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Losing Hausdorff dimension

while generating pseudogroups

by

Pawe l W a l c z a k ( Lódź)

Abstract. Considering different finite sets of maps generating a pseudogroup G of
locally Lipschitz homeomorphisms between open subsets of a compact metric space X
we arrive at a notion of a Hausdorff dimension dimH G of G. Since dimH G ≤ dimHX,
the dimension loss dlH G = dimHX − dimH G can be considered as a “topological price”
one has to pay to generate G. We collect some properties of dimH and dlH (for example,
both of them are invariant under Lipschitz isomorphisms of pseudogroups) and we either
estimate or calculate dimH G for pseudogroups arising from classical dynamical systems,
group actions, foliations, etc.

Introduction. In this article, we define the Hausdorff dimension dimH G
of a finitely generated pseudogroup G acting on a compact metric space X.
We show that dimH G does not exceed dimH X, the Hausdorff dimension
of X, so one has a kind of dimension loss dlH G = dimH X − dimH G ≥ 0.
We show that Lipschitz equivalent pseudogroups have the same Hausdorff
dimensions, so—in particular—the (transverse) dimension loss of a foliation
F can be defined as that of its holonomy pseudogroup H acting on any
compact complete transversal T . Several examples provided here show that
the dimension loss dlH G is positive when there is enough contraction (or,
expansion) by elements of G.

The motivation of this research comes from the following.
First, Hausdorff dimensions (and other related dimensions) turn out to

be useful in defining and studying fractals which appear often in the theory of
(especially complex) dynamical systems as, for example, minimal invariant
sets (see [Ed], [Fa] and the references there). For some classes of sets (like
quasi-circles which are defined as subsets of Rn homeomorphic to S1 and
satisfying some other natural conditions and which appear naturally in the
study of Kleinian groups [Bo]), the equality dimH X = dimH Y implies that

1991 Mathematics Subject Classification: Primary 54H20.
Research supported partially by the grant KBN 0241 P3 93 04.

[211]



212 P. Walczak

X and Y are quasi-isometric [FM], so dimH becomes a good invariant to
study dynamics of some systems.

Second, recent years brought wide interest in general dynamical systems
like relations, group actions, pseudogroups, foliations, etc. There is a large
variety of problems and results in this area. We list below just some of them
(and give only some references):

(1) invariant measures for general dynamics, ergodicity, amenability
([Pl], [Gar], [Zi2], [Zi3], etc.),

(2) entropy for relations, pseudogroups, foliations ([GLW], [LW1], [LW2],
[Fr], [Hu1], [Hu2], [Wi], [Bi], etc.),

(3) other invariants measuring dynamics of general systems ([Eg1], [Eg2],
[LW3], etc.),

(4) rigidity of group actions ([Gh], [Hu3], [Hu4], [Zi1], etc.),

(5) geometry and dynamics of hyperbolic groups ([Gr], [GH1], [GH2],
[CDP], [GHV], [C1], [C2], [Ch], etc.).

Finally, the ultimate impulse came from [Le], where the author defined
a measure-theoretic cost l(Φ) of countably generated measure-preserving
relations R (pseudogroups, in particular) given a countable generating set
Φ. l(Φ) and l(R) = infΦ l(Φ) have the property that they become larger if one
wants to create more complicated dynamics. Since non-trivial G-invariant
measures do not exist for several pseudogroups G, we realized that it could
be useful and interesting to find a kind of topological cost of generating.
Thinking about it we arrived at our dimension loss which has (to some
extent) a similar property: If the dynamics of G is complicated enough, then
dlH G is positive. However, we do not expect any direct relation between
l(G) and dlH G. A remark of Section 3.3 shows a relation between l(G) and
Hs(G), a kind of Hausdorff measure defined in Section 2.1 and essentially
involved in calculation of dimH G, in the case when the invariant measure
under consideration is s-continuous in the sense of Section 3.2.

The paper is organized as follows. Section 1 contains basic definitions
of pseudogroups, pseudogroup morphisms, holonomy pseudogroups for foli-
ations, etc. In Section 2, we define the Hausdorff dimension and dimension
loss for pseudogroups, collect their elementary properties and discuss some
simple examples. In Section 3, we estimate dimH and dlH assuming the
existence of good (called s-continuous there) invariant measures. Section
4 provides more examples like pseudogroups of local isometries, hyperbolic
groups acting on the ideal boundary, rational maps, etc. In particular, we
show (Prop. 4.4.1) that existence of attractors allows estimating dimH from
above. In Section 5, we collect some final remarks. Since our examples come
from different fields, to make the paper easier to follow by different readers,
we decided to include subsections (1.3, 3.1 and a large part of 4.2) contain-
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ing some information about holonomy of foliations, invariant measures and
hyperbolic groups.

1. Pseudogroups

1.1. Basic definitions. Throughout this paper X is a compact metric
space with the distance function ̺, and G is a pseudogroup acting on X,
i.e. a set of homeomorphisms g : Dg → Rg between open subsets Dg and
Rg of X which is closed under composition, inversion, restriction to open
subdomains and unions. More precisely, G satisfies the following conditions:

(i) if g, h ∈ G, then g ◦ h : h−1(Dg) → g(Rh) is in G,
(ii) if g ∈ G, then g−1 : Rg → Dg is in G,

(iii) if g ∈ G and U ⊂ Dg is open, then g|U ∈ G,
(iv) if g : Dg → Rg and U is an open cover of Dg such that g|U ∈ G for

any U ∈ U , then g ∈ G.

We shall also assume that

(v)
⋃
{Dg : g ∈ G} = X so that idX ∈ G.

If A is a set of homeomorphisms between open subsets of X and

(1.1.1)
⋃

g∈A

(Dg ∪ Rg) = X,

then the smallest pseudogroup of local homeomorphisms of X which contains
A exists, is said to be generated by A and will be denoted by G(A). It
consists of all the maps g : Dg → Rg such that for any x ∈ Dg there
exist an open neighbourhood U of x, maps g1, . . . , gn ∈ A and exponents
e1, . . . , en ∈ {±1} for which g = ge1

1 ◦ . . . ◦ gen
n on Dg ∩ U . If A is finite,

A = {g1, . . . , gn}, then we write G(g1, . . . , gn) instead of G(A). If G is a
pseudogroup and A ⊂ G, then G(A) is a subpseudogroup of G.

A pseudogroup G is finitely generated iff there exists a finite set A such
that G = G(A). Hereafter, all the pseudogroups are supposed to be finitely
generated. A generating set A is symmetric iff idX ∈ A and A = A−1 (i.e.,
g−1 ∈ A whenever g ∈ A). If G is finitely generated, then it admits a finite
symmetric generating set.

Let G and H be pseudogroups of local homeomorphisms of compact
metric spaces X and Y , respectively. A morphism Φ : G → H is a family Φ
of homeomorphisms φ : Dφ → Rφ between open sets Dφ ⊂ X and Rφ ⊂ Y
for which

(vi)
⋃
{Dφ : φ ∈ Φ} = X and

(vii) φ1 ◦ g ◦ φ−1
2 ∈ H for all φ1, φ2 ∈ Φ and all g ∈ G.

A morphism Φ is an isomorphism if Φ−1 = {φ−1 : φ ∈ Φ} occurs to be a
morphism between H and G. In this case,
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(viii)
⋃
{Rφ : φ ∈ Φ} = Y.

Enlarging a morphism Φ as defined above we can obtain a larger family Φ̃
closed under unions and such that

(ix) h ◦ φ ◦ g ∈ Φ̃ whenever g ∈ G, h ∈ H and φ ∈ Φ̃.

The smallest Φ̃ like this will also satisfy conditions (vi) and (vii) and will
become a pseudogroup morphism in the sense of Haefliger [Ha]. In this sit-

uation, we say that Φ̃ is generated by Φ. We assume that all our morphisms
are finitely generated.

In this paper, we work with Lipschitz and locally Lipschitz maps: We
assume that our pseudogroups and morphisms are generated by Lipschitz
maps and, therefore, consist of locally Lipschitz ones. Of course, the ele-
ments of a pseudogroup (or of a morphism) are not uniformly Lipschitz: the
Lipschitz constants of different maps are different.

