Hyperspaces of two-dimensional continua

by

Michael Levin and Yaki Sternfeld (Haifa)

Abstract. Let X be a compact metric space and let $\mathcal{C}(X)$ denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every $n \geq 1$, a one-dimensional subcontinuum T_n with dim $\mathcal{C}(T_n) \geq n$. This implies that X contains a compact one-dimensional subset T with dim $\mathcal{C}(T) = \infty$.

1. Introduction. Let X be a compact metrizable space. 2^X denotes the space of closed subsets of X endowed with the Hausdorff metric, and $\mathcal{C}(X)$ is the subset of 2^X which consists of the subcontinua of X. Both 2^X and $\mathcal{C}(X)$ are compact.

In [5] the authors proved that if $\dim X = 2$ then $\dim \mathcal{C}(X) = \infty$. In this note we improve this result by showing that actually the 1-dimensional subcontinua of X are responsible for the infinite dimensionality of $\mathcal{C}(X)$, more precisely: for every positive integer n, X contains a one-dimensional subcontinuum T_n with $\dim \mathcal{C}(T_n) \ge n$, and as a result, X contains a onedimensional compact subset T with $\dim \mathcal{C}(T) = \infty$. The following problem is still left open:

QUESTION 1.1. Let X be a 2-dimensional continuum. Does X contain a 1-dimensional subcontinuum T with dim $C(T) = \infty$?

In two extreme cases the answer is affirmative. It is proved in [6] that if T is a 1-dimensional hereditarily indecomposable continuum then dim $\mathcal{C}(T)$ is either 2 or ∞ . Thus, if X is a 2-dimensional hereditarily indecomposable continuum then the 1-dimensional continuum $T_3 \subset X$ that we construct with dim $\mathcal{C}(T_3) \geq 3$, actually satisfies dim $\mathcal{C}(T_3) = \infty$ (see [3] for more information on hyperspaces of finite-dimensional hereditarily indecomposable continua). Note that this implies that every 3-dimensional continuum X contains a

¹⁹⁹¹ Mathematics Subject Classification: 54B20, 54F15, 54F45.

Key words and phrases: hyperspaces, hereditarily indecomposable continua, one- and two-dimensional continua.

^[17]

1-dimensional subcontinuum T with $\dim \mathcal{C}(T) = \infty$ since by [1], X contains a 2-dimensional hereditarily indecomposable continuum.

The hereditarily indecomposable continua are characterized by the property that their subcontinua do not intersect in a non-trivial manner (i.e. $A \cap B \neq \emptyset$ implies $A \subset B$ or $B \subset A$). If on the other hand a 2-dimensional continuum X is rich with mutually intersecting 1-dimensional subcontinua (e.g. if X is a Peano continuum or if X is the product of two 1-dimensional continua) then again Question 1.1 has a positive answer for X.

We shall need the following result from [5] and include a short proof for it.

THEOREM 1.2. Let X be an n-dimensional compact metric space, $n < \infty$. There exists an n-dimensional hereditarily indecomposable continuum Y and a light map f of Y into X.

Proof. We have dim $X \times I = n + 1$, I = [0, 1]. By [1] there exists an *n*-dimensional hereditarily indecomposable continuum $Y \subset X \times I$. Let $P: X \times I \to X$ be the projection, and set $f = P|_Y$. Then f is light since a component of a fiber of f is a subcontinuum of both Y and I and hence must be a singleton.

Recall that a map $W : \mathcal{C}(X) \to \mathbb{R}^+$ is called a *Whitney map* if $W(\{x\}) = 0$ for all $x \in X$ and if $A \subset B, A \neq B$ in $\mathcal{C}(X)$ implies W(A) < W(B). Whitney maps always exist (see [6]).

Let $\psi: X \to Q$ be a map of compacta. Set $Q_0 = \{z : z \in Q, \dim \psi^{-1}(z) \le 0\}$ and $Q_1 = Q \setminus Q_0 = \{z \in Q : \dim \psi^{-1}(z) \ge 1\}$. We shall need the following result.

THEOREM 1.3. Let X be an n-dimensional compact space, $n \ge 2$. There exist a 1-dimensional compactum Q and a map $\psi : X \to Q$ such that $\dim \psi^{-1}(Q_1) = n - 1$.

