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1. Perturbation along a curve γ. We have in mind the following con-
struction: Suppose there is a curve γ = γ(t), t ∈ [0, 1], embedded in B(f)
with p 6∈ γ. Take a small neighbourhood U of γ, U ⊂ B(f), disjoint from
a neighbourhood of p. Let gt for t ∈ [0, 1] be a diffeomorphism of C so
that gt(γ(0)) = γ(t), gt is the identity outside U , g0 = id and gt smoothly
depends on t. We obtain the homotopy ht = gt ◦ f . Note that though
we are talking about a perturbation “along γ” we change the map in a
neighbourhood of f−1(γ).

If the following assumption holds:

(1) p 6∈ U, hn
t (U) → p,

then of course the basin of attraction to p is the same for ht as for f .

Then we construct an invariant measurable L∞ conformal structure for
each ht as follows: We take the standard structure on a small neighbourhood
of p and then pull it back by h−n

t . On the complement we take the standard
structure. Now we integrate this structure (we refer to the Measurable
Riemann Mapping Theorem [B], [AB]), and ht in the new coordinates gives
a homotopy ft through maps in Hd. See [D] for this technique.

2. Small C1-perturbation. If a map g is C1 close to f on U such that
cl U ⊂ B(f) \ {p}, f = g outside U , and near critical points, g differs from
f only by affine parts, then clearly g is homotopic to f also through small
perturbations satisfying the same conditions as g. The condition (1) holds
automatically. As before we introduce new conformal structures, integrate
them and obtain a perturbation homotopic to f through maps in Hd.

3. Blaschke type perturbation. Let U ⊂ B(f) be an open topological disc
containing p, with smooth boundary not containing critical points, such that
f(clU) ⊂ U , f : U → f(U) is a proper map and d′ := deg(f |U ) ≥ 2. Then
we construct a 1-parameter family of maps joining in H(f) the map f to a
map having p as a d′-multiple fixed point as follows:

Let R1, R2 be Riemann maps from U , resp. f(U), to the unit disc D

such that Ri(p) = 0, i = 1, 2. Let a1 = 0, a2, . . . , ad′ be the R1-images of
the f |U -preimages of p. Let

Bt = λz

d′∏

i=2

z − tai

1 − taiz
, |λ| = 1, t ∈ [0, 1].

We set ht = R−1
2 ◦ Bt ◦ R1. Here λ is chosen so that h1 = f . It is useful

to write ht = R−1
1 ◦ gt ◦ R1, where gt = R1 ◦ R−1

2 ◦ Bt. Change ht in U
close to ∂U by a smooth isotopy so that ht and f coincide on ∂U for all t.
We extend ht outside U by f to the whole C. As in the previous cases we
pull back the standard conformal structure from R1(f(U)) to f(U) by R−1

1 ,
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extend it by h−n
t , complete on C\⋃

h−n
t (f(U)) with the standard structure

and integrate.

Let Φf conjugate f to z 7→ λz, where λ := f ′(p) 6= 0, in a neigh-
bourhood of p (i.e. Φf (f(z)) = λΦf (z)). Extend Φf to B(f) by Φf(z) =
λ−nΦf (fn(z)). Define Gf (z) = |Φf (z)|2.

If f ∈ Hd and g ∈ H(f) then we write pg for the point z with g(z) = z
such that (g, z) belongs to the component of the Cartesian product H(f)×C

containing (f, pf). There exist B(g) and Φg (provided g′(pg) 6= 0) as above.

Now we can formulate

Main Lemma. For every f ∈ Hd there exists g ∈ H(f) such that

g′(pg) 6= 0 and there exists a > 0 such that all critical values for critical

points in B(g) are in a component ∂ of {Gg = a} which is a topological

circle separating pg from the Julia set J(g).

P r o o f. By small perturbations (types 2 and 3) we assure that the
sink pf is neither a critical point nor a critical value for a critical point in
B = B(f), all critical points in B are simple and their forward trajectories
are pairwise disjoint.

At the end it may occur useful also to have 1
π

Arg f ′(p) irrational. We
assure this by a type 3 perturbation where Arg λ is the parameter.

The critical points of G = Gf are

1) the fixed point p and its iterated pre-images (these are minimum
points with G = 0),

2) the critical points of f and their iterated pre-images (these are saddle
points for G).

Denote the set of points in 1) by M and the set of points in 2) by S.

For every q ∈ M let A(q) denote the basin of attraction to q for the flow
of the vector field − grad G. (Note that the boundary of A(q) is the union
of a set of some points from S and their stable separatrices.)

Denote by r(q) the least non-negative integer such that f r(q)(q) = p. For
every z ∈ A(q) or X ⊂ A(q) write r(z) := r(q) and r(X) := r(q).

Observe that for every z ∈ B(f) there exists a curve γ joining z to p
consisting of critical points of G and of trajectories of grad G where this
field is non-zero (i.e. γ goes from z to a critical point, say a minimum, then
to a saddle, then to a minimum etc. until it reaches p). Let γ(z) denote a
curve as above intersecting the least possible number of A(q)’s. Denote the
number of these A(q)’s by s(z) or sf (z) and call the curve a Morse curve.

Observations. 1. r(f(z)) = r(z) − 1 if r(z) ≥ 1.

2. s(f(z)) ≤ s(z).
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Observation 2 follows from the fact that f maps trajectories of grad G
to trajectories of grad G.

