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Hyperspaces of two-dimensional continua
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Abstract. Let X be a compact metric space and let C(X) denote the space of subcon-
tinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum
X contains, for every n ≥ 1, a one-dimensional subcontinuum Tn with dim C(Tn) ≥ n.
This implies that X contains a compact one-dimensional subset T with dim C(T ) =∞.

1. Introduction. Let X be a compact metrizable space. 2X denotes the
space of closed subsets of X endowed with the Hausdorff metric, and C(X)
is the subset of 2X which consists of the subcontinua of X. Both 2X and
C(X) are compact.

In [5] the authors proved that if dimX = 2 then dim C(X) = ∞. In
this note we improve this result by showing that actually the 1-dimensional
subcontinua of X are responsible for the infinite dimensionality of C(X),
more precisely: for every positive integer n, X contains a one-dimensional
subcontinuum Tn with dim C(Tn) ≥ n, and as a result, X contains a one-
dimensional compact subset T with dim C(T ) = ∞. The following problem
is still left open:

Question 1.1. Let X be a 2-dimensional continuum. Does X contain a
1-dimensional subcontinuum T with dim C(T ) =∞?

In two extreme cases the answer is affirmative. It is proved in [6] that if
T is a 1-dimensional hereditarily indecomposable continuum then dim C(T )
is either 2 or ∞. Thus, if X is a 2-dimensional hereditarily indecomposable
continuum then the 1-dimensional continuum T3 ⊂ X that we construct with
dim C(T3) ≥ 3, actually satisfies dim C(T3) =∞ (see [3] for more information
on hyperspaces of finite-dimensional hereditarily indecomposable continua).
Note that this implies that every 3-dimensional continuum X contains a
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1-dimensional subcontinuum T with dim C(T ) =∞ since by [1], X contains
a 2-dimensional hereditarily indecomposable continuum.

The hereditarily indecomposable continua are characterized by the prop-
erty that their subcontinua do not intersect in a non-trivial manner (i.e.
A ∩ B 6= ∅ implies A ⊂ B or B ⊂ A). If on the other hand a 2-dimensional
continuum X is rich with mutually intersecting 1-dimensional subcontinua
(e.g. if X is a Peano continuum or if X is the product of two 1-dimensional
continua) then again Question 1.1 has a positive answer for X.

We shall need the following result from [5] and include a short proof
for it.

Theorem 1.2. Let X be an n-dimensional compact metric space, n <∞.
There exists an n-dimensional hereditarily indecomposable continuum Y and
a light map f of Y into X.

P r o o f. We have dimX × I = n + 1, I = [0, 1]. By [1] there exists
an n-dimensional hereditarily indecomposable continuum Y ⊂ X × I. Let
P : X × I → X be the projection, and set f = P |Y . Then f is light since
a component of a fiber of f is a subcontinuum of both Y and I and hence
must be a singleton.

Recall that a map W : C(X) → R+ is called a Whitney map if
W ({x}) = 0 for all x ∈ X and if A ⊂ B,A 6= B in C(X) implies W (A) <
W (B). Whitney maps always exist (see [6]).

Let ψ : X → Q be a map of compacta. Set Q0 = {z : z ∈ Q, dimψ−1(z)
≤ 0} and Q1 = Q \ Q0 = {z ∈ Q : dimψ−1(z) ≥ 1}. We shall need the
following result.

Theorem 1.3. Let X be an n-dimensional compact space, n ≥ 2. There
exist a 1-dimensional compactum Q and a map ψ : X → Q such that
dimψ−1(Q1) = n− 1.

P r o o f. Let Q be a dendrite with a dense set of nonseparating points. It
is proved in Theorem 2.2 of [7] that for every compact space X and every
0-dimensional σ-compact subset F of X, almost all maps ψ ∈ C(X,Q) (i.e.
all except a set of first category in the function space) satisfy F ⊂ {x ∈ X :
ψ−1(ψ(x)) = {x}}, and thus ψ−1(Q1) ⊂ X \ F .

If dimX = n there exists a σ-compact 0-dimensional subset F of X such
that dim(X \ F ) ≤ n − 1 ([7], Proposition 3.1). It follows that for almost
all ψ ∈ C(X,Q), dimψ−1(Q1) = n− 1 (note that dimψ ≥ n− 1 and hence
dimψ−1(Q1) ≥ n− 1).