Proof. Let Q be a dendrite with a dense set of nonseparating points. It is proved in Theorem 2.2 of [7] that for every compact space X and every 0-dimensional σ -compact subset F of X, almost all maps $\psi \in C(X, Q)$ (i.e. all except a set of first category in the function space) satisfy $F \subset \{x \in X : \psi^{-1}(\psi(x)) = \{x\}\}$, and thus $\psi^{-1}(Q_1) \subset X \setminus F$.

If dim X = n there exists a σ -compact 0-dimensional subset F of X such that dim $(X \setminus F) \leq n-1$ ([7], Proposition 3.1). It follows that for almost all $\psi \in C(X,Q)$, dim $\psi^{-1}(Q_1) = n-1$ (note that dim $\psi \geq n-1$ and hence dim $\psi^{-1}(Q_1) \geq n-1$).

Another, more elementary proof of Theorem 1.3 can be obtained by applying the results of [2]. There Lelek constructs, for each $n \ge 2$, a map $f: I^n \to Q$, where Q is a dendrite with dim $f^{-1}(Q_1) = n-1$. (Lelek does not use the same terminology but it is easy to verify that f indeed satisfies this.)

Now, if dim X = n, let $\varphi : X \to I^n$ be light; then for $\psi = f \circ \varphi : X \to Q$ we have dim $\psi^{-1}(Q_1) = n - 1$.

The general scheme of our note resembles that of [5] but it includes some additional ingredients and is more complicated.

2. Proofs

THEOREM 2.1. Let X be a 2-dimensional continuum and let n be a positive integer. Then X contains a 1-dimensional continuum T_n with $\dim \mathcal{C}(T_n) > n$.

COROLLARY 2.2. Let X be a 2-dimensional continuum. Then X contains a 1-dimensional compact subset T such that dim $C(T) = \infty$.

Proof. For each $n \geq 1$ let X_n be a 2-dimensional continuum with diam $X_n \leq 1/n$ and $X_1 \supset X_2 \supset X_3 \supset \ldots$ Let $T_0 = \bigcap_{n=1}^{\infty} X_n$ (T_0 is a singleton) and by Theorem 2.1 let $T_n \subset X_n$ be a 1-dimensional continuum with dim $\mathcal{C}(T_n) > n$. Take $T = \bigcup_{n=0}^{\infty} T_n$.

LEMMA 2.3. Let $f: Y \to X$ be a light map of compacta. For every $\varepsilon > 0$ there exist positive reals $\alpha(\varepsilon)$ and $\delta(\varepsilon)$ such that for every subset B of X with diam $B \leq \delta(\varepsilon)$, $f^{-1}(B)$ is decomposable as $f^{-1}(B) = \bigcup_{s=1}^{t} W^{s}$ with diam $W^{s} < \varepsilon$ and dist $(W^{s}, W^{r}) \geq \alpha(\varepsilon)$ for $s \neq r$. (By dist (W^{s}, W^{r}) we mean $\inf\{d(x^{s}, x^{r}) : x^{s} \in W^{s}, x^{r} \in W^{r}\}$, where d is a metric).

Proof. Let $\varepsilon > 0$. For $x \in X$, dim $f^{-1}(x) = 0$. Hence $f^{-1}(x)$ can be covered by a finite family \mathcal{U}_x of open subsets of Y with mesh $\mathcal{U}_x < \varepsilon$ and $\alpha(x) = \min\{\operatorname{dist}(A, B) : A, B \in \mathcal{U}_x, A \neq B\} > 0$. Let V_x denote the union of the elements of \mathcal{U}_x . V_x is a neighborhood of $f^{-1}(x)$ in Y. Let W_x be an open neighborhood of x in X such that $f^{-1}(W_x) \subset V_x$. By compactness Xis covered by some W_{x_1}, \ldots, W_{x_n} . Let $\delta(\varepsilon)$ be the Lebesgue number of this cover; i.e. each subset B of X with diam $B \leq \delta$ is contained in some W_{x_i} , and the lemma holds with $\alpha(\varepsilon) = \min\{\alpha(x_i) : 1 \leq i \leq n\}$.