The plan is now to move all critical values to the same level G = a
in A(p).

We shall do this for each critical point separately so that we do not move
the critical values moved before to level a in A(p). We move each critical
value f(c) step by step so that after each step, s(f(c)) decreases and f(c)
is in some A(q). When f(c) ∈ A(p) we move f(c) along the trajectory of
grad G to level a as described in 1.

Take c ∈ B(f), a critical point for f . By a small perturbation in a
neighbourhood of c we obtain f(c) ∈ A(q). We can assume that q 6= p. This
is correct because:

(a) The perturbation is above the G-level of f(c) so it does not change the
part of the stable manifolds of a saddle to which f(c) might have belonged,
in a neighbourhood of f(c) and between it and the saddle.

(b) The change of coordinates integrating the new invariant conformal
structure is conformal there. This is so because the structure is non-standard
only in some places above f(c). Thus the change of coordinates maps the
gradient lines of the old G to the gradient lines of the new one and stable
manifolds (separatrices) to separatrices.

Now let γ be the part of a Morse curve γ(f(c)) joining f(c) to the first
saddle ω ∈ γ(f(c)).

Observe that for every j > 0 we have f j(γ) ∩ γ = ∅.
Indeed, we have f j(γ ∩ A(q)) ∩ γ = ∅ by Observation 1. By the same

observation, f j(ω) ∈ cl A(f j(q)) cannot be in γ ∩ A(q). Finally, f j(ω) → p
so f j(ω) 6= ω.

As f j(γ) → p we can find a neighbourhood U of γ so that f j(U)∩U = ∅
for all j > 0. Take in U a curve γ′ joining f(c) to a point z close to ω with
z ∈ A(q′) and s(q′) = s(q) − 1. Take care to choose γ′ disjoint from V =
the set of all critical values under iterates of f except f(c).

Now perturb f along γ′ as described in 1. Do it with gt different from
identity only in a neighbourhood of γ′ small enough to be disjoint from V .
The condition (1) is of course satisfied.

Now let us explain why the new map f1 has the property

(2) sf1
(f1(cf1

)) = sf(f(c)) − 1.

Here cf1
is the old c in the new coordinates; it is a critical point for f1.

We use the fact that the part of the domain where we changed f to ht is
in the basins A(f−1(q)), where by Observation 2, s ≥ s(q). So we did not
change G in the basins and the part of the Morse curve γ(f(c)) beyond
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ω goes through, where s < s(q). We also changed f in a neighbourhood
of f−1(ω). This does not change G below a neighbourhood of ω because
G(f−j(ω)) > G(ω), j = 1, 2, . . . (Compare this with the argument (a).) This
does not change G below the part of γ(f(c)) beyond a neighbourhood of ω
either, because this change is close to the set s ≥ s(q).

The change of ht to ft does not affect (2). Indeed, also by the above ar-
guments the new measurable conformal structure is the standard one below
ω and the part of γ(f(c)) beyond ω. So the change of coordinates maps the
gradient lines of the old G to the gradient lines of the new one as in (b).

When f(c) ∈ A(p) we first make a small perturbation so that the gradient
line of G passing through f(c) does not intersect the forward trajectories of
other critical values which are already in A(p). Next we move f(c) along γ
which is a piece of the gradient line of G passing through f(c) joining it to
{G = a} in A(p). We succeed because 1

π
Arg(fn)′(p) is irrational so all the

curves fn(γ), n ≥ 0, are pairwise disjoint and the conformal structure does
not change below these curves.

After a sequence of consecutive perturbations as above we obtain a ra-
tional mapping g with all the critical values on one level {G = a}, more
precisely, on its component ∂ intersecting A(p).

Otherwise clDa contains an S-type critical point x for Gg. Then there
exists n > 0 such that y = gn(x) is a critical value for g. Hence Gg(y) =
|g′(pg)|nGg(x) < Gg(x) ≤ a. This contradicts Gg(y) = a just achieved.

The proof of the Main Lemma is finished.

P r o o f o f T h e o r em A. Let f be already as g in the Main Lemma.
By perturbing along curves one obtains additionally all critical values for
critical points from f−1(B(f)) \ B(f) also in ∂. (A posteriori we will see
that under the assumptions of Theorem A we have f−1(B(f)) \ B(f) = ∅,
i.e. B(f) is completely invariant.)

Denote again the domain of C \ ∂ containing p by Da. Denote the
complementary open topological disc C \ cl Da by D′

a.

Observations. 3. There is at most one critical value for f in D′
a. So

the components of f−1(D′
a) are topological discs D′j , j = 1, . . . , d̂ where

d̂ ≤ d, with closures in D′
a. (In particular , f−1(cl Da) is connected and

hence B(f) is completely invariant.)

4. The closures of D′j intersect each other or “self-intersect” only at

critical points of f and cl f−1(D′
a) is connected (see Fig. 1).

If the latter were false then f−1(Da) would contain a non-simply con-
nected component V . But f maps V onto the disc Da so V would contain a
critical point, hence Da would contain a critical value. This would contradict
the assumption that all critical values are on level a.
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After a small perturbation moving (exposing) critical values of some d−1

critical points towards below a, the set cl f−1(D′
a) consists of d̂ closed discs

intersecting one another in at most 1 point, whose union is connected and
simply connected (Fig. 2).

