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A dimension raising hereditary shape equivalence

by

Jan J. D i j k s t r a (Tuscaloosa, Ala.)

Abstract. We construct a hereditary shape equivalence that raises transfinite induc-
tive dimension from ω to ω + 1. This shows that ind and Ind do not admit a geometric
characterisation in the spirit of Alexandroff’s Essential Mapping Theorem, answering a
question asked by R. Pol.

1. Introduction. Every space in this paper is assumed to be separable
and metric. A continuous function is called a map. Compactness is assumed
for the results quoted in the introduction.

Consider the following beautiful (and powerful) geometric characterisa-
tion of topological dimension (Alexandroff [1]):

Theorem 1.1. A compact space has dimension at least n if and only if
the space has an essential mapping into the n-cell In.

A map f : X → In is essential if every continuous extension g : X → In

of f |f−1(∂In) is surjective. D. W. Henderson [13] has attempted to extend
this result to transfinite dimension. He constructed a transfinite sequence of
compact ARs Jα with closed subsets ∂Jα and he proved that if a space has
an essential map onto Jα then IndX ≥ α. Unfortunately, the converse of
this statement turned out to be false (Pol [17, 18], Borst and Dijkstra [5]).

However, as Pol observed in [17, 18], these results leave open the question
whether there exists a characterisation of transfinite inductive dimension in
the spirit of Alexandroff’s Theorem (by making a different choice for the
Jα’s). Our aim is to show that such a geometric characterisation for ind or
Ind cannot exist, solving a problem formulated by Pol in [18, Remark 2.4.b].
A pair (M,S) consisting of an ANR M and a closed subset S is called an
AH-pair . A map f : X →M is called essential if every continuous extension
g : X →M of f |f−1(S) is surjective. We prove
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Theorem 1.2. There exist compact ARs X and Y with the properties:
indX = IndX = ω, indY = IndY = ω + 1, and for every AH-pair (M,S)
the space X has an essential map onto M if and only if Y has such a map.

Returning to the Jα’s, they do correspond to a dimension function. Borst
[4, Theorem 4.2.1] constructed a transfinite extension of the covering di-
mension and showed that dimX ≥ α precisely if X × C has an essential
map onto Jα, where C is the Cantor set. Since Pol’s index equals ωdim ([4,
Theorem 3.3.8]) Borst’s result produces also an essential mapping charac-
terisation for index.

The means by which we reach Theorem 1.2 is through the construction
of a dimension raising cell-like map, which is of interest in its own right.
It was shown by Dranishnikov [9] that there exist cell-like images of finite-
dimensional spaces that fail to be countably dimensional. We, however, are
interested in the more restrictive concept of a hereditary shape equivalence.

It is a well-known corollary of Theorem 1.1 that hereditary shape equiva-
lences do not raise finite dimension (cf. Lemma 2.1). For infinite-dimensional
spaces the following is known: hereditary shape equivalences preserve weak
infinite dimensionality (because a strongly infinite-dimensional space is a
space with an essential map onto the Hilbert cube) and the property C (van
Mill and Mogilski [16], Ancel [3]), but they do not preserve strong countable
dimensionality (Dijkstra, van Mill, and Mogilski [6]). In addition, it follows
from the aforementioned characterisations of index and dim in terms of es-
sential maps that the values of these dimension functions cannot be raised
by hereditary shape equivalences (cf. Lemma 2.1).

We present the following result that shows that hereditary shape equiv-
alences (or fine homotopy equivalences) can raise both small and large in-
ductive dimension.

Theorem 1.3. There exists an AR-map H : X → Y , where X and Y are
compact ARs with indX = IndX = ω and indY = IndY = ω + 1.

The main unsolved problem in this area remains whether countable di-
mensionality is preserved by hereditary shape equivalences. Theorem 1.3
is connected to this problem in the sense that the existence of ind rais-
ing hereditary shape equivalences is a necessary condition for the failure of
countable dimensionality to be preserved under such maps (Dijkstra, van
Mill and Mogilski [6]).