1.2. Generating pseudogroups. Let A0 = {g1, . . . , gN} be any finite set
generating a pseudogroup G. Put

(1.2.1) A = {gi1,...,im
|U : U ∈ Ui1,...,im

, i1, . . . , im ≤ N, m ≤ m0},

where gi1,...,im
: Di1,...,im

→ Ri1...,im
denotes the composition gi1 ◦ . . . ◦ gim

and Ui1,...,im
is a finite (possibly empty) family of open subsets of Di1,...im

.
The set A generates G if for any i = 1, . . . ,N and any x ∈ Di there

exist a map gi1,...,im
and an open neighbourhood V of x such that gi =

(gi,i1,...,im
|U ′)◦(gi1,...,im

|U)−1 on V for some U ∈ Ui1...,im
and U ′∈ Ui,i1,...,im

.
This happens when, for any i,

(1.2.2)
⋃

I

⋃

U∈UI

⋃

U ′∈Ui,I

gI(U ∩ U ′) = Di,

where I denotes a multiindex (i1, . . . , im). (The condition (1.2.2) is not
necessary for A to generate G since, in general, the maps gi can be obtained
by composing elements of A0 in different ways. However, it is useful when
calculating (or estimating) the Hausdorff dimension of G.)

In particular, if f : X → X is a homeomorphism, G = G(f) and

(1.2.3) A = {fm|U : U ∈ Um, m = 0,±1, . . . ,±m0},

where Um are, as before, finite families of open subsets of X, and

(1.2.4)
⋃

m

⋃

U∈Um

⋃

U ′∈Um+1

fm(U ∩ U ′) = X,

then A generates G(f). In fact, in this situation any point x ∈ X has an
open neighbourhood V such that f |V = (fm+1|U ′) ◦ (fm|U)−1|V for some
m ∈ Z, some U ∈ Um and some U ′ ∈ Um+1 such that x ∈ fm(U ∩ U ′) and
|m| < m0.
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Similarly, if f : X → X is a local homeomorphism, then the pseudogroup
G(f) generated by all the maps of the form f |U , where U ⊂ X is open and
f |U is one-to-one, is generated by the set A defined by (1.2.3) and satisfying
(1.2.4) provided that the maps fm|U are one-to-one for all U ∈ Um, m ∈ Z.

1.3. Holonomy pseudogroups. The basic example we have in mind while
thinking about pseudogroups is the holonomy pseudogroup H of a folia-
tion F of a connected compact manifold M . (The reader not familiar with
foliations should consult [CL], [Go], [HH] or [Ta].)

To construct H we cover M with a finite family of charts U1, . . . , UN

distinguished by F and satisfying the following condition: any plaque P ⊂
Ui intersects at most one plaque Q ⊂ Uj , i, j = 1, . . . ,N . (A cover like this

is called nice [HH]. Nice covers always exist.) Let T̃i = Ui/(F|Ui) be the
space of plaques of Ui. Without loosing generality, we may assume that the
plaques are relatively compact in M , T̃i is homeomorphic (diffeomorphic of
class Cr if F is Cr-differentiable, r ≥ 1) to an open ball Bq(0, 1 + η) ⊂ Rq,
q = codimF , η > 0, and that the plaques corresponding to the points of
the closed ball Bq(0, 1) form compact spaces Ti with the following property:
every leaf L of F intersects the disjoint union T =

⊔
i Ti (i.e., every leaf

L contains a plaque P ∈ Ti for some i). The compact space T (becoming
a Cr-manifold with boundary if F is Cr-differentiable, r ≥ 1) is called a
complete transversal of F .

If Ui ∩ Uj 6= ∅, then one has the holonomy homeomorphism hij : Dij →
Rij between open sets Dij ⊂ Ti and Rij ⊂ Tj which maps a plaque P ∈ Ti to
the unique plaque Q ∈ Tj such that P ∩Q 6= ∅ (if one exists). Then H = HT

is the pseudogroup of local homeomorphisms of T generated by the maps
hij , i, j = 1, . . . , N . If F is Cr-differentiable, r ≥ 1, then H consists of local
Cr-diffeomorphisms of T .

It is well known that the holonomy pseudogroups HT and HT ′ of F
corresponding to two different complete transversals T and T ′ are isomorphic
([Go], p. 76). In fact, if T ⊔T ′ is a complete transversal, then the holonomy
maps hij′ corresponding to components Ti ⊂ T and Tj′ ⊂ T ′ (whenever
defined) form a morphism ΦTT ′ : HT → HT ′ . It is an isomorphism since
ΦT ′T is its inverse. The general case can be reduced to that discussed
above by considering another transversal T ′′ corresponding to a nice covering
subordinated to nice coverings defining T and T ′.

A complete transversal T has no metric structure a priori. However, any
Riemannian metric 〈·, ·〉 on M provides M with the Riemannian distance
function ̺. The latter induces the Hausdorff distance function ̺i in Ti.
Without loosing generality, we may assume that diam(Ti, ̺i) ≤ 1 for any i.
The distance function ̺T on T can be defined by



216 P. Walczak

(1.3.1) ̺T (x, y) =
{

̺i(x, y) when x, y ∈ Ti, i = 1, . . . ,N ,
1 otherwise.

If F is Cr-differentiable and r ≥ 1, then T can be considered as a
Cr-submanifold of M transverse to F . In this case, a Riemannian struc-
ture on M induces a Riemannian metric on T . The latter provides the
components of T with distance functions, denoted by ̺i again, which could
be used to define the distance function ̺T on T by (1.3.1).

Since M is compact, any two metric spaces (T, ̺T ) and (T, ̺′T ) with
the distance functions obtained from two Riemannian structures on M are
quasi-isometric: there exists a constant c ≥ 1 such that for all x and y in T ,

(1.3.2) c−1̺T (x, y) ≤ ̺′T (x, y) ≤ c̺T (x, y).

Moreover, if T ′ is another transversal equipped with a distance function
̺′T ′ , then all the maps hij′ generating the morphism ΦTT ′ are uniformly
Lipschitz: there exists a constant c1 ≥ 1 such that

(1.3.3) c−1
1 ̺T (x, y) ≤ ̺′T ′(hij′(x), hij′ (y)) ≤ c1̺T (x, y)

for all x, y ∈ Dij′ and all i and j.

Similarly, holonomy pseudogroups can be defined for laminations L,
i.e. compact (more generally, separable and locally compact) metrizable
spaces X equipped with open covers U and distinguished charts φ which
map homeomorphically U ∈ U onto D × T , D being an open subset of Rk

(k = dimL), and satisfy the following condition: if U,U ′ ∈ U overlap, and
φ and φ′ are the corresponding charts, then

(1.3.4) φ′ ◦ φ−1(x, t) = (f(x, t), h(t))

for all (x, t) ∈ φ(U ∩U ′) ⊂ D × T . Usually some smoothness conditions are
required. The typical assumption is that f has all partial x-derivatives and
all of them should be continuous on φ(U ∩ U ′) [Ca].

Closed saturated subsets of foliated manifolds provide a class of examples
of laminations. Other examples appear in [Su].

The following shows that there is a large class of pseudogroups which
can be realized as holonomy of some foliations or laminations.

Examples 1. If Γ is a finitely generated group of diffeomorphisms of a
compact manifold T , N is a compact manifold with the fundamental group
π1(N) isomorphic to Γ , then any isomorphism h : π1(N) → Γ provides us

with a foliation Fh, the suspension of h, of the manifold M = (Ñ × T )/Γ ,

where Ñ is the universal covering space of N . This foliation is induced by
the canonical projection π : Ñ × T → M from F = {Ñ × {t} : t ∈ T}.
The holonomy pseudogroup of Fh is isomorphic to G(A), A being a finite
set generating Γ .
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2. A pseudogroup G acting on the interval I = [0, 1] is said to be Markov

[CC] if it admits a finite set A of generators which satisfy the following
conditions: for any g, g′ ∈ A,

(i) if Rg ∩ Rg′ 6= ∅, then g = g′,

(ii) either Rg ⊂ Dg′ or Rg ∩ Dg′ = ∅.