Another, more elementary proof of Theorem 1.3 can be obtained by
applying the results of [2]. There Lelek constructs, for each n ≥ 2, a map
f : In → Q, where Q is a dendrite with dim f−1(Q1) = n−1. (Lelek does not
use the same terminology but it is easy to verify that f indeed satisfies this.)



Hyperspaces of two-dimensional continua 19

Now, if dimX = n, let ϕ : X → In be light; then for ψ = f ◦ϕ : X → Q we
have dimψ−1(Q1) = n− 1.

The general scheme of our note resembles that of [5] but it includes some
additional ingredients and is more complicated.

2. Proofs

Theorem 2.1. Let X be a 2-dimensional continuum and let n be a
positive integer. Then X contains a 1-dimensional continuum Tn with
dim C(Tn) > n.

Corollary 2.2. Let X be a 2-dimensional continuum. Then X contains
a 1-dimensional compact subset T such that dim C(T ) =∞.

P r o o f. For each n ≥ 1 let Xn be a 2-dimensional continuum with
diamXn ≤ 1/n and X1 ⊃ X2 ⊃ X3 ⊃ . . . Let T0 =

⋂∞
n=1Xn (T0 is a

singleton) and by Theorem 2.1 let Tn ⊂ Xn be a 1-dimensional continuum
with dim C(Tn) > n. Take T =

⋃∞
n=0 Tn.

Lemma 2.3. Let f : Y → X be a light map of compacta. For every ε > 0
there exist positive reals α(ε) and δ(ε) such that for every subset B of X
with diamB ≤ δ(ε), f−1(B) is decomposable as f−1(B) =

⋃t
s=1W

s with
diamW s < ε and dist(W s,W r) ≥ α(ε) for s 6= r. (By dist(W s,W r) we
mean inf{d(xs, xr) : xs ∈W s, xr ∈W r}, where d is a metric).

P r o o f. Let ε > 0. For x ∈ X, dim f−1(x) = 0. Hence f−1(x) can be
covered by a finite family Ux of open subsets of Y with meshUx < ε and
α(x) = min{dist(A,B) : A,B ∈ Ux, A 6= B} > 0. Let Vx denote the union
of the elements of Ux. Vx is a neighborhood of f−1(x) in Y . Let Wx be an
open neighborhood of x in X such that f−1(Wx) ⊂ Vx. By compactness X
is covered by some Wx1 , . . . ,Wxn . Let δ(ε) be the Lebesgue number of this
cover; i.e. each subset B of X with diamB ≤ δ is contained in some Wxi ,
and the lemma holds with α(ε) = min{α(xi) : 1 ≤ i ≤ n}.

Lemma 2.4. Let K ⊂ C(Y ) be a decomposition of Y which contains
no singletons and which is closed in C(Y ). Let h : Y → K denote the
corresponding (open) quotient map. Let f be a light map of Y into some
continuum X, and let g : Y → C(X) be defined by g(y) = f(h(y)). Then for
every positive integer n and every positive real ε there exists a positive real
α = α(ε, n) such that for every closed subset Y0 ⊂ Y with dim g(Y0) ≤ n
there exist closed subsets Z1, . . . , Zm of Y0 with diamZi < ε, 1 ≤ i ≤ m
such that

⋃m
i=1 Zi intersects every element of K which is contained in Y0

and for 1 ≤ i < j ≤ m either g(Zi) ∩ g(Zj) = ∅ or dist(Zi, Zj) ≥ ε.
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P r o o f. h and g are continuous since K is closed in C(Y ). As K contains
no singletons it follows that inf{diamK : K ∈ K} > 0; and since f is light
we see that inf{diam g(y) : y ∈ Y } = inf{diam f(K) : K ∈ K} = λ > 0.

As all n-dimensional spaces are embeddable in the same Euclidean space
there exists an integer N = N(n) such that for every n-dimensional compact
space H every open cover of H has an open refinement {V1, . . . , Vr} so that
each Vi intersects at most N of the other Vj . Let ε > 0 and n be given. Let
δ1 = δ1(ε) and α(ε) be as in Lemma 2.3.