So for ε > 0 small enough the set f−1(∂Da−ε) (where Da−ε := Da∩{G <
a−ε}) is a topological circle ∂ε bounding a topological disc U ∋ p and under
f it winds d times onto ∂Da−ε. Of course f(cl U) = cl Da−ε ⊂ U .

After performing a Blaschke type perturbation and a holomorphic change
of coordinates on C we arrive at a polynomial.

Fig. 1 Fig 2. Critical points c1 and c4 are
exposed towards p

P r o o f o f C o r o l l a r y B. This corollary follows from Theorem A
because its assertion is an open property in Hd and it is true and easy for
polynomials.

Indeed, if f is a polynomial, then with the help of a small perturbation
we guarantee that for each critical value vj , j = 1, . . . , d − 1 (different from
∞), the trajectory γj for grad G where G is Green’s function in the basin
of attraction to ∞, with pole at ∞, goes from vj up to ∞. In other words,
γj does not go to any critical point for G. Then there are no critical values
for f in the topological disc

U = C \ A, where A =
⋃

j=1,...,d−1, n≥0

fn(γj).

Since f(A) ⊂ A, we have a collection of branches gj : U → U of f−1. Denote
gj(U) by Uj . Then each z ∈ J(f) is coded by the sequence of symbols jn,
n = 0, 1, . . . , where fn(z) ∈ Ujn

.

For each sequence (jn) the family of maps Ψn = gj0 ◦ gj1 ◦ . . . ◦ gjn
is a

normal family of maps on U . It is easy to find a slightly smaller topological
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disc U ′ ⊂ U so that U ′ ⊃ J(f) and

(3) each gj maps cl U ′ into U ′.

Hence the sequences Ψn|U ′ converge uniformly to points in J(f). This proves
that the coding is one-to-one.

R e m a r k 1.1. In fact, a proof of Corollary B is contained in the proof of
Theorem A. Indeed, already Observation 3 gives a partition of the Julia set
J into J ∩ D′j , and J ∋ z 7→ (jn) such that fn(z) ∈ D′jn gives a conjugacy
to the one-sided shift on the space of d symbols.

Observe that for this proof of Corollary B, there was no need to refer to
the Measurable Riemann Mapping Theorem. Namely, there was no need to
integrate every time a new conformal structure to obtain a rational mapping.
One could just work with smooth maps until the properties described in
Observation 3 were reached.

R e m a r k 1.2. One can prove Theorem A by perturbing f along a curve
γ̂ close to the Morse curve, dragging the critical value to a small neighbour-
hood of p in just one step instead of doing it step by step decreasing s(f(c)).
The property (1) is satisfied by Observations 1 and 2. (Every point of γ̂ can
come close to γ̂ under f j only further, i.e. if f j(γ̂(τ)) is close to γ̂(τ ′) then
τ ′ > τ . The more so for f j replaced by hj

t .)

R e m a r k 1.3. Makienko [M] proved the following Proposition which
corresponds to our Main Lemma:

If all critical values v1, . . . , vm for critical points in the basin B(f) of

immediate attraction to an attracting fixed point pf have disjoint forward

orbits then there exists a topological disc U ⊂ B(f) containing pf such that

f |U is injective, f(clU) ⊂ U and all vj , j = 1, . . . ,m, belong to the annulus

U \ f(U).

One can easily change U so that all vj belong to ∂f(U). There is a
quasiconformal conjugacy Φ of f on U to z 7→ λz on the unit disc D, |λ| < 1.
So as usual one can pull back the standard conformal structure on D by Φ−1

to U , spread it by Φ−n, n = 1, 2, . . . , to the whole basin of ∂f and complete
on the complement of the basin by the standard structure. After integration
of this structure the new map satisfies the properties asserted in the Main
Lemma.

Thus: Makienko’s Proposition (preceded by a small perturbation) + the
Measurable Riemann Mapping Theorem give the Main Lemma.

Conversely, g from the assertion of the Main Lemma is conjugate to
f (provided f is already after the first perturbation in the proof of the
Main Lemma). So Makienko’s f(U) can be defined as the image under the
conjugacy of the disc bounded by ∂. Observe that for that we did not need
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to construct new holomorphic structures along the proof. (Compare this
with Remark 1.1.)

Thus Makienko’s Proposition is the topological heart of the Main
Lemma.

R e m a r k 1.4. Neither in the Main Lemma nor in Theorem A does one
need to assume f ∈ Hd. The proofs work for an arbitrary rational map f
with deg f ≥ 2 if one replaces in the statements H(f) by TeichJ . The latter
denotes the set of all rational maps g such that there exists

1) a connected open domain P ∋ 0 in the complex plane,

2) a family of quasiconformal homeomorphisms hλ : C → C, λ ∈ P, with
h0 = id such that for each z the point hλ(z) depends holomorphically on z
(such a family is usually called a holomorphic motion),

3) a family of rational maps fλ, λ ∈ P, with f0 = f and fλ0
= g for

some λ0 ∈ P such that for every λ the map hλ conjugates f with fλ between
ε-neighbourhoods of their Julia sets (ε not depending on λ).

P r o o f o f T h e o r e m C. One first proves an analogue to the Main
Lemma:

If f(z) = z+a(z−p)t+1 +o((z−p)t+1) with a 6= 0 then H1(z) = λ/zt for
some λ 6= 0 conjugates f on a “petal” P ⊂ B(f) to F (z) = z +1+o(1) for z
with large real part. (See [DH2] for the precise description.) Next conjugate
F smoothly to z 7→ z +1 by H2. Define Φf = H2 ◦H1 on P and extend it to
B(f) by limn→∞(Φf ◦ fn(z) − n). Define Gf (z) := 1/expℜΦf(z) on B(f).

