Transverse Hausdorff dimension of codim-1 C²-foliations

by

Takashi Inaba (Chiba) and Paweł Walczak (Łódź)

Abstract. The Hausdorff dimension of the holonomy pseudogroup of a codimensionone foliation \mathcal{F} is shown to coincide with the Hausdorff dimension of the space of compact leaves (traced on a complete transversal) when \mathcal{F} is non-minimal, and to be equal to zero when \mathcal{F} is minimal with non-trivial leaf holonomy.

1. Introduction. In [Wa], the second author introduced the notion of a Hausdorff dimension $\dim_{\mathrm{H}} \mathcal{G}$ for finitely generated locally Lipschitz pseudogroups \mathcal{G} acting on compact metric spaces X. Recall that

(1)
$$\dim_{\mathrm{H}} \mathcal{G} = \inf\{s > 0 : H^{s}(\mathcal{G}) = 0\} = \sup\{s > 0 : H^{s}(\mathcal{G}) = \infty\},\$$

where

(2)
$$H^{s}(\mathcal{G}) = \lim_{\varepsilon \to 0} H^{s}_{\varepsilon}(\mathcal{G}),$$

(3)
$$H^s_{\varepsilon}(\mathcal{G}) = \inf\{H_s(A) : A \in \mathcal{A}(\varepsilon)\},\$$

(4)
$$H_s(A) = \sum_{g \in A} (\operatorname{diam} D_g)^s,$$

 D_g stands for the domain of the map $g \in \mathcal{G}$ and $\mathcal{A}(\varepsilon)$ denotes the family of all finite sets generating \mathcal{G} and consisting of maps with domains of diameter less than ε .

Note that our definitions are analogous to those involved in defining the Hausdorff dimension of metric spaces (see [Ed], for example). In particular,

(5)
$$\dim_{\mathrm{H}} X = \dim_{\mathrm{H}} \mathcal{G}(\mathrm{id}_X),$$

where $\mathcal{G}(f_1, \ldots, f_n)$ is the pseudogroup generated by the maps f_1, \ldots, f_n . The dimension dim_H has the following properties (see [Wa]):

(i) $\dim_{\mathrm{H}} \mathcal{G} \leq \dim_{\mathrm{H}} X$,

¹⁹⁹¹ Mathematics Subject Classification: Primary 57R30.

The second author was partially supported by the KBN grant no $2\mathrm{P30103604}.$

^[239]

(ii) $\dim_{\mathrm{H}} \mathcal{G}_1 = \dim_{\mathrm{H}} \mathcal{G}_2$ when the pseudogroups \mathcal{G}_1 and \mathcal{G}_2 are Lipschitz equivalent,

(iii) $\dim_{\mathrm{H}} \mathcal{G}' \geq \dim_{\mathrm{H}} \mathcal{G}$ when \mathcal{G}' is a subpseudogroup of \mathcal{G} ,

(iv) $\dim_{\mathrm{H}}(\mathcal{G}|Y) \leq \dim_{\mathrm{H}} \mathcal{G}$ when Y is a closed \mathcal{G} -invariant subset of X and $\mathcal{G}|Y$ denotes the pseudogroup generated by the maps $g|Y, g \in \mathcal{G}$,

(v) $\dim_{\mathrm{H}} \mathcal{G} \geq s$ if \mathcal{G} preserves a Borel probability measure μ on X which is s-continuous, i.e. satisfies the condition

(6)
$$\mu(Z) \le c (\operatorname{diam} Z)^s$$

for all Borel subsets Z of X and a positive constant c independent of Z,

(vi) $\dim_{\mathrm{H}} \mathcal{G} = \dim_{\mathrm{H}} X$ when X is a Riemannian manifold and \mathcal{G} a pseudogroup of local isometries of X.

Property (ii) implies that the Hausdorff dimension of the holonomy pseudogroup \mathcal{H}_T of a C¹-foliation \mathcal{F} of a compact manifold M is independent of the choice of a compact complete transversal T. Therefore, the *transverse* Hausdorff dimension dim_H^{\pitchfork} \mathcal{F} of \mathcal{F} can be defined by

(7)
$$\dim_{\mathrm{H}}^{\wedge} \mathcal{F} = \dim_{\mathrm{H}} \mathcal{H}_{T},$$

T being any transversal as above.

In this article, we compute the transverse Hausdorff dimension for codimension-one C^2 -foliations of compact manifolds (Section 2) and collect some examples which show that the assumptions of our Theorem are essential (Section 3).

2. Main results. Let \mathcal{F} be a transversely oriented codimension-1 C²-foliation of a compact manifold M.

THEOREM. (i) If \mathcal{F} is not minimal, then $\dim_{\mathrm{H}}^{\uparrow} \mathcal{F} = \dim_{\mathrm{H}}(T \cap C(\mathcal{F}))$, where T is a compact complete transversal and $C(\mathcal{F})$ is the union of all the compact leaves.