The results in this paper were announced in [7].

2. Definitions and preliminaries. A space is called countably dimen-
sional if it is a countable union of finite-dimensional spaces. If α is a count-
able ordinal (α < ω1), then indX ≤ α if every point in X has arbitrarily
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small neighbourhoods U such that ind Bd(U) < α. IndX ≤ α if every pair
of disjoint closed subsets of X has a closed separator S with IndS < α.

We know that ind and Ind coincide for finite-dimensional spaces and that
indX ≤ IndX in general. It was proved by Hurewicz [14] and Smirnov [19]
that if X is a compactum then X is countably dimensional if and only if
indX < ω1 if and only if IndX < ω1.

A proper surjection f : X → Y is called a shape equivalence if for every
ANR Z the map f produces a one-to-one correspondence f∗ between the
homotopy classes of C(Y, Z) and C(X,Z). Here C(A,B) stands for the space
of continuous mappings from A into B. A proper surjection f : X → Y is
called a hereditary shape equivalence if for every subset A of Y the restriction
f |f−1(A) is a shape equivalence between f−1(A) and A. Obviously, every
hereditary shape equivalence is cell-like, i.e. is a proper map whose fibres
have trivial shape. Under certain conditions the converse is valid: a cell-like
map between ANRs is a fine homotopy equivalence and hence a hereditary
shape equivalence (Haver [12], Kozlowski [15]) and a cell-like map whose
range is countably dimensional is a hereditary shape equivalence (Ancel [2]).
Another useful property is that the image of an ANR under a hereditary
shape equivalence is also an ANR (Kozlowski [15]). An AR-map is a proper
surjection whose fibres are absolute retracts.

The following two lemmas are not new. The first supplies the link be-
tween Theorem 1.2 and Theorem 1.3.

Lemma 2.1. If h : X → Y is a hereditary shape equivalence and f is an
essential map from Y into an AH-pair (M,S) then f ◦ h is also essential.

P r o o f. Put S′ = f−1(S) and S′′ = h−1(S′). We assume that f ◦h is not
essential. Then there is a point p ∈ M and a map g′′ : X → M \ {p} with
g′′|S′′ = f ◦h|S′′. We may assume that p 6∈ S because otherwise f would not
be onto and hence would be inessential. Since h is a shape equivalence and
M \ {p} is an ANR there is a map g′ : Y →M \ {p} such that g′ ◦ h and g′′

are homotopic. So g′ ◦ h|S′′ is homotopic to g′′|S′′ = f ◦ h|S′′. Since h|S′′ is
a shape equivalence we see that g′|S′ and f |S′ are homotopic as maps into
M \ {p}. Now the homotopy extension theorem guarantees that f |S′ can be
extended to a map g : Y →M \ {p}. This proves that f is inessential.

For any space X let AE(X) stand for the collection of all ANRs that are
absolute extensors for X.

Lemma 2.2. If h : X → Y is a hereditary shape equivalence then AE(X)
⊂ AE(Y ).

P r o o f. Let A be closed in Y and let f ∈ C(A,S). Put g = f◦h|h−1(A) ∈
C(h−1(A), S). If S ∈ AE(X) then we can extend g to a g̃ ∈ C(X,S). The
map h is a shape equivalence so there is an f̃ ∈ C(Y, S) such that g̃ and
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f̃ ◦ h are homotopic. The restriction f̃ ◦ h|h−1(A) is then homotopic to
g̃|h−1(A) = f ◦ h|h−1(A). Since h|h−1(A) is a shape equivalence we find
that f is homotopic to the extendable map f̃ |A and is therefore extendable.

3. Peano maps and Cantor manifolds. We first have a look at a
standard example of a space filling curve. Define the homeomorphism h
between the Cantor sets 3N =

∏∞
i=1{0, 1, 2} and 3N × 3N by h(ε) = (α, β),

where

αi =
{
ε2i−1 for

∑
j<i βi even,

2− ε2i−1 for
∑
j<i βi odd,

and

βi =
{
ε2i for

∑
j≤i αi even,

2− ε2i for
∑
j≤i αi odd.