It is known [In] that any Markov pseudogroup of C2-diffeomorphisms is
isomorphic to the holonomy pseudogroup of a codim-1 foliation restricted
to a neighbourhood of an exceptional minimal set.

2. Hausdorff dimension and dimension loss

2.1. Definitions. Let G be a finitely generated pseudogroup acting on a
compact metric space X. For any ε > 0 let A(ε) = AG(ε) be the family of
all finite sets A generating G such that diam Dg ≤ ε for all g ∈ A. Since X
is compact, A(ε) 6= ∅ for any ε.

Fix s > 0 and let

(2.1.1) Hs
ε (G) = inf{Hs(A) : A ∈ A(ε)},

where

(2.1.2) Hs(A) =
∑

g∈A

(diam Dg)s.

Obviously, Hs
ε (G) ≥ Hs

ε′(G) whenever 0 < ε ≤ ε′. Therefore, we may put

(2.1.3) Hs(G) = lim
ε→0

Hs
ε (G) = sup

ε>0
Hs

ε (G).

From (2.1.1) through (2.1.3) it follows immediately that Hs1(G) = ∞ and
Hs3(G) = 0 if s1 < s2 < s3 and 0 < Hs2(G) < ∞. Therefore, the Hausdorff

dimension dimH G can be defined by

(2.1.4) dimH G = inf{s > 0 : Hs(G) = 0} = sup{s > 0 : Hs(G) = ∞}

with the obvious convention when Hs(G) = 0 (or ∞) for all s > 0.

Note that the Hausdorff dimension dimH X of X equals dimH(G(idX)),
so we write Hs

ε (X) and Hs(X) instead of Hs
ε (G(idX)) and Hs(G(idX)),

respectively. Also, for any finite open covering U of X we write Hs(U) in
place of Hs({idU : U ∈ U}).

The equality dimH G = dimH X does not hold in general but we have the
following.

2.1.1. Proposition. dimH G ≤ dimH X for any pseudogroup G acting

on X.

P r o o f. Fix any s > dimH X, ε > 0 and η > 0, and take any finite
set A0 = {g1, . . . , gN} generating G. For any i = 1, . . . ,N take a finite
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open covering Ui of X such that diamUi ≤ ε and Hs(Ui) < η/2i. Let
A = {gi|U : U ∈ Ui, i = 1, 2, . . .}. Obviously, A ∈ AG(ε) and

Hs(A) ≤
∑

i

Hs(Ui) ≤
∑

i

η/2i ≤ η.

Therefore, Hs
ε (G) = 0 for all ε and Hs(G) = 0.

The above proposition shows that

(2.1.5) dlH G = dimH X − dimH G

is always non-negative. This difference will be called the dimension loss of
the pseudogroup G.

2.2. First examples. 1. If G = G(Γ ), where Γ = {f1, . . . , fm} is a
finite group of Lipschitz homeomorphisms of X, then dlHG = 0. In fact, if
A = {fk|U : U ∈ Uk, k = 1, . . . ,m} ∈ AG(ε) (since Γ is finite, we do not
lose generality by considering generating sets of this form only!), then the
sets fj(U) (U ∈ Uk, j, k = 0, 1, . . . ,m − 1) cover X and

Hs(A) =

m∑

k=1

Hs(Uk) ≥
1

mKs

m∑

j,k=1

∑

U∈Uk

(diam fj(U))s ≥
1

mKs
Hs

Kε(X),

where K is the maximum of Lipschitz constants for f1, . . . , fm. Conse-
quently,

Hs
ε (G) ≥

1

mKs
Hs

Kε(X), Hs(G) ≥
1

mKs
Hs(X)

and finally dimH G ≥ dimH X.

2. If G = G(f), where f : S1 → S1, f(z) = z2, then AG(ε) contains a
generating set A consisting of 8 maps. In fact, if U = {z ∈ S1 : |arg z| <
ε/2}, m is the smallest natural number for which fm(U) = S1 and ε′ is
small enough, then the set A = {fm+1|Ui, f

m|Ui : i = 1, . . . , 4} with Uj =
{z : (j − 3)ε/4 − ε′ < arg z < (j − 2)ε/4 + ε′} generates G. Consequently,

Hs
ε (G) ≤ 4εs and Hs(G) = 0

for any s > 0. It follows that dimH G = 0 and dlHG = 1. (U is split into
four pieces to have the maps of the family A invertible.)

3. Let K =
⋃

j fj(K) be a compact invariant set for a finite system f =

{f1, . . . , fm} of similarities fj : RN → RN with ratio rj , 0 < rj < 1. For any
ε > 0 there exists n ∈ N such that diam fn

j (K) < ε for j = 1, . . . ,m. Let A =

{(fn
j |K)−1, (fn+1

j |K)−1 : j = 1, . . . ,m}. Then A generates the pseudogroup

G = G(f1|K, . . . , fm|K) (in fact, fj |K = (fn
j |K)−1 ◦ ((fn+1

j |K)−1)−1) and
∑

g∈A

(diam Dg)s ≤ 2mεs,
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so Hs(G) = 0 for all s > 0. Therefore, dimH G = 0 and dlH G = dimH K.
If K and f satisfy Marion’s open set condition [Ma], then dlHG = dimh f ,
where dimh f denotes the similarity dimension of the system f , i.e. the
unique exponent s for which

∑
j rs

j = 1.
In general, calculating Hausdorff dimensions of Cartesian products can

be difficult (see [Fa], Chapter 7, for some results and examples concerning
subsets of Rn) but some pseudogroups G acting on spaces Z for which 0 <
dlH G < dimH Z can be produced from the above examples by acting on
Cartesian products (or finite quotients of Cartesian products).

4. Let X ⊂ Rn be compact, Y = S1, Z = X × Y and G = G(idX ×f),
where f(z) = z2 as in Example 2. If A = {idU ×(f |V ) : U ∈ U , V ∈ V}
generates G, then U covers X and diam(U × V ) ≥ diam U . Therefore,

Hs
ε (G) ≥ Hs

ε (G(idX))

for all s and ε. On the other hand, the argument similar to that of Example 2
above shows that

Hs
ε (G) ≤ 8csHs

ε (G(idX)),

where c is a constant which depends only on the choice of a metric ̺ on Z
(c = 1 when ̺((x, y), (x′, y′)) = max{̺X(x, x′), ̺Y (y, y′)}, ̺X and ̺Y being
the distance functions on X and Y , respectively). The inequalities above
imply that

dimH G = dimH G(idX) = dimH X.

Since Y = S1 is sufficiently regular, we have ([Fa], Corollary 7.4)

0 < 1 = dlH G < 1 + dimH X = dimH Z

provided dimH X > 0.

2.3.1. Morphisms. In this subsection, we obtain relations between the
Hausdorff dimensions of pseudogroups and subpseudogroups, and show how
to define the transverse Hausdorff dimension and the dimension loss for
foliations.

2.3.1. Proposition. If G′ is a finitely generated subpseudogroup of a

pseudogroup G, then

(2.3.1) dimH G′ ≥ dimH G and dlH G′ ≤ dlH G.

P r o o f. Let A0 = {g0, g1, . . . , gN}, g0 = idX , be a symmetric generating
set for G. Let c ≥ 1 be a Lipschitz constant for all gi’s:

c−1̺(x, y) ≤ ̺(gi(x), gi(y)) ≤ c̺(x, y)

for all i = 1, . . . , N and x, y ∈ Di = Dgi
.

Take any ε > 0 and a finite generating set A′ ∈ AG′(ε). Let

A = {gi ◦ h ◦ gj : h ∈ A′, i, j = 1, . . . ,N}.
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Then A generates G. In fact, if x ∈ X, then there exist a neighbourhood
V of x and elements h1, . . . , hm of A′ such that idV = he1

1 ◦ . . . ◦ hem
m |V for

some e1, . . . , em ∈ {±1}. (Obviously, one can take m = 2 and h2 = h−1
1 .)