Then after a small perturbation such that all critical points in B are
simple and their forward orbits are disjoint, one can find a quasiconformally
conjugate g ∈ Qd such that all critical values vj for g-critical points in B(g)
are in the component of {Gg = a} bounding a “petal”. (See Fig. 3.)

The proof of this parabolic version of the Main Lemma is the same as
that of the Main Lemma except that there are no M -critical points for Gf

in B(f). One can think of M -critical points as belonging to ∂B(f), forming
precisely the set ∂B(f) ∩ ⋃

n≥0 f−n({p}). So the perturbation is not along
Morse curves in basins A(q) but along curves in B(f)∩A(q) joining directly
consecutive S-critical points in ∂A(q).

Repeat now the proof of Corollary B:

(The assumptions imply t = 1.)

For f already as g above we take curves γj , j = 1, . . . , 2d − 2, joining vj

to p. We can take as γj ’s the Φ−1
f -preimages of horizontal lines in C. Then

f(γj) ⊂ γj . So for A =
⋃d−1

j=1 γj the set C \ A is a topological disc and for

the branches gj of f−1 we have gj(U) ⊂ U , j = 1, . . . , d.

We find U ′ ⊂ U such that (3) holds, except that ∂U ′ ∩ ∂U = {p} and
gj0(p) = p for the branch gj0 with gj0(p) = p (see Fig. 3). Since (gn

j0
)′ → 0
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Fig. 3

on U ′ we conclude that
⋂

n gn
j0

(cl U ′) is only one point p.

R e m a r k 1.5. As mentioned in the introduction, the fact that under the
assumptions of Corollary B or Theorem C, J(f) is a Cantor set, is much
easier than the fact that f |J(f) is conjugate to the one-sided shift.

Indeed, it is easy to prove that fN |J(f) is conjugate to a one-sided shift,
for an integer N > 0. Just take a small topological disc D ⊂ B(f) so that
D ∋ p (or a small petal in the parabolic case) such that f(clD) ⊂ D. For
each critical value vj and every n ≥ 0 such that fn(vj) 6∈ D join fn(vj)
to D by an embedded curve γj,n so that these curves are mutually disjoint.
Take N such that fN(γj,n) ⊂ D for each j, n. Consider now U = C \ A,
where A = D ∪ ⋃

j,n γj,n. Next proceed as in the proof of Corollary B with

f replaced by fN (2).

R e m a r k 1.6. It is also easy to prove that f |J(f) is conjugate to a
one-sided topological Markov chain.

Indeed, let D0 = D as in Remark 1.5. Let Dn, n = 1, 2,. . ., be defined
recursively: Dn is the component of f−1(Dn−1) containing Dn−1. Let N ≥0
be large enough that there are no critical values in C\DN . Let U1,. . ., UK

denote all the components of C\cl DN . These are topological discs because
DN is connected. Consider the family of topological discs gj(Uk) for all
branches gj , j = 1,. . ., d, of f−1 and k = 1,. . .,K. Then for every sequence
of pairs (jn, kn), n=0, 1,. . ., such that gjn

(Ukn
)⊂Ukn+1

there exists precisely
one point z∈J(f) such that fn(z)∈gjn

(Ukn
) for every n≥0.

R e m a r k 1.7 (3). Considering the situation in Theorem A such that p is
already not critical (say all f -critical points belong to B(f) and Arg 2πf ′(p)
is rational), John Milnor asked whether it is possible to find a set A which
is the union of parts of trajectories of grad G, contains all critical values, is

(2) I owe this proof to K. Barański.

(3) Before reading this remark the reader is advised to read Section 2.
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compact in B(f), f -forward invariant, connected and simply connected (a
tree).

This would immediately allow us to prove Corollary B with the set A as
here.

Unfortunately, the answer is negative. We can modify an exotic example
of Section 2 (the case d = 3, Fig. 5) so that f(c4) = f2(c3) = a, the pole.
Then the set of saddles for G is S =

⋃
n≥0 f−n(c2). So every curve Γ built

from pieces of trajectories of grad G joining f(c4) to ∞ passes through a
point of f−n({c2}) for some n (in fact, n > 0). Hence fn(Γ ) joins ∞ to ∞
passing through c2, hence it is a loop, i.e. A is not a tree.

(Even the assumption f(c4) 6= a 6= f2(c3) does not help if f(c4), f
2(c3)

are close to a. Γ must still leave the basin A(a) for grad G, passing through
a point in

⋃
n≥0 f−n({c2}), and for typical f(c4), first meets the point a.)

R e m a r k 1.8 (3). Though in the Main Lemma we can arrange to have
all critical values for critical points in B(f) on one component of a level of
G, it is sometimes not so for critical points (unless all critical points for f ,
or all but one, are in B(f) as in Theorem A, see Fig. 2). Again we modify
an exotic example of Section 2. Here the degree of f is 5. Start with a cubic
polynomial P which has degree 1 on ∂A1 and degree 2 on ∂A2 (see Fig. 3,
Section 2), and P maps the critical point a ∈ A2 to the critical point at the
self-intersection of the figure 8 line ∂A1 ∪ ∂A2, which escapes to ∞.