Let q : 3N → I stand for the usual quotient map q(ε) =
∑∞
i=1 εi3

−i. Since
the fibres of q contain at most two points, the fibres of (q × q) ◦ h contain
at most four points. One readily verifies that q(ε) = q(ε′) implies (q × q) ◦
h(ε) = (q × q) ◦ h(ε′). So there exists a continous map p : I → I × I with
(q × q) ◦ h = p ◦ q. Then p is obviously surjective and its fibres consist of at
most four points. For n ≥ 2 we define functions pn : I → In by iterating p
as follows. Let p1 and p2 stand for the two components of p. Define p2 = p,
pni (t) = pn−1

i (p1(t)), and pnn(t) = p2(t) for i = 1, . . . , n − 1 and t ∈ I. It is
then easily seen that we have:

Claim 3.1. The map pn is surjective and each of its fibres consists of at
most 4n−1 points.

For f : X → Y , sing(f) consists of all points in X such that f−1({f(x)})
6= {x}. If f is a closed map then sing(f) is necessarily an Fσ-set and hence
for compact X, sing(f) is σ-compact.

Claim 3.2. sing(pn) is a 0-dimensional σ-compact subset of (0, 1).

P r o o f. Observe that p−1(0, 0) = {0} and p−1(1, 1) = {1} and hence that
(pn)−1(0, . . . , 0) = {0} and (pn)−1(1, . . . , 1) = {1}. So sing(pn) ⊂ (0, 1).

Consider the following countable dense subset of (0, 1):

Q = {q(ε) | εi = 1 from some index on}.
It follows from the definition of h that p(Q) = Q × Q and hence pn(Q) =
Qn. Note that every element of Q has a unique ternary representation, i.e.
q−1(Q)∩ sing(q) = ∅. This implies that Q and sing(pn) are disjoint, proving
Claim 3.2.

Claim 3.2 means that we may assume that sing(pn) is contained in the
0-dimensional absorber of (0, 1), implying that the set is thin (Geoghegan
and Summerhill [11]). This means that there is an autohomeomorphism ξn of
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(0, 1), arbitrarily close to the identity, such that ξn(sing(pn))∩ sing(pn) = ∅.
Extend ξn over I by putting ξn(0) = 0 and ξn(1) = 1. We define p̃n = pn◦ξn
and note that sing(p̃n) and sing(pn) are disjoint.

We need some notation for decompositions. Let A and B be two de-
compositions of the same space X. If for each A ∈ A there is a B ∈ B
with A ⊂ B then we denote this by A < B. We say that A and B are
compatible if for every A ∈ A and B ∈ B we have A ⊂ B, B ⊂ A, or
A ∩ B = ∅. If A and B are compatible then we can define a decomposition
A ∨ B = {A ∪ B | A ∈ A, B ∈ B, A ∩ B 6= ∅}. If A and B are upper
semicontinuous then so is A ∨ B.

We now start the construction of the centrepiece of the counterexample.
Let n ≥ 2 be fixed. Let J = [−1, 1] and consider D = J × I. Let π1 :
D → J and π2 : D → I be the projections. Let IL and IR stand for
the intervals {−1} × I and {1} × I, respectively. AL (resp. AR) stands for
the decomposition of D that pn (resp. p̃n) generates on IL (resp. IR). BL

(resp. BR) stands for the decomposition of D consisting of the fibres of pn◦π2

(resp. p̃n ◦ π2). We have AL < BL, AR < BR, AL is compatible with AR,
and since sing(pn) and sing(p̃n) are disjoint BL is compatible with BR. So
An = AL ∨AR and Bn = BL ∨ BR are upper semicontinuous and An < Bn.
Consider the quotient maps

αn : D → D/An and βn : D/An → D/Bn.
Observe that InL = αn(IL) and InR = αn(IR) are copies of In and that D/An
consists of the mapping cylinders of pn and p̃n attached at {0} × I. So
D/An is an absolute retract. Let An stand for the compact AR we obtain
from D/An if we attach an (n + 1)-cube In+1

L with one of its n-faces to
InL and an (n + 1)-cube In+1

R to InR. Let Bn be the space we obtain if we
divide An by the decomposition determined by βn and let hn : An → Bn be
the quotient map that extends βn. Figure 1 shows the map hn with sample
fibres.