Let xk = he1

1 ◦ . . . ◦ hek

k (x) for k = 1, . . . ,m− 1. For any k find jk ≤ N such
that xk ∈ Djk

. For any j0 ≤ N the equality

gj0 = (gj0 ◦ he1

1 ◦ gj1) ◦ . . . ◦ (g−1
jm−1

◦ hem
m ◦ g0)

holds on a neighbourhood V ′ ⊂ V of x.
Moreover, Dgi◦h◦gj

⊂ gj(Dh), so diam Dgi◦h◦gj
≤ diam gj(Dh) ≤

c diam Dh ≤ cε, A ∈ AG(cε) and

Hs(A) ≤ csN2Hs(A′)

for any s > 0. It follows that

Hs
cε(G) ≤ csN2Hs

ε (G′) and Hs(G) ≤ csN2Hs(G′).

This ends the proof.

2.3.2. Proposition. If pseudogroups Gi acting on Xi, i = 1, 2, are

isomorphic via Φ = {φ1, . . . , φN}, where all the maps φi are Lipschitz , then

(2.3.2) dimH G1 = dimH G2 and dlH G1 = dlH G2.

P r o o f. If A1 ∈ AG1
(ε), then A2 = {φi ◦ g ◦ φ−1

j : g ∈ A1, i, j ≤ N} ∈
AG2

(cε), where c is a Lipschitz constant for all the maps φi ∈ Φ. Moreover,

Hs(A2) ≤ csN2Hs(A1)

so—as in the proof of Proposition 2.3.1—we have Hs(G2) ≤ csN2Hs(G1) and
dimH G2 ≤ dimH G1. Of course, the converse inequality holds as well.

The second equality in (2.3.2) holds because the spaces X1 and X2 have
the same Hausdorff dimension: For any i ≤ N , dimH Dφi

= dimH Rφi
, X1 =⋃

i Dφi
and X2 =

⋃
i Rφi

, so dimH X1 = maxi dimH Dφi
= maxi dimH Rφi

=
dimH X2.

2.3.3. Corollary. If T and T ′ are complete transversals of a C1-

foliation F of a compact manifold M , then dimH HT = dimH HT ′ and

dlH HT = dlH HT ′ .

Therefore, we can define the (transverse) Hausdorff dimension dim⋔

H F
and the dimension loss dl⋔H F of a C1-foliation F as follows:

(2.3.3) dim⋔

H F = dimH HT and dl⋔H F = dlH HT = codimF − dim⋔

H F ,

where T is any complete transversal of F .

2.3.4. Corollary. If M ′ is a compact manifold and f : M ′ → M is

a C1-map transverse to a C1-foliation F of a compact manifold M , then

(2.3.4) dim⋔

H F ′ ≥ dim⋔

H F and dl⋔H F ′ ≤ dl⋔H F ,

where F ′ is the pullback of F via f .
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P r o o f. We have codimF ′ = codimF and the holonomy pseudogroup
of F ′ is isomorphic to a subpseudogroup of the holonomy pseudogroup of F
([Go], p. 76).

Examples. 1. For the standard Reeb foliation F of S3 ([Go], p. 36) one
has dim⋔

H F = 0 and dl⋔H F = 1. In fact, any arbitrarily short closed segment
T = [−η, η] transverse to F and intersecting the unique compact leaf T 2 of
F provides us with a complete transversal. The holonomy pseudogroup HT

is generated by two maps h+ and h− given by

h+(t) =

{
t, t < 0,
λ(t), t ≥ 0,

h−(t) =

{
λ(t), t < 0,
t, t ≥ 0,

where λ is a map contracting T to the point t0 = 0. If ε > 0 is arbitrarily

small, then the maps h−m
+ |(−ε/2, ε/2), h−m

− |(−ε/2, ε/2), h
−(m+1)
+ |(−ε/2, ε/2)

and h
(m+1)
− |(−ε/2, ε/2), where m ∈ N is large enough, generate HT , so

Hs
ε (HT ) ≤ 4εs and Hs(HT ) = 0 for all s > 0.

2. The Hirsch foliation F [Hi] is obtained from the foliation of the solid
torus N = D2 × S1 = {(z,w) ∈ C2 : |z| ≤ 1 and |w| = 1} by the slices
w = const in the following way: Map N into itself by f : (z,w) 7→

(
1
2
w +

1
4
z,w2

)
and glue together (by the map f |∂N) the boundary components of

N \ Intf(N). The leaves of F are obtained by gluing together suitable slices
w = const. The holonomy pseudogroup H of F is isomorphic to G(h), where
h : S1 → S1, h(z) = z2. Therefore, dim⋔

H F = 0 and dl⋔H F = 1.

R e m a r k. In a separate paper [IW], T. Inaba and the author generalize
the observations made above to prove (among other results) the following:

For any codimension-one non-minimal C2-foliation F one has

(2.3.5) dim⋔

H F = dimH(C ∩ T ),

where T is a complete transversal and C the union of all the compact leaves

of F . If F is minimal with non-trivial holonomy, then

(2.3.6) dim⋔

H F = 0.

There are examples of minimal codimension-one foliations without holon-
omy for which the transverse Hausdorff dimension is either 0 or 1. Also,
there are examples showing that the above is not true for C1-foliations.

2.4. Invariant subspaces. If Y ⊂ X is closed and G-invariant, i.e.
g(Dg ∩ Y ) ⊂ Y for any g ∈ G, then the maps g|Dg ∩ Y, g ∈ G, gen-
erate the pseudogroup G|Y acting on Y . If A ⊂ G generates G, then
A|Y = {g|Dg ∩ Y : g ∈ A} generates G|Y . Obviously, diam(Dg ∩ Y ) ≤
diam Dg for any g. The following is immediate.

2.4.1. Proposition. For any closed G-invariant set Y ⊂ X,

(2.4.1) dimH G|Y ≤ dimH G.
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Since also dimH Y ≤ dimH X, one cannot expect any general relation
between dlH G and dlH G|Y .

2.4.2. Corollary. If F ′ is a subfoliation of a foliation F , then

(2.4.2) dim⋔

H F ′ ≥ dim⋔

H F .

P r o o f. If T and T ′, T ⊂ T ′, are complete transversals for F and F ′,
respectively, and H and H′ are the corresponding holonomy pseudogroups,
then H′|T is a subpseudogroup of H. Therefore, the result follows directly
from Propositions 2.3.2 and 2.4.1 together with the definition (2.3.3) of the
transverse Hausdorff dimension.

We say that Y has the property of unique extension (UEP) with respect
to G whenever the equality g|Y ∩ V = id, V being an open subset of X,
implies that g = id on an open (in X) neighbourhood V ′ of Y ∩ V .

2.4.3. Proposition. If X = Y1 ∪ . . . ∪ YN , where all Yi’s are closed

G-invariant and have UEP with respect to G, then

(2.4.3) dimH G = sup
i

dimH G|Yi.

Again, in spite of the equality

(2.4.4) dimH X = sup
i

dimH Yi,

one cannot expect dlH G and supi dlH G|Yi to be related in general.

P r o o f. The inequality “≥” in (2.4.3) follows immediately from (2.4.1).
Let s > supi dimH G|Yi, ε, η > 0. For any i, Hs

ε (G|Yi) = 0, so there
are generating sets Ai ∈ AG|Yi

(ε) for which Hs(Ai) < η. For any i and

h ∈ Ai choose h̃ ∈ G such that h̃|Yi = h and let h = h̃|Dh(δ), where
δ = diam Dh and Z(δ) = {x ∈ X : ̺(z, Z) < δ} for any subset Z of X.
Clearly, diam Dh̄ ≤ 3 diam Dh ≤ 3ε.

Put

A = {h : h ∈ Ai and i = 1, . . . ,N}.