Let 0 < δ = min{δ1/2, λ/(6N)} (note that δ depends on n and ε) and
let α1(ε, n) > 0 be small enough such that d(y1, y2) ≤ α1(ε, n) in Y implies
that d(f(y1), f(y2)) < δ (in X). Finally, let α(ε, n) = min{α(ε), α1(ε, n)}.

Note that

(i) If B1, . . . , BN are N subsets of X with diamBi < 3δ then {Bi}Ni=1
do not cover g(y) for all y ∈ Y . Moreover, for every y ∈ Y there exists a
point x ∈ g(y) such that dist(x,Bi) ≥ 3δ for all 1 ≤ i ≤ N . (Since g(y) is a
continuum of diameter ≥ λ and δ ≤ λ/(6N).)

Let Y0 ⊂ Y be closed with dim g(Y0) ≤ n. Let {V1, . . . ,Vr} be a closed
cover of g(Y0) with mesh < δ (mesh with respect to the Hausdorff metric in
C(X)) such that each Vi intersects at most N of the other Vj . Then

(ii) For every 1 ≤ i ≤ r, for every A ∈ Vi, and every x ∈ A, B(x, δ) (=
closed δ-ball in X with center at x) intersects every B ∈ Vi (since otherwise
the Hausdorff distance between A and B would be more than δ).

Now we construct inductively closed subsets W1, . . . ,Wr of Y0 as follows:
pick someA1 ∈ V1 and x1 ∈ A1, and setW1 = f−1(B(x1, δ)) ∩ g−1(V1) ∩ Y0.
Assume that W1, . . . ,Wj−1 were constructed as Wi = f−1(B(xi, δ))
∩ g−1(Vi) ∩ Y0 where xi ∈ Ai ∈ Vi, 1 ≤ i ≤ j − 1. Let Aj ∈ Vj . At
most N of Vi, 1 ≤ i ≤ j − 1, intersect Vj . Assume these are Vi1 , . . . ,ViN .
By (i) there exists a point xj ∈ Aj such that dist(xj , B(xil , 3δ)) ≥ 3δ for all
1 ≤ l ≤ N . Hence

(iii) dist(B(xj , δ), B(xil , δ)) > δ for all 1 ≤ l ≤ N
and we take Wj = f−1(B(xj , δ))∩g−1(Vj)∩Y0. It follows from (ii) that Wi,
1 ≤ i ≤ r, intersects every element of K which is contained in Y0 ∩ g−1(Vi)
and so

⋃r
i=1Wi intersects every element of K which is contained in Y0.

From (iii) and the definition of α1(ε, n) we obtain

(iv) for 1 ≤ i < j ≤ r, if g(Wi) = Vi intersects g(Wj) = Vj then
dist(B(xi, δ), B(xj , δ)) > δ and hence dist(Wi,Wj) ≥ α1(ε, n) (in Y ) since
Wi ⊂ f−1(B(xi, δ)).

As δ ≤ δ1/2 and Wi ⊂ f−1(B(xi, δ)) we may apply Lemma 2.3 to
decompose Wi as Wi =

⋃ti
s=1W

s
i with diamW s

i < ε and dist(W s1
i ,W s2

i ) ≥
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α(ε). For 1 ≤ i < j ≤ r, if g(W s
i )∩ g(W t

j ) 6= ∅ then by (iv), dist(W s
i ,W

t
j ) ≥

α1(ε, n) ≥ α(ε, n) and we take Z1, . . . , Zm to be an enumeration of {W s
i },

1 ≤ i ≤ r, 1 ≤ s ≤ ti.
P r o o f o f T h e o r e m 2.1. Let X be a 2-dimensional continuum. Ap-

ply Theorems 1.2 and 1.3 to find a 2-dimensional hereditarily indecompos-
able continuum Y with a light map f : Y → X, and a 1-dimensional contin-
uum Q with a map ψ : X → Q such that dimψ−1(Q1) = 1. Let ψ ◦f = ϕ◦p
denote the monotone light decomposition of the map ψ ◦ f : Y → Q with
p : Y → V = p(Y ) monotone.
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(The arrows not marked by letters in this diagram represent maps which
exist, but are not referred to in the sequel.)