Consider now the function z 7→ P (z) + b/(z − a)2 with b a small real
positive number. We obtain the picture of Figure 4 (do the surgery as in
Section 2 to find appropriate a and b). For a final example split a into two
different poles, which gives an f -critical point c8 between them (Fig. 4).
Make a Blaschke type perturbation close to ∞ to have ∞ not critical and
move f(c8), f(c1), f(c2) to one level with f(c3).

Fig. 4. f2(c4) = c4, f
2(c6) = c6, f(c5) = c5, f(c7) = c7

2. Exotic basins

P r o o f o f T h e o r em D, c a s e d = 3. We start with the geometric
description of an exotic example of degree 3, illustrated in Fig. 5.

Start with a quadratic polynomial P (z) = z2 + c with the critical point
c2 = 0 escaping to c1 = ∞, which is an attracting fixed point of multipli-
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city 2. The level ∂ = {G = t} of Green’s function of the basin of attraction
to ∞ with pole at ∞, containing c2, is a figure 8. Now we change the map
on B2, one of the two discs B1, B2 bounded by ∂, as follows:

Draw two little discs D1,D2 in B2, intersecting each other. Let D1 ∩D2

be mapped 1-to-1 onto C \ (B1 ∪B2). Let D1 \D2 go onto B1 and D2 \D1

go onto B2, both via proper maps with degree 2. So there are critical points
c3 ∈ D1 \ D2 and c4 ∈ D2 \ D1. On D2 this map f is quadratic-like so
we can do anything there, for example f(c4) = c4. On D1 the map f2 is
quadratic-like so we can assume f2(c3) = c3.

Fig. 5

The required rational function is obtained from this topological picture
by the quasiconformal surgery technique [D]. We now explain it in more
detail.

We need the following lemma which generalizes Douady–Hubbard’s the-
orem that a polynomial-like mapping is quasiconformally conjugate to a
polynomial [DH1]:

Lemma 2.1. Let U ⊂ C be an open set (not necessarily connected or

simply connected) with boundary being a union of smooth Jordan curves.

Let F1 : U → U be a holomorphic map such that F1(cl U) ⊂ U . (We denote

the continuous extension of F1 to cl U by the same symbol.) Let V ⊂ C

be homeomorphic to C \ cl U by a homeomorphism h1 which extends to an

orientation preserving homeomorphism of C. (Again we do not assume

V is connected or simply connected.) Let F2 : V → C be a holomorphic

map. Also, suppose that the boundary of V is smooth and denote by F2

the continuous extension of the original F2 to cl V . Suppose the family of

curves consisting of the components of ∂U and their F1-images has the same
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combinatorics in C as the family of curves consisting of the components of

∂V and their F2-images, in the sense that

1. There exists a standard orientation preserving homeomorphism h2 :
∂U ∪ F1(∂U) → ∂V ∪F2(∂V ) such that the boundary of each component K
of C\(∂U ∪F1(∂U)) is mapped to the boundary of a component of C\(∂V ∪
F2(∂V )) and the map extends Q-quasiconformally on K with a constant Q
independent on K.

2. For each component ∂ of ∂U the map h2 maps ∂ to h1(∂), F1(∂) to

F2(h1(∂)) and moreover there is a homeomorphism (lift) h̃2 : ∂ → h1(∂)

such that on ∂ we have h2 ◦ F1 = F2 ◦ h̃2.

Then there exists a rational map f : C → C and an open set W ⊂ C

such that f is quasiconformally conjugate to F1 on W and quasiconformally

conjugate to F2 on C \ W .

Note that the curves ∂ → F1(∂) can intersect each other or self-intersect.
In particular, ∂ can map to a Jordan curve with degree larger than 1.

P r o o f. We replace h2 on ∂U by the lift h̃2 and then extend it from
∂U ∪ F1(∂U) to a quasiconformal homeomorphism h : C → C. Define
F : C → C to be F2 on clV and h ◦ F1 ◦ h−1 on C \ V .

Let µ0 denote the standard conformal structure on C. Take µ1 =
h∗(µ0|U ) on C \ cl V . (Think about µ1 as a field of ellipses, up to multipli-
cation by a positive function.) For each z ∈ V define µ1(z) as a pull-back
F−n
∗ (µ1)(F

n(z)), where n ≥ 0 is such that Fn(z) ∈ C \ cl V . If no such
n exists, take µ1(z) = µ0(z). This is correct due to the crucial property
F (C \ cl V ) ⊂ C \ cl V . As F2 is holomorphic, µ1 is in L∞!

Now integrate µ1. In the new coordinates F changes to the rational map
f we looked for.

Now we construct F1 and F2 satisfying the assumptions of Lemma 2.1.
This is illustrated in Fig. 6.

Take the polynomial P (z) = z2 + c, c < −2. Define F1 by adding to P
a term b/(z − a) for a =

√−c ∈ P−1(0) ∩B2 (a > 0). Let b > 0 be so small

that for our F1 the level ∂̂ = {Ĝ = t0} containing the F1-critical point ĉ2

close to c2 = 0 is a figure 8 close to ∂. Here Ĝ is defined analogously to
Green’s function or to G in Section 1: on the basin of attraction to ∞ by
F1, one defines Ĝ(z) = limn→∞ 2−n log |Fn

1 (z)|. Denote discs bounded by

appropriate parts of ∂̂ close to B1, B2 by B̂1, B̂2 respectively.