(ii) If \mathcal{F} is minimal and has non-trivial holonomy, then $\dim_{\mathrm{H}}^{\uparrow} \mathcal{F} = 0$.

Let us explain that \mathcal{F} is minimal if its leaves are dense in M; its holonomy is non-trivial when the germ holonomy group of some leaf L is non-trivial.

Proof. (i) The inequality

$$\dim_{\mathrm{H}}^{\wedge} \mathcal{F} \ge \dim_{\mathrm{H}} (T \cap C(\mathcal{F}))$$

follows directly from Property (iv) (Section 1) and the fact that the holonomy of $\mathcal{F}|C(\mathcal{F})$ is trivial.

To prove the converse, fix $s > \dim_{\mathrm{H}}(T \cap C(\mathcal{F})), \eta > 0$ and $\varepsilon > 0$. Observe that the center $Z(\mathcal{F}) = C(\mathcal{F}) \cup E_1 \cup \ldots \cup E_m$ is compact and contains finitely many exceptional minimal sets E_i ([La], [HH], etc.). Moreover, every leaf Lof \mathcal{F} satisfies $\overline{L} \cap Z(\mathcal{F}) \neq \emptyset$. First, the Sacksteder Theorem [Sa] allows us to choose points $x_i \in T \cap E_i$ (i = 1, ..., m) and holonomy maps h_i contracting some neighbourhoods $J_i \subset T$ of x_i .

Next, since $C(\mathcal{F})$ is compact, we can cover it by a finite number of mutually disjoint foliated *I*-bundles (possibly reducing to single isolated leaves) C_1, \ldots, C_n bounded by closed semi-isolated leaves L_i^+ and L_i^- . Let $I_j = [x_j, y_j] \subset T, j = 1, \ldots, n$, be the fibres of C_j . Extend each of the intervals I_j slightly to get larger intervals $I'_j = [x'_j, y'_j]$ such that the segments $[x'_j, x_j]$ and $[y_j, y'_j]$ are attracted to x_j and y_j by the global holonomy groups Γ_j of the foliated bundles $\mathcal{F}|C_j$. More precisely, for any $j = 1, \ldots, n$ and $\delta > 0$ there should exist $h, h' \in \Gamma_j$ which extend to holonomy maps (denoted by h and h' again) defined on I'_j and bringing x'_j (resp., y'_j) to within distance δ of x_j (resp., y_j).

Set

$$T' = \bigcup_{i=1}^m J_i \cup \bigcup_{j=1}^n I''_j,$$

where $I''_j = [x''_j, y''_j]$ for some $x''_j \in (x'_j, x_j)$ and $y''_j \in (y_j, y'_j)$ such that the intervals J_i and I''_j remain mutually disjoint. Obviously, T' is a complete transversal for \mathcal{F} .

For any j, fix a finite symmetric set Γ_j^0 generating Γ_j . Shrinking the intervals I'_j if necessary we may assume that all the maps of Γ_j^0 extend to holonomy maps defined on I'_j . Let \mathcal{H}' be the subpseudogroup of $\mathcal{H}_{T'}$ generated by the contractions h_i , $i = 1, \ldots, m$, and the (extended to I''_j) holonomy maps of Γ_j^0 , $j = 1, \ldots, n$.

Now, cover $T' \cap C(\mathcal{F})$ by intervals K_1, \ldots, K_N with endpoints in $C(\mathcal{F})$ and lengths $l(K_i) < \varepsilon$, and such that

$$\sum_{i} l(K_i)^s < \eta.$$

(This is possible since $s > \dim_{\mathrm{H}}(T' \cap C(\mathcal{F}))$.)

Put $\delta = \frac{1}{2} \varepsilon \min\{1, l(K_1), \ldots, l(K_N)\}$. For any j choose holonomy maps $f_j, f'_j \in \Gamma_j$ which extend to I'_j and bring x'_j (resp., y'_j) to within distance δ of x_j (resp., y_j). Also, for any gap (i.e., a connected component) U = (a, b) of $I_j \setminus \bigcup_i K_i$ choose points $c, d \in U, c < d$, and holonomy maps $f_U, f'_U \in \Gamma_j$ which bring c (resp., d) to within distance δ of b (resp., a).