LEMMA 2.4. Let $\mathcal{K} \subset \mathcal{C}(Y)$ be a decomposition of Y which contains no singletons and which is closed in $\mathcal{C}(Y)$. Let $h : Y \to \mathcal{K}$ denote the corresponding (open) quotient map. Let f be a light map of Y into some continuum X, and let $g : Y \to \mathcal{C}(X)$ be defined by g(y) = f(h(y)). Then for every positive integer n and every positive real ε there exists a positive real $\alpha = \alpha(\varepsilon, n)$ such that for every closed subset $Y_0 \subset Y$ with dim $g(Y_0) \leq n$ there exist closed subsets Z_1, \ldots, Z_m of Y_0 with diam $Z_i < \varepsilon, 1 \leq i \leq m$ such that $\bigcup_{i=1}^m Z_i$ intersects every element of \mathcal{K} which is contained in Y_0 and for $1 \leq i < j \leq m$ either $g(Z_i) \cap g(Z_j) = \emptyset$ or dist $(Z_i, Z_j) \geq \varepsilon$.

Proof. h and g are continuous since \mathcal{K} is closed in $\mathcal{C}(Y)$. As \mathcal{K} contains no singletons it follows that $\inf\{\operatorname{diam} K : K \in \mathcal{K}\} > 0$; and since f is light we see that $\inf\{\operatorname{diam} g(y) : y \in Y\} = \inf\{\operatorname{diam} f(K) : K \in \mathcal{K}\} = \lambda > 0.$

As all *n*-dimensional spaces are embeddable in the same Euclidean space there exists an integer N = N(n) such that for every *n*-dimensional compact space H every open cover of H has an open refinement $\{V_1, \ldots, V_r\}$ so that each V_i intersects at most N of the other V_i . Let $\varepsilon > 0$ and n be given. Let $\delta_1 = \delta_1(\varepsilon)$ and $\alpha(\varepsilon)$ be as in Lemma 2.3.

Let $0 < \delta = \min\{\delta_1/2, \lambda/(6N)\}$ (note that δ depends on n and ε) and let $\alpha_1(\varepsilon, n) > 0$ be small enough such that $d(y_1, y_2) \leq \alpha_1(\varepsilon, n)$ in Y implies that $d(f(y_1), f(y_2)) < \delta$ (in X). Finally, let $\alpha(\varepsilon, n) = \min\{\alpha(\varepsilon), \alpha_1(\varepsilon, n)\}.$

Note that

(i) If B_1, \ldots, B_N are N subsets of X with diam $B_i < 3\delta$ then $\{B_i\}_{i=1}^N$ do not cover g(y) for all $y \in Y$. Moreover, for every $y \in Y$ there exists a point $x \in q(y)$ such that $dist(x, B_i) \geq 3\delta$ for all $1 \leq i \leq N$. (Since q(y) is a continuum of diameter $\geq \lambda$ and $\delta \leq \lambda/(6N)$.)

Let $Y_0 \subset Y$ be closed with dim $g(Y_0) \leq n$. Let $\{\mathcal{V}_1, \ldots, \mathcal{V}_r\}$ be a closed cover of $g(Y_0)$ with mesh $< \delta$ (mesh with respect to the Hausdorff metric in $\mathcal{C}(X)$ such that each \mathcal{V}_i intersects at most N of the other \mathcal{V}_i . Then

(ii) For every $1 \leq i \leq r$, for every $A \in \mathcal{V}_i$, and every $x \in A$, $B(x, \delta)$ (= closed δ -ball in X with center at x) intersects every $B \in \mathcal{V}_i$ (since otherwise the Hausdorff distance between A and B would be more than δ).

Now we construct inductively closed subsets W_1, \ldots, W_r of Y_0 as follows: pick some $A_1 \in \mathcal{V}_1$ and $x_1 \in A_1$, and set $W_1 = f^{-1}(B(x_1, \delta)) \cap g^{-1}(\mathcal{V}_1) \cap Y_0$. Assume that W_1, \ldots, W_{j-1} were constructed as $W_i = f^{-1}(B(x_i, \delta))$ $\cap g^{-1}(\mathcal{V}_i) \cap Y_0$ where $x_i \in A_i \in \mathcal{V}_i, 1 \leq i \leq j-1$. Let $A_j \in \mathcal{V}_j$. At most N of \mathcal{V}_i , $1 \leq i \leq j-1$, intersect \mathcal{V}_j . Assume these are $\mathcal{V}_{i_1}, \ldots, \mathcal{V}_{i_N}$. By (i) there exists a point $x_i \in A_i$ such that $dist(x_i, B(x_{i_l}, 3\delta)) \geq 3\delta$ for all $1 \leq l \leq N$. Hence

(iii) dist $(B(x_j, \delta), B(x_{i_l}, \delta)) > \delta$ for all $1 \le l \le N$

and we take $W_i = f^{-1}(B(x_i, \delta)) \cap g^{-1}(\mathcal{V}_i) \cap Y_0$. It follows from (ii) that W_i , $1 \leq i \leq r$, intersects every element of \mathcal{K} which is contained in $Y_0 \cap g^{-1}(\mathcal{V}_i)$ and so $\bigcup_{i=1}^{r} W_i$ intersects every element of \mathcal{K} which is contained in Y_0 .