Then A generates G. (More precisely, A ∈ AG(3ε).) In fact, if g ∈ G and
x ∈ Dg ∩ Yi, then g|Yi ∩ V = he1

1 ◦ . . . ◦ hem
m |Yi ∩ V , where h1, . . . , hm ∈ Ai,

e1 . . . , em ∈ {±1} and V is an open neighbourhood of x. From the UEP for
Yi it follows that g|V ′ = he1

1 ◦ . . . ◦ hem
m |V ′ for another open neighbourhood

V ′ of x.
Since

Hs(A) ≤ 3s
N∑

i=1

Hs(Ai) < 3sNη,

we have Hs
3ε(G) = 0 and Hs(G) = 0. This proves the inequality “≤” in

(2.4.3) and ends the proof of the proposition.
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Now, we exhibit a pseudogroup G for which both dimH G and dlH G are
positive and irrational. A pseudogroup like this could be called fractal.

Example. Let X = [0, 1], Y ⊂ X be the standard (1/3)-Cantor set and
Y \ X =

⋃
m Im, Im being the gaps of Y . Define f : X → X by

f(x) =

{
x for x ∈ Y ,
h−1

m (hm(x)2) for x ∈ Im,

where hm is the unique increasing linear map of Im onto (0, 1). The map f
is a homeomorphism, so it generates a pseudogroup G = G(f). Since Y is
G-invariant and G|Y = G(idY ),

dimH G ≥ dimH(G|Y ) = dimH Y = log 2/ log 3.

On the other hand, given ε = 3−k and s > 0, the number of gaps Im

of length ≥ ε equals 2k−1 and for each of them one can find four maps
defined on domains of diameter less than (ε/2k−1)1/s and generating G|Im

(compare Example 2 of Section 2.2). Removing all such gaps we remain
with 2k closed intervals Ki of length ε. The set A = {f |Ki : i = 1, . . . , 2k}
generates G|

⋃
i Ki. It follows that

Hs
ε (G) ≤ 2kεs + 4ε → 0 as k → ∞

for all s > log 2/ log 3. Therefore, dimH G ≤ log 2/ log 3 and finally,

dimH G = log 2/ log 3 and dlH G = 1 − log 2/ log 3.

Clearly, given r ∈ (0, 1), one can modify the example to create a pseudogroup
G on [0, 1] (or on S1) with dlH G = r. Also, it is not difficult to make this
example C∞-differentiable.

3. Invariant measures

3.1. Some existence results. Given a pseudogroup G acting on a compact
space X, M(X,G) denotes the space of all G-invariant Borel probability
measures on X. So, if µ ∈ M(X,G), g ∈ G and A ⊂ Dg is a Borel set, then
µ(g(A)) = µ(A). If H = HT is the holonomy pseudogroup of a foliation
F , then members of M(T,HT ) are called transverse invariant measures (in
the sense of Plante [Pl]). If f : X → X, then M(X, f) denotes the set of
all Borel probability measures on X which are f -invariant in the sense that
µ(f−1A) = µ(A) for any A ⊂ X.

If f : X → X is a homeomorphism, then, by the classical Krylov–
Bogolyubov Theorem ([Wa], p. 152), the space M(X,G(f)) = M(X, f) is
non-empty, compact and convex in M(X), the space of all Borel probability
measures on X. In fact, M(X, f) 6= ∅ for any continuous transformation f of
X, but M(X,G(f)) * M(X, f) for some local homeomorphisms f : X → X.
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In general, the space M(X,G) may be empty. In [Pl], we can find the
following condition sufficient for G to admit non-trivial invariant measures.

Given a finite symmetric generating set A ⊂ G (and x ∈ X) let N(n,A) =
#{g1 ◦ . . . ◦ gn : gi ∈ A} (N(n, x,A) = #{g(x) : g = g1 ◦ . . . ◦ gn, gi ∈ A}).
Then G has non-exponential growth (at x) whenever

lim inf
n→∞

1

n
log N(n,A) = 0

(
lim inf
n→∞

1

n
log N(n, x,A) = 0

)
.

If G has non-exponential growth (at a point x), then there exists

µ ∈ M(X,G) (supported in the closure of G(x), the G-orbit of x).

Another result of this sort can be found in [GLW]:

If the geometric entropy h(F) of a foliation F vanishes, then M(X,H)
6= ∅, H being the holonomy pseudogroup of F .

Recall that h(F) is defined (up to a positive factor) as the entropy h(H)
of its holonomy pseudogroup H generated by the collection H1 of the holon-
omy maps corresponding to the overlapping charts of a fixed nice covering
U , and

h(H) = lim
ε→0

lim sup
n→∞

1

n
log N(n, ε),

where N(n, ε) is the maximal cardinality of (n, ε)-separated subsets Y of
T , the complete transversal of F determined by U ; a set Y is said to be
(n, ε)-separated whenever for any distinct points x and y of Y , there exist
g1, . . . , gn ∈ H1 such that ̺(g(x), g(y)) ≥ ε for g = g1 ◦ . . . ◦ gn. Although
h(F) depends on the choice of a Riemannian structure on M , its vanishing
does not. h(F) = 0 iff F has non-exponential expansion growth in the sense
of [Eg1].

3.2. s-continuous measures. Fix s ≥ 0. A Borel probability measure µ
on a compact metric space X is said to be s-continuous if there exist positive
constants c and ε0 such that

(3.2.1) µ(A) ≤ c(diam A)s

for any Borel set A ⊂ X with diam A ≤ ε0. Clearly, all measures are
0-continuous, and an s-continuous measure is s′-continuous for any s′ < s.
The smallest upper bound of the set of all the exponents s satisfying (3.2.1)
could be considered as the Hausdorff dimension dimH µ of the measure µ.
Obviously, measures with positive Hausdorff dimension have no atoms.

Examples. 1. The Lebesgue measure λ on Rn is n-continuous and has
dimH λ = n.

2. A smooth measure µ = fdV , where dV is the volume form and f ∈
L∞(M), on a compact oriented Riemannian manifold M is n-continuous,
n = dim M . In fact, since M is compact, it has bounded geometry and
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there exists a > 0 such that Vol B(x, r) ≤ arn for all x ∈ M and r > 0.
Therefore, if A ⊂ M , r = diam A and x0 ∈ A, then A ⊂ B(x0, r) and

µ(A) =
\
A

f dV ≤
\

B(x0,r)

f dV ≤ ‖f‖∞arn,

so the inequality (3.2.1) holds with s=n and c=a‖f‖∞. Again, dimH µ=n.
3. If X = X1 × X2 and µ = µ1 × µ2, where µi is a Borel probability

measure on Xi, i = 1, 2, and µ1 is s1-continuous then µ is s1-continuous as
well. In fact, if Y ⊂ X is a Borel set and Yx = {w ∈ X1 : (w, x) ∈ Y },
x ∈ X2, then

µ(Y ) =
\

X2

µ1(Yx) dµ2(x) ≤ c
\

X2

(diam Yx)s1 dµ2(x) ≤ c(diam Y )s1

for a suitable constant c.
In the same way, if both µi’s are (respectively) si-continuous, then µ is

(s1 + s2)-continuous.
4. Let X = {0, 1, . . . , k − 1}Z, k > 1, ̺(x, y) =

∑∞
n=−∞ 2−|n||xn − yn|,

when x = (xn) and y = (yn), and τ : X → X be the two-sided Bernoulli
shift, τ((xn)) = (yn) with yn = xn+1 for all n ∈ Z. Let µ be the unique
τ -invariant measure with maximal entropy: µ([xj , . . . , xj+m−1]) = k−m,
where j ∈ Z, m ∈ N and [xj , . . . , xj+m−1] is the “rectangle” consisting of all
the sequences y = (yn) for which yj = xj , . . . , yj+m−1 = xj+m−1. It is easy
to see that µ is s-continuous with s = dimH(X, ̺) = 2 log k/ log 2.

Note that the situation is quite different for the one-sided shift τ0 : Y →
Y , Y = {0, 1, . . . , k − 1}N, the distance function ̺0 and the τ0-invariant
measure µ0 defined analogously to ̺ and µ above. Here, µ0 is τ0-invariant
in the sense that µ0(τ−1

0 A) = µ0(A) for all A but it is not G(τ0)-invariant:
τ0([x1]) = Y for any x1 ∈ {0, 1, . . . , k − 1}, so µ0(τ0[x1]) 6= µ0([x1]). More-
over, G(τ0) is equivalent to the pseudogroup generated by a system of k
similarities, so dlH G(τ0) = dimH Y = log k/ log 2 (compare Example 3 of
Section 2.2 and Example 2 of Section 3.3).