Now, if $K_i = [\alpha, \beta] \subset (x_j, y_j)$, take the gaps U and U' for which $\alpha \in \overline{U}$ and $\beta \in \overline{U}'$ and let

$$A_{i} = \{g | K2_{i}, g \circ f_{U}^{-1} | V, g \circ (f_{U'}^{\prime})^{-1} | V' : g \in \Gamma_{i}^{0} \},\$$

where V and V' are the δ -neighbourhoods of α and β , respectively. If $K_i =$

 $[x_j,\beta] \subset I_j$, choose $U', f'_{U'}$ and V' as before, and let

$$A_i = \{g | K2_i, g \circ (f'_{U'})^{-1} | V', g \circ f_j^{-1} | W_j : g \in \Gamma_j^0 \}$$

where W_j is the δ -neighbourhood of x_j . Define A_i similarly in the case when $K_i = [\alpha, y_j]$.

Finally, for any i = 1, ..., m choose an exponent $n_i \in \mathbb{N}$ such that the image of J_i under $h_i^{n_i}$ has diameter less than ε and let

$$A = \{h_1^{-n_1}, h_1^{-(n_1+1)}, \dots, h_m^{-n_m}, h_m^{-(n_m+1)}\} \cup A_1 \cup \dots \cup A_N.$$

The set A generates \mathcal{H}' , the diameters of the domains of maps in A are bounded by ε and

$$H^s_{\varepsilon}(\mathcal{H}') \le H_s(A) \le 2m\varepsilon^s + \max_j \#\Gamma^0_j \cdot (1+2\varepsilon^s)\eta.$$

Consequently, $H^{s}(\mathcal{H}') < \infty$, $s \geq \dim_{\mathrm{H}} \mathcal{H}'$ and $\dim_{\mathrm{H}} \mathcal{H}' \leq \dim_{\mathrm{H}} (T \cap C(\mathcal{F}))$. Moreover, by Property (iii), $\dim_{\mathrm{H}}^{\oplus} \mathcal{F} = \dim_{\mathrm{H}} \mathcal{H}_{T'} \leq \dim_{\mathrm{H}} \mathcal{H}'$.

(ii) The proof is essentially the same. One has to take as T' any segment transverse to \mathcal{F} and short enough to be attracted to a point x_0 by the holonomy of the leaf L_{x_0} . For any symmetric set A_0 generating $\mathcal{H}_{T'}$ and two holonomy maps h_1 and h_2 attracting the endpoints of T' to within distance ε of x_0 and satisfying the condition diam $R_{h_i} < 2\varepsilon$, the set

$$\{g \circ h_1^{-1}, g \circ h_2^{-1} : g \in A_0\}$$

generates $\mathcal{H}_{T'}$ and satisfies the inequality

$$H_s(A) \le \#A_0 \cdot (2\varepsilon)^s$$

for any s and $\varepsilon > 0$.

3. Examples. First, we will discuss the case of minimal foliations without holonomy.

EXAMPLE 1. If \mathcal{F} is the suspension of an irrational rotation of S^1 , then \mathcal{F} is a Riemannian foliation of the 2-dimensional torus T^2 and therefore (Property (vi) of Section 1) $\dim_{\mathrm{H}}^{\oplus} \mathcal{F} = 1$. Obviously, \mathcal{F} is minimal and has no holonomy.

EXAMPLE 2. In [Ar], one can find a construction of a sequence (f_k) of analytic diffeomorphisms of S^1 with the following properties:

(1) $|f_k(z) - f_{k+1}(z)| < \delta_k$,

(2) the rotation numbers $\rho(f_k)$ are rational, $\rho(f_k) = p_k/q_k$, and satisfy the inequalities

$$\left|\frac{p_k}{q_k} - \frac{p_{k+1}}{q_{k+1}}\right| < \frac{1}{(k-1)^2 (\max_{l < k} q_l)^2},$$

(3) any map f_k is forward semi-stable and has a unique cycle $z_{k,1}, \ldots, z_{k,q_k}$ (of length q_k),

(4) there exist exponents $N(k) \in \mathbb{N}$ such that

$$f_k^{N(k)}(S^1 \setminus U_k) \subset U_k,$$

where $U_k = U_k^1 \cup \ldots \cup U_k^{q_k}$ and U_k^j is the ε_k -neighbourhood of $z_{k,j}$.

In the above, (δ_k) and (ε_k) are sequences of positive numbers converging to 0 sufficiently fast as $k \to \infty$, so we may assume that

(8)
$$\varepsilon_k \le q_k^{-1/s_k},$$

where s_k is an *a priori* given sequence of positive reals converging to 0.