From (iii) and the definition of $\alpha_1(\varepsilon, n)$ we obtain

(iv) for $1 \leq i < j \leq r$, if $g(W_i) = \mathcal{V}_i$ intersects $g(W_j) = \mathcal{V}_j$ then $\operatorname{dist}(B(x_i, \delta), B(x_i, \delta)) > \delta$ and hence $\operatorname{dist}(W_i, W_i) \geq \alpha_1(\varepsilon, n)$ (in Y) since $W_i \subset f^{-1}(B(x_i, \delta)).$

As $\delta \leq \delta_1/2$ and $W_i \subset f^{-1}(B(x_i,\delta))$ we may apply Lemma 2.3 to decompose W_i as $W_i = \bigcup_{s=1}^{t_i} W_i^s$ with diam $W_i^s < \varepsilon$ and dist $(W_i^{s_1}, W_i^{s_2}) \ge$ $\begin{array}{l} \alpha(\varepsilon). \mbox{ For } 1 \leq i < j \leq r, \mbox{ if } g(W_i^s) \cap g(W_j^t) \neq \emptyset \mbox{ then by (iv), } {\rm dist}(W_i^s, W_j^t) \geq \\ \alpha_1(\varepsilon, n) \geq \alpha(\varepsilon, n) \mbox{ and we take } Z_1, \ldots, Z_m \mbox{ to be an enumeration of } \{W_i^s\}, \\ 1 \leq i \leq r, \ 1 \leq s \leq t_i. \end{array}$

Proof of Theorem 2.1. Let X be a 2-dimensional continuum. Apply Theorems 1.2 and 1.3 to find a 2-dimensional hereditarily indecomposable continuum Y with a light map $f: Y \to X$, and a 1-dimensional continuum Q with a map $\psi: X \to Q$ such that $\dim \psi^{-1}(Q_1) = 1$. Let $\psi \circ f = \varphi \circ p$ denote the monotone light decomposition of the map $\psi \circ f: Y \to Q$ with $p: Y \to V = p(Y)$ monotone.

(The arrows not marked by letters in this diagram represent maps which exist, but are not referred to in the sequel.)

Let F_1 and F_2 be closed disjoint subsets of Y such that

(i) every closed separator between F_1 and F_2 must have a component of diameter $\geq r = r(F_1, F_2) > 0$.

Let $W : \mathcal{C}(Y) \to \mathbb{R}^+$ be a Whitney map, and let t > 0 be small enough such that

(ii) mesh $W^{-1}(t) < r$.

 $\mathcal{K} = W^{-1}(t)$ is a closed decomposition of Y which contains no singletons. Let $h: Y \to W^{-1}(t)$ denote the quotient map. Let n be a positive integer and set $\varepsilon = (1/3) \operatorname{dist}(F_1, F_2) > 0$. Let $\alpha(\varepsilon, n) > 0$ be the real obtained in Lemma 2.4. (Note that $g = f^* \circ h$, where $f^*: \mathcal{C}(Y) \to \mathcal{C}(X)$ is defined by $f^*(A) = f(A)$, i.e. g(y) = f(h(y)).)

Let $0 < t_0 < t$ be such that

(iii) mesh $W^{-1}(t_0) < \min\{\alpha(\varepsilon, n), \varepsilon\}.$

Let $q: Y \to W^{-1}(t_0)$ be the quotient map. Then q is an open monotone map with no trivial fibers. Let $s = p \land q$ denote the product of the maps p and q, i.e. the fiber of s at $y \in Y$ is the intersection of the fibers of pand q at y (see [4]). Note that as Y is hereditarily indecomposable and p and q are monotone, these fibers of p and q at y actually contain one another. Thus, each fiber of s is either a fiber of p or of q. Let S denote the range of s and let S denote the decomposition of Y induced by s. Set $Y_q = \{A : A \in S \cap W^{-1}(t_0)\}$, i.e. Y_q is the union of those fibers of s which are fibers of q (and thus are contained in some fiber of p).