5. Let (X, ̺) and τ be as in Example 4. Let A = (aij), aij ∈ {0, 1},
i, j = 0, 1, . . . , k − 1, be an irreducible matrix [Ga], XA = {(xn) ∈ X :
axnxn+1

= 1 for all n ∈ Z}, τA = τ |XA and µA be the τA-invariant Parry
measure [Pa] on XA. Then µA is s-continuous with s = 2 log λ/ log 2, λ
being the largest positive eigenvalue of A.

3.3. A loss estimate from above. Again, fix s > 0.

3.3.1. Proposition. If a pseudogroup G acting on a compact space X
admits an s-continuous invariant Borel probability measure µ, then

(3.3.1) dimH G ≥ s and dlH G ≤ dimH X − s.

In other words,
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(3.3.2) dimH G ≥ sup{dimH µ : µ ∈ M(X,G)}

and

(3.3.3) dlH G ≤ inf{dimH X − dimH µ : µ ∈ M(X,G)}.

P r o o f. If ε is small enough and A ∈ AG(ε), then, by (1.1.1) and G-
invariance of µ,

(3.3.4) 1 = µ(X) ≤
∑

g∈A

(µ(Dg) + µ(Rg)) = 2
∑

g∈A

µ(Dg),

and s-continuity of µ implies that

(3.3.5) 1 ≤ 2cHs(A),

where c > 0 satisfies (3.2.1). Consequently, Hs
ε (G) ≥ (2c)−1 > 0 for any

sufficiently small ε > 0 and Hs(G) > 0. This implies (3.3.1).

3.3.2. Corollary. If a pseudogroup G acts on a compact manifold M
and admits a smooth invariant measure, then

(3.3.6) dimH G = dim M and dlH G = 0.

R e m a r k. Inequalities (3.3.4) and (3.3.5) could be replaced by

l(A) =
∑

g∈A

µ(Dg) ≤ cHs(A),

where l(A) is Levitt’s cost of generating. Since l(A) ≥ 1 − e(G), where

e(G) =
T
X

N(x)
−1

dµ(x), N(x) is the cardinality of the G-orbit of x ∈ X and
1/∞ = 0 [Le], we get the inequality

1 − e(G) ≤ cHs(G),

which implies (3.3.1) provided e(G) < 1, i.e. if the set of points fixed under
the action of G has measure strictly less than 1.

Examples. 1. Since any measure is G(idX)-invariant, our proposition
implies that s ≤ dimH X if X admits s-continuous probability measures.

2. The pseudogroup G(τ) generated by the two-sided shift τ discussed
in Example 4 of Section 3.2 satisfies

dlH G(τ) = 0.

Also, by Example 5 of Section 3.2, for any irreducible matrix A with largest
positive eigenvalue λ one has the inequality

dimH G(τA) ≥ 2 log λ/ log 2.

3. For any finitely generated subgroup G of SL(n, Z) one has dlH G = 0,
where G is the pseudogroup of local diffeomorphisms of the n-torus T n

generated by G. In fact, all the elements of G preserve the canonical volume
form on T n.
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4. Any pseudogroup G of local isometries of a Riemannian manifold M
satisfies the equality

dimH G = dim M

since G preserves the volume element on M . Consequently,

dim⋔

H F = codimF

for any Riemannian foliation F . (Note (Section 4.1) that the situation is
more complicated in the case of pseudogroups of local isometries of arbitrary
metric spaces.)

5. The geodesic flow (Xt) of a Riemannian manifold M acts on the unit
tangent bundle SM and preserves the Liouville measure (i.e. the volume
form induced by the Sasaki metric, [Kl], Chapter 3) on SM . Since the cor-
responding vector field X = (dXt/dt)|t=0 has norm one, Xt preserves the
volume element in the bundle T⊥F0, the orthogonal complement in TSM
of the bundle TF0 tangent to the 1-dimensional foliation F0 of SM by the
orbits of (Xt). Therefore, dl⋔H F0 = 0 in this case. A similar result holds for
1-dimensional foliations by the orbits of geodesic flows of transversely mini-
mal foliations F (of arbitrary dimension) of compact Riemannian manifolds.
Such geodesic flows preserve a suitable volume element ([W1], see [W2] for a
slightly more general result). Also, holonomy maps of transversely minimal
foliations F preserve the volume element in the bundle T⊥F , so dl⋔H F = 0
for such F .

4. Further examples

4.1. Local isometries. A pseudogroup G generated by isometries gi :
Di → Ri, i = 1, . . . , N , consists of local isometries: if g ∈ G and x ∈ Dg,
then there exists a neighbourhood U of x such that g|U maps isometrically
U onto g(U). Since G is closed under unions of maps, it can contain maps
which do not map isometrically the whole domains onto the ranges (see
Figure 1, where g rotates the vertical segment on the left and fixes all the
points of the horizontal segment and of the vertical segment on the right).

Fig. 1
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So, in general, the maps of G do not preserve the diameters of subsets of
their domains. However, we have the following.

4.1.1. Lemma. Pseudogroups of local isometries of a space X preserve

all the Hausdorff measures Hs, s > 0, on X.

P r o o f. Since the Hausdorff measures Hs are regular (in the sense of
[Ru]), it is sufficient to show that

(4.1.1) Hs(g(K)) = Hs(K)

whenever g ∈ G and K ⊂ Dg is compact.
To this end, cover K by finitely many subsets U1, . . . , Um of Dg open and

such that g|Ui is an isometry for any i. Let λ be the Lebesgue number of
the covering (Ui) and ε be a positive number less than λ. For any covering
V = {V1, . . . , Vn} of K by sets of diameter less than ε and any j ≤ n there
exists i such that Vj ⊂ Ui. Therefore, g|Vj is an isometry, diam g(Vj) =
diam Vj for any j and Hs(g(V)) = Hs(V). Consequently,

(4.1.2) Hs
ε (g(K)) = Hs

ε (K)

for any ε < λ. Obviously, (4.1.2) implies (4.1.1).

The above lemma together with Propositions 2.1.1 and 3.3.1 implies
directly the following.

4.1.2. Proposition. If s0 = dimH X and the Hausdorff measure Hs0

is non-trivial , finite and s0-continuous, then

(4.1.2) dimH G = dimH X

for any pseudogroup G of local isometries of X.

R e m a r k s. (i) The measure Hn on a compact n-dimensional Rieman-
nian manifold M satisfies the assumptions of Proposition 4.1.2, so the ob-
servations of Example 4 in Section 3.3 follow directly from this proposition.

(ii) Obviously, there exist metric spaces for which the assumptions of
Proposition 4.1.2 are not satisfied. For example, if

X =

∞⋃

n=1

Xn ∪ [0, 1] ⊂ R2,

where Xn is the union of 2n segments of length 2−(n+1) attached to [0, 1]

Fig. 2
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at the point (2−(n−1), 0) (Figure 2), then dimH X = 1 and H1(Xn) ≥
2n−1 diam Xn, so H1 is not 1-continuous. (Moreover, we have H1(Xn) ≥
2s(n−1)(diam Xn)s for any s > 0, so dimH H1 = 0 in this case. Also, it
is easy to modify the example to get a space X with H1(X) < ∞.) This
simple example suggests that calculation of the Hausdorff dimension for
pseudogroups of local isometries of “wild” metric spaces could be rather
difficult.

4.2. Hyperbolic groups. First, let us collect definitions and facts about
hyperbolic metric spaces and hyperbolic groups needed to formulate and
prove the result. In general, we follow the terminology and notation of
[GH1].

A metric space (X, ̺) is δ-hyperbolic (δ ≥ 0) if

(x|y)w ≥ min{(x|z)w, (z|y)w} − δ

for all w, x, y, z ∈ X, where (x|y)w is the Gromov product defined by

(x|y)w = 1
2 (̺(x,w) + ̺(y,w) − ̺(x, y)) .

(X, ̺) is hyperbolic whenever it is δ-hyperbolic for some δ.