From properties (1)–(4) above it follows that the limit $f = \lim_{k\to\infty} f_k$ exists, is analytic and has an irrational rotation number $\varrho(f)$. Therefore, the suspension \mathcal{F} of f provides us with an analytic minimal foliation without holonomy. Its holonomy pseudogroup is isomorphic to $\mathcal{G} = \mathcal{G}(f)$, the pseudogroup of local diffeomorphisms of S^1 generated by f. Lemma γ of [Ar] shows that if δ_k 's are small enough, then

(9)
$$f^{N(k)}(S^1 \setminus \widetilde{U}_k) \subset \widetilde{U}_k, \quad k = 1, 2, \dots,$$

where $\widetilde{U}_k = \bigcup_j \widetilde{U}_k^j$ and \widetilde{U}_k^j is the ε_k -neighbourhood of U_k^j , $j = 1, \ldots, q_k$. From (9) it follows that each of the sets

$$A_k = \{ f^{-N(k)} | \widetilde{U}_k^j, f^{-(N(k)+1)} | \widetilde{U}_k^j, f | \widetilde{U}_k^j : j = 1, \dots, q_k \}, \quad k = 1, 2, \dots,$$

generates \mathcal{G} . Obviously, $A_k \in \mathcal{A}(4\varepsilon_k)$ and $H_{s_k}(A_k) = 3q_k(4\varepsilon_k)^{s_k}$. From (8) it follows that for any $k > k_0$ $(k_0 \in \mathbb{N})$ we have

$$H_{4\varepsilon_k}^{s_{k_0}} \le 3q_k (4\varepsilon_k)^{s_{k_0}} \le 3 \cdot 4^{s_{k_0}}.$$

Consequently, $H^{s_{k_0}}(\mathcal{G}) < \infty$ and $\dim_{\mathrm{H}} \mathcal{G} \leq s_{k_0}$ for any k_0 . Finally,

$$\dim_{\mathrm{H}}^{\wedge} \mathcal{F} = \dim_{\mathrm{H}} \mathcal{G} = 0.$$

Examples 1 and 2 provide minimal foliations without holonomy with transverse Hausdorff dimension equal to, respectively, 0 and 1. It seems to us that Arnold's construction cannot be modified to get a similar foliation with $\dim_{\mathrm{H}}^{\uparrow} \in (0, 1)$. So, one could search either for other examples of this sort or for the proof of the following: If \mathcal{F} is minimal, C²-differentiable and has no holonomy, then either $\dim_{\mathrm{H}}^{\uparrow} \mathcal{F} = 0$ or $\dim_{\mathrm{H}}^{\uparrow} \mathcal{F} = 1$.

The following example shows that the assumption of C^2 -differentiability in our Theorem is essential.

EXAMPLE 3. Let $f: S^1 \to S^1$ be the classical Denjoy C¹-diffeomorphism constructed as in, for instance, [Ta]. Then S^1 contains a minimal closed invariant set X such that f|X preserves the 1-dimensional Lebesgue measure λ (f' = 1 on X) and $\lambda(X) > 0$. Moreover, λ is 1-continuous, and therefore, by Properties (iv) and (v) of Section 1, we get

 $1 \ge \dim_{\mathrm{H}} \mathcal{G}(f) \ge \dim_{\mathrm{H}} \mathcal{G}(f|X_0) \ge \dim_{\mathrm{H}} X_0 = 1.$

Suspending f we arrive at a non-minimal C¹-foliation \mathcal{F} which has no compact leaves but has transverse Hausdorff dimension 1.

Remark. The arguments in Example 3 do not work when $\lambda(X) = 0$, X being the minimal set of a Denjoy diffeomorphism f. Examples of such diffeomorphisms are provided in [He], Section X.3. It would be interesting to calculate (or estimate) dim_H $\mathcal{G}(f)$ for such an f. Is it possible to find a Denjoy diffeomorphism f for which $0 < \dim_{\mathrm{H}} \mathcal{G}(f) < 1$?

References

- [Ar] V. I. Arnold, Small denominators. I. Mappings of the circumference onto itself, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1962), 21–86 (in Russian); English transl.: Amer. Math. Soc. Transl. 46 (1965), 213–284.
- [Ed] G. A. Edgar, Measure, Topology and Fractal Geometry, Undergrad. Texts in Math., Springer, New York, 1990.
- [HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part B, Vieweg, Braunschweig, 1983.
- [He] M. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Publ. Math. IHES 49 (1979), 1–233.
- [La] C. Lamoureux, Quelques conditions d'existence de feuilles compactes, Ann. Inst. Fourier (Grenoble) 24 (4) (1974), 229–240.
- [Sa] R. Sacksteder, Foliations and pseudogroups, Amer. J. Math. 87 (1965), 79-102.
- [Ta] I. Tamura, Topology of Foliations: An Introduction, Amer. Math. Soc., Providence, 1992.
- [Wa] P. Walczak, Losing Hausdorff dimension while generating pseudogroups, this issue, 211–237.

Department of Mathematics and Informatics Chiba University Chiba, Japan E-mail: inaba@math.s.chiba-u.ac.jp Department of Mathematics Lódź University Banacha 22 90-238 Łódź, Poland E-mail: pawelwal@krysia.uni.lodz.pl

> Received 28 February 1995; in revised form 16 October 1995