Observe that the fibres of βn are simply cones over the fibres of pn and
p̃n which are finite. So both βn and hn are AR-maps. Note that D/Bn =
βn ◦ αn(IL) and that the fibres of βn ◦ αn|IL are essentially the fibres of
pn and p̃n and hence consist of at most 4n−1 points. According to [10,
Theorem 4.3.3] this implies that dim(D/Bn) ≤ 4n−1. A cell-like map with
finite-dimensional range is a hereditary shape equivalence and hence βn and
hn are hereditary shape equivalences and Bn is an (n+ 1)-dimensional AR.
We have

Claim 3.3. hn : An → Bn is an AR-map between ARs.

A Cantor manifold X is a finite-dimensional continuum such that every
separator S of X has the property dimS ≥ dimX − 1. The standard exam-
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ples of Cantor manifolds are the cells In. The following lemma is trivial but
useful.

Lemma 3.4. If X is the union of two n-dimensional Cantor manifolds
whose intersection is at least (n− 1)-dimensional then X is a Cantor man-
ifold.

Claim 3.5. Bn is an (n+ 1)-dimensional Cantor manifold.

P r o o f. It is obvious that hn(In+1
L ) and hn(In+1

R ) are Cantor manifolds
so it suffices to prove that their intersection D/Bn is n-dimensional. Note
that βn|InL has finite fibres. A map with 0-dimensional fibres cannot lower
dimension ([10, Theorem 4.3.6]) and hence βn(InL ) = D/Bn is at least n-
dimensional.

We now consider the face of In+1
R that is opposite to InR and attach a

third (n+ 1)-cube to that face in the manner descibed above, i.e. by using
a double mapping cylinder like D/An. We repeat this process until we have
a sequence of n copies of In+1 connected by n− 1 copies of D/An and call
this space

∨
An. Let

∨
Bn be the quotient space we obtain if we replace

every D/An by D/Bn, and let
∨
hn :

∨
An →

∨
Bn be the quotient map.
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The following statement is obvious.

Claim 3.6.
∨
hn :

∨
An →

∨
Bn is an AR-map between compact ARs

and
∨
Bn is an (n+ 1)-dimensional Cantor manifold.

4. Proof of Theorem 1.3. Consider the compact AR K which consists
of a copy of I with at each point 1/n (n ≥ 2) a cube In attached with the
point (0, . . . , 0). The topology is such that limn→∞ In = 0 ∈ I. Let C ⊂ I
be the “middle third” Cantor set and let (si, ri)i≥2 be an enumeration of
the gaps of C. Consider the following compact subset of I ×K:

K̃ = (I × I) ∪ (C ×K) ∪
∞⋃

i=3

i−1⋃
n=2

(si, ri)× In.

Let D be a decomposition of K̃ whose nontrivial elements are all intervals
of the form [si, ri]× {x} that are contained in K̃.

The space K̃ displays a number of “gaps” which we shall fill with double
mapping cylinders to obtain the space X of the theorem. If n ≥ i ≥ 2 then

({si} × In) ∪ ([si, ri]× {1/n}) ∪ ({ri} × In)

is the boundary of such a gap. We fill this gap with a copy of D/An by
identifying InL with {si}× In, InR with {ri}× In, and J ×{0} with [si, ri]×
{1/n}. Note that the resulting space X consists of I× I with for each n ≥ 2
a copy of the space

∨
An attached to I × {1/n} and that X has a natural

retraction R onto I×I which maps every
∨
An onto I×{1/n}. The topology

is such that basic neighbourhoods in X of points of I × {0} have the form
R−1(U), where U is a neighbourhood of the point in I×I. The decomposition
F of X is obtained by adding to D the decompositions that come with the
double mapping cylinders D/An. We leave it to the reader to verify that
X is a compact AR and that F is an upper semicontinuous decomposition
whose nontrivial elements are cones of finite sets. Put Y = X/F and let
H : X → Y be the quotient map (see Figure 2).