It is easy to compute that ĉ2 = b/(2a2) + o(b) and for the two other F1-

critical points ĉ3, ĉ4 we have F1(ĉ3,4) = ∓2
√

2a
√

b + o(
√

b). So F1(ĉ3) ∈ B̂1

and F1(ĉ4) ∈ B̂2.
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Let 0 < t2 < t1 < t0 with t2 ≈ t1 ≈ t0 and denote by K2,K1 the
topological discs both in B̂1 bounded by {Ĝ = t2}, resp. {Ĝ = t1}. Denote

by K ′
4 the topological disc in B̂2 bounded by {Ĝ = t1}. Finally, denote the

component of F−1
1 (K1) in B̂2 by K3, and the component of F−1

1 (K ′
4) in B̂2

by K4. We have ĉ3 ∈ K3 and ĉ4 ∈ K4.

Define U := C \ (K2 ∪ K3 ∪ K4). We have F1(cl U) ⊂ U . So F1 and U
satisfy the assumptions of Lemma 2.1. Now we need to define F2:

Set F2(z) := z2 on a geometric disc L4 = {|z| < r4}, r4 > 1. Take a disc

L3 = {|z− z0| < r3} ⊂ F2(L4)\ cl L4 and define F̃2(z) = (z− z0)
2 + z0. One

finds large r4, r3 such that F̃2(L3) ⊃ clF2(L4). Pick in F̃2(L3) \ F2(L4) two
discs L2 ⊂ L1 of the form L1 = {|z − z1| < r1} and L2 = {|z − z1| < r2}
with r2 < r1. Take an affine holomorphic map Ψ : L1 → F̃2(L3) (onto).

Define F2 = Ψ−1 ◦ F̃2 on L3 and F2 = Ψ |L2
on L2. We take r2 so close to

r1 that Ψ(L2) ⊃ cl F2(L4).

Now take V = L2 ∪ L3 ∪ L4 and F2 defined on V as above.

The assumptions of Lemma 2.1 are satisfied. So we can “glue” F1 and
F2 in one rational mapping f .

Fig. 6

Observe finally that J(f) is disconnected because Fn
1 (ĉ2) → ∞ and

moreover Fn
1 (l) → ∞, where l = {ℑz = ℑĉ2} (ℑ denotes imaginary part).

The line l separates K2 from say K4. Both K1 and K4 intersect J(f) (in
the coordinates after the integration of µ1) so the intersections belong to
different components of J(f).

The degree of f on the basin of attraction to ∞ is 3 because such is the
degree of F1 on U . Only two critical points: ∞ and the one corresponding
to ĉ2 belong to the basin, because ĉ3,4 do not escape under iteration by F2.
Theorem D is thus proved for d = 3.
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R e m a r k 2.2. Observe that in appropriate holomorphic coordinates on
C we have f(z) = z2 + c + b/(z − a). Indeed, after subtracting from the
f constructed above the principal part of the Laurent series expansion at
the pole, we are left with a quadratic polynomial. By an affine holomorphic
change of coordinates we make the polynomial be z2 + c.

R e m a r k 2.3. One should be careful in the above construction because
not every branched cover of C preserves a conformal structure. Above, an
annulus A in B2 containing c3 and c4 is mapped in a proper way by f to
the disc D′ = {G < t′}, t′ > t, i.e. a disc in C bounded by level t′ of Green’s
function G, outside the figure 8 level {G = t}.

Instead of mapping c3 into D1 so that F 2(c3) = c3 we can map A
onto D′ in a proper way so that f(c3) = c3 and f(c4) = c4. This will be
a topological branched cover. However, it does not admit a holomorphic
invariant structure.

Indeed, for a holomorphic f , either fn(c3) or fn(c4) must escape from
A. Otherwise we consider the branch g of f−1 on D′\A mapping ∂D′ to the
external component of ∂A. All moduli of the annuli Pn := gn(D′ \ A) are
the same, and positive, so mod

⋃
n Pn = ∞ and hence D′ \ ⋃

n Pn consists
of only one point and contains c3 6= c4, a contradiction (4).

Another argument is that such an f would have 3 superattracting fixed
points. So it would be a Newton’s method rational function of a degree 3
polynomial (see the introduction). But the basin of attraction to ∞ is not
simply connected. This contradicts a theorem that the basins of immediate
attraction to the attracting fixed points for Newton’s method are simply
connected [P].

P r o o f o f T h e o r e m D, t h e g e n e r a l c a s e d ≥ 3. We shall
realize holomorphically the picture of Fig. 7:

Fig. 7

In Fig. 7, Dj is mapped properly onto Bj for j = 1, 2. Each Dj contains
d − 2 critical points. The points a1, . . . , ad−2 are poles.

(4) This proof was obtained in a discussion with K. Barański after the preprint version
of this paper appeared. It will appear in a wider context in [Ba].
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We proceed similarly to the case d = 3. Let

F1(z) = z2 + c + b
d−2∑

m=1

1

z − am

.

Take am =
√−c + imT for a real constant T with 0 < T ≪ 1, in

particular T small enough that all am are well in B2.
For b > 0 small, there is a small annulus around each pole am, containing

two critical points

ĉm,3, ĉm,4 = am ∓
√

b/(2am) + o(
√

b).