A metric space (X, ̺) is geodesic if for any x and y in X there exists
a geodesic segment joining x to y, i.e. a curve c : [0, d] → X such that
d = ̺(x, y), x = c(0), y = c(d) and ̺(c(s), c(t)) = |s − t| for all s and t.
(X, ̺) is proper if all the closed balls in X are compact. By the Hopf–Rinow
Theorem [GLP], a geodesic space is proper iff it is locally compact and
complete.

A finitely generated group Γ is said to be hyperbolic if its Cayley graph
G(Γ, S) with the word metric dS determined by a finite symmetric gener-
ating set S ⊂ Γ is hyperbolic for some (equivalently, any) S. A hyperbolic
group Γ is non-elementary if it is infinite and contains no cyclic subgroups
of finite index. A Cayley graph of any group Γ is geodesic and proper.

Any isometry γ of a hyperbolic geodesic proper metric space (X, ̺) is
either elliptic (when all the orbits of γ are bounded), or hyperbolic (when
all the orbits are quasi-isometric to Z), or parabolic (otherwise).

If (X, ̺) is hyperbolic, geodesic and proper, then ∂X, the boundary of X,
is defined as the space of equivalent quasi-rays, i.e. quasi-isometric maps of
R+ (or Z+) into X. When equipped with a suitable topology and a metric
d, ∂X becomes a compact metric space of finite Hausdorff dimension. A
possible definition for d is

(4.2.1) d(a, b) = inf
{ n−1∑

i=0

̺η(ai, ai+1) : a0, a1, . . . , an ∈ ∂X,

a0 = a, an = b and n ∈ N
}
,
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where

(4.2.2) ̺η(a, b) = exp(−η(a|b))

and

(4.2.3) (a|b) = sup lim inf
i,j→∞

(xi|yj)w

for a, b ∈ ∂X, (xi) and (yj) being sequences of points of X converging,
respectively, to a and b, and w being an arbitrarily fixed base point for all
the Gromov products involved. (In (4.2.1) and (4.2.2), η > 0 is an arbitrarily
fixed constant.)

Any isometry γ of X extends uniquely to a quasi-isometry (denoted again
by γ) of ∂X. An isometry γ is hyperbolic iff γ : ∂X → ∂X has exactly two
fixed points a1 and a2 such that ∂X \{ai} can be equipped with a complete
metric dγ , compatible with the topology of ∂X and such that

(4.2.4) dγ(γ(b1), γ(b2)) = Φai
(γ)dγ(b1, b2),

where

(4.2.5) Φai
(γ) = lim

n→±∞

(
d(γnb1, γ

nb2)

d(b1, b2)

)1/n

(b1, b2 ∈ ∂X \{ai}, b1 6= b2)

is the force of γ at ai. Note that Φai
(γ) 6= 1 and Φa1

(γ) < 1 whenever
Φa2

(γ) > 1. Moreover, if Ui, i = 1, 2, are arbitrary open neighbourhoods of
ai in ∂X and, for instance, Φa1

(γ) < 1, then there exists n0 ∈ N such that

(4.2.6) γn(∂X \ U1) ⊂ U2 and γ−n(∂X \ U2) ⊂ U1

for all n ≥ n0.

Any group Γ acts isometrically on its Cayley graph by left (or right)
translations. If Γ is hyperbolic and non-elementary, its element γ is elliptic
iff it is of finite order. There are no parabolic elements of Γ while hyperbolic
elements have to exist.

Now, let Γ be a finitely generated group of isometries of a hyperbolic
geodesic proper metric space (X, ̺). Assume that Γ admits a finite gener-
ating set S = {γ0, γ1, . . . , γN} containing a hyperbolic isometry γ0.

Let a, b ∈ ∂X be fixed points of γ0 such that Φa(γ0) < 1 and Φb(γ0) > 1.
Fix ε > 0 and let U = B(a, ε/2) and V = B(b, ε/2) be open balls in (∂X, d)
centred at a and b, respectively. Assume that ε is small enough to have
U ∩ V = ∅. By (4.2.6), we can choose n0 ∈ N such that γn

0 (∂X \ U) ⊂ V
and γ−n

0 (∂X \ V ) ⊂ U for any n ≥ n0. Fix n ≥ n0 and let

A = {γn
0 |U, γn+1

0 |U, γ−n
0 |V, γ

−(n+1)
0 |V }

∪ {γi ◦ γn
0 |U, γi ◦ γ−n

0 |V : i = 1, . . . ,N}.
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Let G(Γ ) be the pseudogroup generated by Γ on ∂X. The set A generates
G(Γ ),

Hs
ε (G(Γ )) ≤ (4 + 2N)εs and Hs(G(Γ )) = 0

for all s > 0 and ε > 0 small enough. In this way we proved the following.

4.2.1. Proposition. If a group Γ of isometries of a hyperbolic geodesic

proper metric space (X, ̺) contains a hyperbolic element , then

(4.2.7) dimH G(Γ ) = 0 and dlH G(Γ ) = dimH ∂X < ∞.

4.2.2. Corollary. Equalities (4.2.7) hold for any non-elementary

hyperbolic group Γ .

R e m a r k. Non-elementary hyperbolic groups provide more contraction
(or expansion) than needed to get (4.2.7). In fact, we have the following.

4.2.3. Proposition. Any non-elementary hyperbolic group Γ admits a

finite generating set consisting of hyperbolic elements only.

P r o o f. Let S = {g1, . . . , gN} be any symmetric set generating Γ . De-
note by dS the word metric in the Cayley graph X = G(Γ, S) and let
|g| = dS(e, g) be the corresponding norm of g ∈ Γ .

Take a hyperbolic element h of Γ and let

(4.2.8) L(h) = lim
n→∞

1

n
|hn|.

(Note that since |hm+n| ≤ |hm| + |hn|, the limit in (4.2.8) exists by an
elementary argument which can be found, for example, in [Wa], Thm. 4.9.)
Obviously,

(4.2.9) L(h) > 0, L(ghg−1) = L(h) and L(hk) = |k|L(h)

for any k ∈ Z and g ∈ Γ .
Moreover, up to a constant factor which depends only on the choice of

a metric on ∂X, L(h) equals log Φa(h), where a ∈ ∂X is a point fixed by
h. In fact, there exist points bn and b′n (n ∈ N) such that |bn| = |b′n| = n
and (bn|b

′
n)e = 0 for all n. Let b = limn→∞ bn and b′ = limn→∞ b′n. Then

b, b′ ∈ ∂X and b 6= b′ so, without loosing generality, we may assume that
b 6= a 6= b′. For all m and n we have (hmbn|h

mb′n)e = 2|hm|, so if the metric
d on ∂X is given by (4.2.1)–(4.2.3), then d(b, b′) = 1 and

log Φa(h) = lim
m→∞

1

m
log d(hmb, hmb′)(4.2.10)

= lim
m→∞

−2η|hm|

m
= −2ηL(h).

Take k ∈ N and let h0 = hk. Let A = {h0, g1h0, . . . , gNh0}. Obviously,
A generates Γ . If k and R > 0 are large enough, and 1 ≤ i ≤ N , then—
by (4.2.4), (4.2.9) and (4.2.10)—one of the maps gih0, (gih0)−1 contracts
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Bj = B(aj , R), j = 1, 2, into itself, a1, a2 ∈ ∂X being the points fixed by h.
By the completeness argument, each of the maps gih0, i = 1, . . . ,N , admits
exactly two fixed points ai

1, a
i
2 ∈ ∂X. By the classification of elements of Γ ,

gih0 is hyperbolic for any i.

4.3. Rational maps. Let J be the Julia set of a rational map f : C → C.
Assume that f has no critical points on J . Since J is f -invariant, f |J
induces a pseudogroup on J .

4.3.1. Proposition. dimH G(f |J) = 0.

P r o o f. Recall (see, for example, [Be], Section 6.9) that J can be defined
as the closure of the set of all the repelling periodic points of f . For any
repelling periodic point x ∈ J choose a disc D(x) centred at x and such
that fn(x) is conjugate to λ(x) · id, where n(x) is the period of x and λ(x) =
(fn(x))′(x). Cover J by finitely many discs D(x1), . . . ,D(xN ) and put m =
n(x1) · . . . · n(xN ). Then F = fm fixes all the points xj .