 Y_q is closed in Y. To prove this we show that $S \cap W^{-1}(t_0)$ is closed in $\mathcal{C}(Y)$. (Note that S may fail to be closed.) Let $\{A_k\}_{k=1}^{\infty} \subset S \cap W^{-1}(t_0)$ converge to some $A \in \mathcal{C}(Y)$. Then $A \in W^{-1}(t_0)$ since $W^{-1}(t_0)$ is closed in $\mathcal{C}(Y)$. Each A_k is contained in some fiber B_k of p, and we may assume that $\{B_k\}$ converges in $\mathcal{C}(Y)$ to some continuum B. Clearly $A \subset B$ and as p is contained in some fiber of p. Hence A is a fiber of q and is contained in a fiber of p so $A \in S$ and $S \cap W^{-1}(t_0)$ is closed.

We claim that

(iv) dim $s(Y \setminus Y_q) \le 1$.

Indeed, $Y \setminus Y_q$ is a union of fibers of s which are also fibers of p (but are not fibers of q). Hence the decomposition of $Y \setminus Y_q$ induced by the map $s|_{Y \setminus Y_q}$ is identical to the decomposition induced by $p|_{Y \setminus Y_q}$. Thus $s(Y \setminus Y_q)$ and $p(Y \setminus Y_q)$ are homeomorphic. It follows that $\dim s(Y \setminus Y_q) = \dim p(Y \setminus Y_q) \leq \dim V$ and $\dim V \leq 1$ since $\varphi: V \to Q$ is light and $\dim Q = 1$.

We also have dim $f(Y_q) = 1$. Indeed, let $A \in S \cap W^{-1}(t_0)$. Then A is a fiber of q which is contained in a fiber B of p. Moreover, A is not a singleton and as f is light both f(A) and f(B) are nontrivial continua in X. Recall that $\psi \circ f = \varphi \circ p$. Hence $\psi(f(B)) = \varphi(p(B))$ and as B is a fiber of p, $\varphi(p(B))$ is a singleton and ψ is constant on f(B). It follows that f(B) is contained in $\psi^{-1}(Q_1)$ (which is the union of all fibers of ψ with dimension > 0) and also that $f(Y_q) \subset \psi^{-1}(Q_1)$ and as dim $\psi^{-1}(Q_1) \leq 1$, we have dim $f(Y_q) \leq 1$.

Set $Y_0 = \bigcup \{E : E \in W^{-1}(t), E \subset Y_q\}$. Thus Y_0 consists of those fibers of h which are contained in Y_q . Note that the decomposition $W^{-1}(t_0)$ strictly refines $W^{-1}(t)$, so if $E \in W^{-1}(t)$ then E is a union of fibers of q.

(v) Y_0 is closed in Y

since $\mathcal{D} = \{E : E \in W^{-1}(t), E \subset Y_q\}$ is closed in $\mathcal{C}(Y)$. The latter holds since if $E_k \in \mathcal{D}$ and $E_k \to E$ in $\mathcal{C}(Y)$ then $E \in W^{-1}(t)$ and $E \subset Y_q$ as $W^{-1}(t)$ is closed in $\mathcal{C}(Y)$ and Y_q is closed in Y.

And as $f(Y_0) \subset f(Y_q)$ we also have

(vi) dim $f(Y_0) \leq 1$.

(Note that as f is light, dim $Y_q \leq 1$ too.)

We claim that dim $g(Y_0) > n$. Once we show this we are done. Indeed, $g(Y_0) = \{f(h(y)) : y \in Y_0\}$. For $y \in Y_0, h(y) \in W^{-1}(t)$ is contained in Y_0 and it follows that $g(Y_0) \subset C(f(Y_0))$. This implies that dim $C(f(Y_0)) > n$. Hence $f(Y_0)$ (which is compact by (v) and 1-dimensional by (vi)) must contain a 1-dimensional component T_n with dim $C(T_n) > n$.

Aiming at a contradiction assume dim $g(Y_0) \leq n$. Then we may apply Lemma 2.4. Let $Z_1, \ldots, Z_m \subset Y_0$ be from the conclusion of Lemma 2.4 for $\mathcal{K} = W^{-1}(t)$. Then

(vii) the sets $s(Z_i)$, $1 \le i \le m$, are mutually disjoint.