We identify C with the subset C × {0} ⊂ X. Note that H(C) is an arc
and that H(I × I) = H(C)× I is a 2-cell. The space Y consists of H(C)× I
with for each n ≥ 2 a copy of the space

∨
Bn attached to H(C) × {1/n}.

So Y is countably dimensional and H is a hereditary shape equivalence. We
may conclude:

Claim 4.1. H : X → Y is an AR-map between compact ARs.

It remains to verify the dimensions.

Claim 4.2. indY ≥ ω + 1.

P r o o f. Let S be a closed subset of Y that separates the endpoints
(0, 0) and (1, 0) of H(C) in Y . Then S separates the left-hand endface of
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∨
Bn from the right-hand endface for all n greater than some N . In view of

Claim 3.6 we have dim(S ∩∨Bn) ≥ n and hence S is infinite-dimensional.

We shall use the following result from [5].

Proposition 4.3. If α < ω1 and A is a subset of a space Z such that
every closed set F that is disjoint from A has IndF < α then IndZ ≤
α+ IndA.

Claim 4.4. IndY ≤ ω + 1.

P r o o f. We apply the proposition to Y with α = ω and A = H(C). The
complement of every neighbourhood of H(C) is obviously finite-dimensional,
so IndY ≤ ω + IndH(C) = ω + 1.

Claim 4.5. IndX ≤ ω.



Dimension raising shape equivalence 273

P r o o f. We apply Proposition 4.3 to X with α = ω and A = C. Observe
that any closed subset F of X that is disjoint from C is contained in a set
of the form

R−1(I × [1/N, 1]) ∪
N⋃

i=2

R−1((si, ri)× [0, 1/N))

for some N . The set R−1(I × [1/N, 1]) has dimension N + 1 and the sets
R−1((si, ri)× [0, 1/N)) are 2-dimensional. Consequently, IndX ≤ ω+ IndC
= ω.

The proof of Theorem 1.3 is complete.

5. Conclusion. We now verify Theorem 1.2. Fix a point p in the space
X of Theorem 1.3 and let Xn be a sequence of copies of X. Consider the
compact AR X̃ that is obtained by attaching every Xn with the point p to
the point n in the interval [1,∞] and topologise the result in such a way
that limn→∞Xn = ∞. If we replace in X̃ the first copy X1 by Y then we
obtain the space Ỹ . Let H̃ : X̃ → Ỹ be the extension with the identity of
H : X1 → Y . Obviously, H̃ is a hereditary shape equivalence, Ỹ is a compact
AR, ind X̃ = Ind X̃ = ω, and ind Ỹ = Ind Ỹ = ω + 1. If we identify the AR
Y ∪ [1, 2] in Ỹ to a point then we get a topological copy of X̃, so there is
also a hereditary shape equivalence G̃ : Ỹ → X̃. Applying Lemma 2.1 we
find that X̃ and Ỹ are indistinguishable as far as the existence of essential
maps into AH-pairs is concerned, proving Theorem 1.2.

Observe that we are dealing here with a strong counterexample, in the
sense that X̃ and Ỹ are independent of the choice of M and S. This implies
that the example also excludes the use of certain variations of the definition
of essential map to characterise inductive dimension, in particular those
involving (transfinite) sequences of essential maps into different spaces.

A somewhat different approach to geometric characterisation of dimen-
sion involves absolute extensors. For instance, dimX ≤ n if and only if
Sn ∈ AE(X). One may define different dimension functions in this man-
ner by providing a suitable sequence of ANRs (cf. Dobrowolski and Rubin
[8]). Lemma 2.2 implies AE(X̃) = AE(Ỹ ) and hence we cannot characterise
transfinite inductive dimension in this way.
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