The corresponding critical values

vm,3 = F1(ĉm,3), vm,4 = F1(ĉm,4)

are

a2
m + c∓ 2

√
2am

√
b + o(

√
b) = 2imT

√
−c + (−m2T 2 ∓ 2

√
2am

√
b + o(

√
b)).

(Computing ĉm,3(4) and vm,3(4) we need only consider z2 + c + b/(z − am).
Other terms b/(z − at) make only an O(b) contribution.)

The F1-critical point close to 0 is O(b).
Take K1,K

′
4 from the case d = 3 slightly modified, larger than the

original ones: Let l be the line (parabola) (2iT
√−cτ,−T 2τ2) for τ > 0.

Observe that the critical values vm,3 are to the left of l, and vm,4 to the right

of l. We extend K1,K
′
4 to K̂1, K̂

′
4 almost reaching l to capture vm,3, vm,4

respectively (see Fig. 8).

Fig. 8

Consider the topological discs

Km,3 = Comp F−1
1 (K1), Km,4 = CompF−1

1 (K ′
4),
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where Comp means the component containing ĉm,3, ĉm,4 respectively. Let
K2 be as in the case d = 3, such that F1(K2) ⊃ cl K ′

4. Finally, set

U := C \
(
K2 ∪

d−2⋃

m=1

(Km,3 ∪ Km,4)
)
.

The rest of the construction of f is the same as for d = 3. When we
define quadratic-like maps F̃2 on Lm,3 and F2 on Lm,4 we have a complete
freedom of choosing quadratic polynomials we glue in, in particular, we can
have the corresponding critical points escaping or not. (In particular, if no
critical point escapes we have the most surprising case k = 2 of the assertion
of Theorem D.)

For completeness of exposition we prove the following simple facts (the
first of them was already stated in the introduction):

Proposition 2.4. (a) Let f ∈ Hd be a polynomial with B(f), the basin

of attraction to ∞, not simply connected. Then B(f) contains at least one

critical point different from ∞.

(b) More generally , if f ∈ Qd and for a pair of topological discs A,A1

with cl A ⊂ A1 the map f |A : A1 → A is proper of degree d′ ≤ d, then A1 is

in the basin of attraction B(f) to an attracting fixed point , and if B(f) is not

simply connected then it contains at least d′ critical points. This concerns

in particular the case d′ = d in which f |
C\cl A1

: C \ cl A1 → C \ cl A is

polynomial-like.

P r o o f. (a) Take a topological disc D = {G > a} around ∞ (cf.
proof of Corollary B or Remarks 1.5, 1.6). If there are no critical points
in B(f) (except ∞) then f−n(D) is an increasing sequence of topological
discs, so B(f) =

⋃
n≥0 f−n(D) is a topological disc, and hence B(f) is

simply connected.

(Note that in Remark 2.2 we already used the argument that if there
is only one critical value for a proper map f : W1 → W2 where W2 is a
topological disc, then W1 is also a topological disc.)

(b) The proof is similar. There are d′ − 1 critical points in A1 and there
must be one in B(f) \ A1.

(One can also deduce (b) from (a) using a Blaschke type perturbation,
Section 1.)

Proposition 2.5. Every non-simply connected immediate basin of at-

traction to an attracting or parabolic fixed point p (with f ′(p) = 1) contains

at least 2 different critical values for critical points in the basin.

This complements Theorem D: the integer k cannot be less than 2.
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P r o o f. Consider the sets Dn defined in Remark 1.6. As B(f) =⋃
n≥0 Dn is not simply connected, there exists n such that Dn is simply

connected and Dn+1 is not. Then Dn contains at least two different critical
values for critical points in Dn+1.

(Almost the same argument proves the above for periodic basins, with
period larger than 1.)

P r o o f o f C o r o l l a r y E. Let f ∈ Hd be as in Theorem D for d ≥
3, k = 2. Consider an arbitrary g ∈ H(f). Then there exist a real continuous
1-parameter family of homeomorphisms ht : C → C and a real 1-parameter
family of maps ft ∈ H(f) having the same properties as hλ and fλ in
Remark 1.4. (There exist complex families precisely as in Remark 1.4, but
we do not need them here.) Then ♯(Crit(ft) ∩ B(ft)) is constant because
critical points cannot be too close to J(t), where |f ′| > 0 uniformly, and
they move continuously with t, so they cannot jump between components of
C\J(ft). So by Proposition 2.4, B(g) cannot be the basin of attraction to ∞
for a polynomial. But the degree of f , and hence of g, on any other invariant
basin B1 is less than d. (Otherwise ∂B1 = J(f) would be connected and it is
not because B(f) is not simply connected.) So g cannot be a polynomial.

Note that it follows from Proposition 2.4(b) and the above proof that no
g ∈ H(f) has a polynomial-like restriction of degree d.

3. A 1-parameter family of functions joining an exotic z 7→
z2 + c+ b/(z−a) to a Newton’s method rational function. Let f(z) =
z2 + c + b/(z − a). Then f ′(z) = 2z − b/(z − a)2. The equation for the
critical points in C is

2z(z − a)2 = b.

Suppose that w = c4 is an f -fixed critical point (see Fig. 5, Section 2). (This
restricts the number of parameters to 2.) We obtain

(w2 − w + c)(w − a) = −b, 2w(w − a)2 = b.

Let a = kw. We parametrize f by k and w. We obtain

a = kw, b = 2w3(1 − k)2, c = w2(2k − 3) + w.