Take positive numbers s and ε, and exponents kj , j = 1, . . . ,N , such
that D(xj) ⊂ F kj (D(xj , ε/2)). The maps

F kj |D(xj , ε/2) ∩ J, F kj+1|D(xj , ε/2) ∩ J, j = 1, . . . ,N,

generate the pseudogroup G(F |J). It follows that Hs
ε (G(F |J)) ≤ 2Nεs,

Hs(G(F |J)) = 0 and dimH G(F |J) = 0.
Since G(F |J) is a subpseudogroup of G(f |J), the statement follows from

Proposition 2.3.1.

Note that dimH J ≥ log d/ log K0 > 0, where d is the degree of f and
K0 = maxJ |f ′| ([Be], Section 10.3). Therefore, dlH(f |J) > 0.

4.4. Attractors. Let G be, as usual, a pseudogroup acting on X. An
attractor for G is a compact set K such that

(4.4.1) K ⊂ Dg, Rg ⊂ Dg and
⋂

n≥0

gn(Dg) = K

for some g ∈ G. Let GK be the set of all g ∈ G which satisfy (4.4.1).
Obviously, gn ∈ GK for any n ∈ N and g ∈ GK .

The family DK ={Dg :g∈GK} is partially ordered by inclusion. Unions
of ordered subfamilies of DK are called basins of attraction of K. Note that
for any basin of attraction B and any x ∈ B there exist g ∈ GK , y ∈ K and
mn ∈ N such that mn → ∞ and gmn(x) → y as n → ∞. In other words,
any x ∈ B admits g ∈ GK such that its ω-limit set ωg(x) is contained in K.

4.4.1. Proposition. If K1,. . . ,Km are attractors for G and B1,. . . , Bm

are their basins of attraction, then

(4.4.2) dimH G ≤ dimH

( m⋃

i=1

Ki ∪
(
X \

m⋃

i=1

Bi

))
.
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P r o o f. Let Y =
⋃

Ki ∪ (X \
⋃

Bi). Take s > dimH Y , ε > 0, η > 0 and
a finite open covering U of Y by sets of diameter less than ε and such that
Hs(U) < η. Also, fix a finite set A0 generating G.

For any j ≤ m there exists gj ∈ GKj
such that Bj \

⋃
U ⊂ Dgj

and
Rgj

⊂
⋃

U . Put

A = {h|U, h ◦ g−1
j |U, g−1

j |U : h ∈ A0, U ∈ U , j ≤ m}.

Clearly, the maps of A generate G and

Hs(A) ≤ (2m + 1) · #A0 · Hs(U) < (2m + 1)η · #A0.

Therefore, Hs
ε (G) = 0, Hs(G) = 0 and dimH G ≤ dimH Y .

4.5. Smale horseshoe. Let f : S2 → S2 be the “horseshoe” described in
[Sm], Section I.5. The non-wandering set Ω of f consists of two isolated fixed
points, one of them, say p0, contracting, the other one, say q0, expanding,
and of a compact hyperbolic invariant set Λ with periodic points dense in it.

4.5.1. Proposition. dimH G(f) = dimH Λ.

P r o o f. Take s, η and ε > 0, two neighbourhoods V0 ∋ p0 and W0 ∋ q0 of
diameter less than ε and a finite open covering U = {U1, . . . , Um} of Λ such
that diam Ui < ε and Hs(U) < Hs

ε (Λ) + η. Since f is uniformly hyperbolic
on Λ, there exists N ∈ N such that

f−N(V0) ∪ fN (W0) ∪
m⋃

i=1

(FN (Ui) ∪ f−N(Ui)) = S2.

For this N , the maps f−N |V0, f
−(N−1)|V0, f

N |W0, f
N+1|W0, f

N |Ui, f
−N |Ui,

fN+1|Ui, f
−(N−1)|Ui, i = 1, . . . ,m, generate G(f). Therefore,

Hs
ε (G(f)) ≤ 4εs + 4Hs(U) < 4(εs + Hs

ε (Λ) + η),

Hs
ε (G(f)) ≤ 4(εs + Hs

ε (Λ)), Hs(G(f)) ≤ 4Hs(Λ)

and

(4.5.1) dimH G(f) ≤ dimH Λ.

On the other hand, by Proposition 2.4.1,

(4.5.2) dimH G(f) ≥ dimH G(f |Λ).

Now f |Λ is topologically conjugate to the two-sided shift on X = {0, 1, . . .
. . . , k − 1}Z (for a suitable k which depends on how many times the “horse-
shoe” intersects the original square Q involved in the construction of f).
Moreover, X can be equipped with a metric ̺ for which dimH X = dimH Λ
and the conjugation becomes Lipschitz. (Here, Λ is equipped with the
metric induced from the standard Riemannian structure on S2.) Also,
as in Example 4 of Section 3.2, X admits an f -invariant measure µ with
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dimH µ = dimH Λ. By Propositions 2.1.1, 2.3.2 and 3.3.1,

(4.5.3) dimH G(f |Λ) = dimH Λ.

Comparing (4.5.1)–(4.5.3) ends the proof.

R e m a r k. Takashi Inaba brought to our attention the following: The
argument similar to that of the first part of the proof of Proposition 4.5.1
shows that

(4.5.4) dimH G(f) = 0

when f is a Morse–Smale diffeomorphism of a compact manifold M .

5. Final remarks. 1. A similar notion of a dimension loss could be ob-
tained by replacing dimH G by other Hausdorff-like dimensions constructed
for a pseudogroup G by following the definitions of the packing dimension
[TT], entropy dimensions [Ed], entropy indices (called also box-counting di-
mensions [Fa] or fractal dimensions [Ba]), and others. It is an open question
which of the notions obtained this way serves best to describe the dynamics
of a pseudogroup action.

2. It would be interesting to establish some relations between the di-
mension loss and other invariants (entropy or expansion growth, for in-
stance) describing the dynamics of pseudogroup actions. Since h(F) = 0
and dl⋔H F = 1 for the Reeb foliation while h(Xt) > 0 and dl⋔H F0 = 0 for the
geodesic flow (Xt) of a compact negatively curved Riemannian manifold M
and the one-dimensional foliation F0 by the orbits of this flow, one should
look for some conditions which would imply relations between the geometric
entropy and dimension loss.

3. In various situations, maps and foliations with some singularities are
of great interest. (For example, rational maps of C of positive degree always
have isolated critical points.) Therefore, one could try to generalize the
notion of dimH to systems with some (say, isolated) singularities. If the
singular set Σ ⊂ X is invariant, the simplest idea is to replace X by X \ Σ
and to modify the definitions of Section 2.1 by admitting countably infinite
generating sets.

4. The most classical Anosov systems, geodesic flows of negatively curved
Riemannian manifolds and linear maps of tori corresponding to hyperbolic
matrices of SL(n, Z), preserve smooth measures, so the dimension loss of
the pseudogroups generated by them vanishes. However, there are plenty of
Anosov systems which do not admit smooth invariant measures and which
are not Lipschitz equivalent to the systems mentioned above. It would
be interesting to study (either estimate or calculate) dimH and dlH of the
pseudogroups generated by such systems.



Losing Hausdorff dimension 235

The more general case of the pseudogroup generated by a single Axiom
A (with the transversality condition, if necessary) diffeomorphism should be
even more interesting. For example, one could ask if (or when)

dimH G(f) = dimH G(f |Ω)

or

dimH G(f) = dimH Ω,

where Ω is the non-wandering set of such a diffeomorphism f .
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26 (1993), 489–516.

[C1] J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic
groups, Geom. Dedicata 16 (1984), 123–148.

[C2] —, The theory of negatively curved spaces and groups, in: Ergodic Theory, Sym-
bolic Dynamics and Hyperbolic Spaces, T. Bedford, M. Keane and C. Series
(eds.), Oxford Univ. Press, Oxford, 1991, 315–369.

[CC] J. Cantwel l and L. Conlon, Foliations and subshifts, Tôhoku Math. J. 40
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