Indeed, the map s is a factor of g. By this we mean that the fibers of s are contained in those of g. Hence $g(Z_i) \cap g(Z_j) = \emptyset$ implies $s(Z_i) \cap s(Z_j) = \emptyset$. If for some $i < j, g(Z_i) \cap g(Z_j) \neq \emptyset$ then by Lemma 2.4, dist $(Z_i, Z_j) \ge \alpha(\varepsilon, n)$. By (iii) each fiber of q has diameter $< \alpha(\varepsilon, n)$, which implies that $q(Z_i) \cap q(Z_j) = \emptyset$ and as s is a factor of q too, $s(Z_i) \cap s(Z_j) = \emptyset$.

(viii) $s(F_1) \cap s(F_2) = \emptyset$.

This holds since q and hence s are ε -maps (by (iii)) and $\varepsilon = \frac{1}{3} \operatorname{dist}(F_1, F_2)$. The same argument combined with the fact that diam $Z_i < \varepsilon$ also implies that

(ix) for every $1 \leq i \leq m$, $s(Z_i)$ intersects at most one of the sets $s(F_1)$ and $s(F_2)$.

Set $H_1 = s(F_1) \cup (\bigcup \{ s(Z_i) : s(F_1) \cap s(Z_i) \neq \emptyset \})$ and $H_2 = s(F_2) \cup (\bigcup \{ s(Z_i) : s(F_1) \cap s(Z_i) = \emptyset \})$. By (ix), $H_1 \cap H_2 = \emptyset$. By (iv), dim $s(Y \setminus Y_q) \leq 1$ hence there exists a closed subset L of S = s(Y) which separates between H_1 and H_2 in S such that dim $L \cap s(Y \setminus Y_q) = 0$. Then L also separates $s(F_1)$ from $s(F_2)$ and

(x) $L \cap s(\bigcup_{i=1}^{m} Z_i) = \emptyset.$

By (i), $s^{-1}(L)$ has a component M with diam M > r. Then $M \cap (Y \setminus Y_q) = \emptyset$.

Indeed, by (ii) fibers of s have diameter $\langle r$. Hence s(M) is a nontrivial continuum in L. If $y \in M \cap (Y \setminus Y_q)$ then $w = s(y) \in L \cap s(Y \setminus Y_q)$. Since Y_q is a union of fibers of s (those fibers which are also fibers of q) we have $s(Y \setminus Y_q) = s(Y) \setminus s(Y_q)$ and hence $w \in L \setminus s(Y_q) = L \cap s(Y \setminus Y_q)$. As $s(Y_q)$ is closed and dim $L \setminus s(Y_q) = \dim L \cap s(Y \setminus Y_q) = 0$, $\{w\}$ is a component of L and hence $s(M) \subset \{w\}$, which contradicts the fact that s(M) is nontrivial.

It follows that $M \subset Y_q$. Let $A \in W^{-1}(t)$ be such that $A \cap M \neq \emptyset$. As diamA < r, we have $A \subset M \subset s^{-1}(L)$ (by (ii)). So $A \subset Y_0$ and $s(A) \subset L$. By Lemma 2.4, $\bigcup_{i=1}^m Z_i$ intersects A and hence $s(\bigcup_{i=1}^m Z_i)$ intersects L, contradicting (x). This contradiction implies dim $g(Y_0) > n$ and concludes the proof.

References

- R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. Amer. Math. Soc. 71 (1951), 267–273.
- [2] A. Lelek, On mappings that change dimension of spheres, Colloq. Math. 10 (1963), 45-48.
- [3] M. Levin, Hyperspaces and open monotone maps of hereditarily indecomposable continua, Proc. Amer. Math. Soc., to appear.
- [4] M. Levin and Y. Sternfeld, Mappings which are stable with respect to the property dim $f(X) \ge k$, Topology Appl. 52 (1993), 241–265.
- [5] —, —, The space of subcontinua of a 2-dimensional continuum is infinite dimensional, Proc. Amer. Math. Soc., to appear.
- [6] S. B. Nadler Jr., Hyperspaces of Sets, Dekker, 1978.
- [7] Y. Sternfeld, Mappings in dendrites and dimension, Houston J. Math. 19 (1993), 483-497.

Department of Mathematics Haifa University Mount Carmel Haifa 31905, Israel E-mail: levin@mathcs2.haifa.ac.il yaki@mathcs2.haifa.ac.il

> Received 2 June 1995; in revised form 5 December 1995