The critical points are u = c2, v = c3, w, where

u, v = w
(
− 1

2
+ k ∓ 1

2

√
4k − 3

)
.

Given a parameter k < 1 sufficiently close to 1, one finds w such that
f2(v) = v and the trajectory of u escapes to ∞. For k = .85 one finds
w ≈ 1.88053. This is an exotic example as in Fig. 5, Section 2. The reason
is that the geometry is as in Fig. 6, Section 2, so the basin B of attraction
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to ∞ is connected, i.e. the immediate basin is completely invariant. The
picture is similar to that in Fig. 10d.

(It is not clear to me whether just the escape of u to ∞ proves the
connectedness of B. One should be careful because for f being only a
topological branched cover this is not so; see the example in Remark 2.3.)

In the rest of this section we discuss the change of dynamics for varying
parameter w.

For k = .85 the number w = 1.88053 is in the principal part of a
Mandelbrot-like set M(c3), symmetric with respect to real w’s, pronged
to the left. For w ∈ M(c3), the Julia set for quadratic-like f2|D1

(see Fig.
5, Section 2) is connected and we still have exotic maps.

Now let us decrease w. It leaves M(c3) at w ≈ 1.86874 and below that
w the trajectory of v escapes from D1. It need not escape to ∞. There is a
sequence of intervals where f2n(v) hits Bw, the basin of immediate attraction
to w, as n decreases to 2. Later on, after escape, again f4(v) ∈ Bw but
f2(v) < u (before, it was between w and v). This happens at w ≈ 1.63045
(see Fig. 9).

Fig. 9. k = .85, w = 1.63045

At some parameter w the trajectory of u = c2 stops to escape to ∞. It
hits Bw. But next with further decrease of w it can again escape to ∞.
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Starting from w ≈ 1.541549 the trajectory of u neither escapes to ∞ nor
to w. The parameter w is in a Mandelbrot-like set M(c2) pronged towards
the right. In fact, at this parameter f2(u) ∈ (v, a). Only after some further
decrease of w do we arrive at f2(u) ∈ (u, v), so that one has a unimodal
map f : (f(u), v) 7→ (f(u), v).

w ≈ .713615 is in the principal part of M(c2) and f is Newton’s. Then
fn(c3) → c2 = f(c2). The number w ≈ .303151 is still in the principal part
of M(c2) and f is Newton’s but now fn(c2) → c3 = c3 (5).

Let us now present pictures from this experiment for k = .81 (6).
In Fig. 10, k = .81, white is the basin of attraction to w, grey the basin of

∞, black is the complement. For Newton’s f (Fig. 10a), black contains both
c2 and c3, so it has a connected interior and approaches the only repelling
fixed point in two channels. Let w grow. For w ≈ 1.37 the black Newton’s
basin has bifurcated to period 4, Fig. 10b.

Fig. 10a. k = .81, w = .63, window −2−2i, 2+2i. Iteration of a Newton’s method rational
map for a polynomial. Black, white and grey are basins of attraction to the zeros of the
polynomial.

(5) This description comes from a computer made picture in 9 colors, showing whether
c2, c3 escape to ∞, to w or behave differently.

(6) Added July 1995: I received recently a letter from Prof. Kiyoko Nishizawa (Josai
University, Japan) containing the description of a variety of Newton’s maps. I slightly
corrected the estimated values of the Newton’s parameters w for k = .85 according to his
computations.
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Fig. 10b. k = .81, w = 1.37, window −2 − 2i, 2 + 2i. The black Newton’s basin has
bifurcated to a period 4 immediate basin and its preimages.

For w ≈ 1.4961 (Fig. 10c), w is already in M(c3) but u = c2 does not
escape to ∞. It is in the basin of w. The basin of ∞ is not connected. This
is so because the immediate basin (and the whole basin too) contains only
1 critical point: ∞. So it is simply connected (see Proposition 2.5). Hence
f has only degree 2 on this immediate basin.

For w ≈ 1.51545, u escapes to ∞. The basin of ∞ becomes connected.
This is one of our exotic examples: see Fig. 10d.

Fig. 10c. k = .81, w = 1.49, window −2− 2i, 2 + 2i. The map is still not exotic because
the trajectory of the critical point u is attracted to w.

Question 3.1. In the set of Newton’s method rational functions NPλ

for the polynomials Pλ(z) = z3 + (λ − 1)z − λ there exist Mandelbrot-like
sets of “exotic” parameters for which the critical point different from the
zeros of Pλ converges to a periodic attracting orbit different from these zeros
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Fig. 10d. k = .81, w = 1.51545, window −i, 2 + i. This is an exotic map. The pattern is
as in Figs. 5, 6. The union of black and white does not separate the plane any more, u
escapes to ∞.

[CGS]. Do these sets move to M(c3) sections of the set of our exotic maps
when we change parameters from Newton’s to our exotic ones (7)?

Question 3.2. Describe precisely how the dynamics bifurcates (i.e. de-
scribe the limit behaviour of the trajectories of c2 and c3) for real parameters
k,w. This question concerns the iteration of a real map having 2 critical
points, namely our f restricted to (−∞, a). (The right branch from a to ∞
does not take part in the recurrence because for z > a and every n ≥ 0,
fn(z) ≥ a.)
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Ann. Sci. École Norm. Sup. 18 (1985), 287–243.
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