Let F1 and F2 be closed disjoint subsets of Y such that

(i) every closed separator between F1 and F2 must have a component
of diameter ≥ r = r(F1, F2) > 0.

Let W : C(Y ) → R+ be a Whitney map, and let t > 0 be small enough
such that

(ii) meshW−1(t) < r.

K = W−1(t) is a closed decomposition of Y which contains no singletons.
Let h : Y → W−1(t) denote the quotient map. Let n be a positive integer
and set ε = (1/3) dist(F1, F2) > 0. Let α(ε, n) > 0 be the real obtained in
Lemma 2.4. (Note that g = f∗ ◦ h, where f∗ : C(Y ) → C(X) is defined by
f∗(A) = f(A), i.e. g(y) = f(h(y)).)

Let 0 < t0 < t be such that

(iii) meshW−1(t0) < min{α(ε, n), ε}.
Let q : Y →W−1(t0) be the quotient map. Then q is an open monotone

map with no trivial fibers. Let s = p ∧ q denote the product of the maps
p and q, i.e. the fiber of s at y ∈ Y is the intersection of the fibers of p
and q at y (see [4]). Note that as Y is hereditarily indecomposable and
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p and q are monotone, these fibers of p and q at y actually contain one
another. Thus, each fiber of s is either a fiber of p or of q. Let S denote
the range of s and let S denote the decomposition of Y induced by s. Set
Yq = {A : A ∈ S ∩W−1(t0)}, i.e. Yq is the union of those fibers of s which
are fibers of q (and thus are contained in some fiber of p).

Yq is closed in Y . To prove this we show that S ∩W−1(t0) is closed in
C(Y ). (Note that S may fail to be closed.) Let {Ak}∞k=1 ⊂ S ∩ W−1(t0)
converge to some A ∈ C(Y ). Then A ∈ W−1(t0) since W−1(t0) is closed in
C(Y ). Each Ak is contained in some fiber Bk of p, and we may assume that
{Bk} converges in C(Y ) to some continuum B. Clearly A ⊂ B and as p is
continuous, B is contained in some fiber of p. Hence A is a fiber of q and is
contained in a fiber of p so A ∈ S and S ∩W−1(t0) is closed.

We claim that

(iv) dim s(Y \ Yq) ≤ 1.

Indeed, Y \Yq is a union of fibers of s which are also fibers of p (but are not
fibers of q). Hence the decomposition of Y \ Yq induced by the map s|Y \Yq
is identical to the decomposition induced by p|Y \Yq . Thus s(Y \ Yq) and
p(Y \Yq) are homeomorphic. It follows that dim s(Y \Yq) = dim p(Y \Yq) ≤
dimV and dimV ≤ 1 since ϕ : V → Q is light and dimQ = 1.

We also have dim f(Yq) = 1. Indeed, let A ∈ S ∩W−1(t0). Then A is a
fiber of q which is contained in a fiber B of p. Moreover, A is not a singleton
and as f is light both f(A) and f(B) are nontrivial continua in X. Recall
that ψ ◦ f = ϕ ◦ p. Hence ψ(f(B)) = ϕ(p(B)) and as B is a fiber of p,
ϕ(p(B)) is a singleton and ψ is constant on f(B). It follows that f(B) is
contained in ψ−1(Q1) (which is the union of all fibers of ψ with dimension
> 0) and also that f(Yq) ⊂ ψ−1(Q1) and as dimψ−1(Q1) ≤ 1, we have
dim f(Yq) ≤ 1.

Set Y0 =
⋃{E : E ∈W−1(t), E ⊂ Yq}. Thus Y0 consists of those fibers of

h which are contained in Yq. Note that the decomposition W−1(t0) strictly
refines W−1(t), so if E ∈W−1(t) then E is a union of fibers of q.

(v) Y0 is closed in Y

since D = {E : E ∈ W−1(t), E ⊂ Yq} is closed in C(Y ). The latter holds
since if Ek ∈ D and Ek → E in C(Y ) then E ∈ W−1(t) and E ⊂ Yq as
W−1(t) is closed in C(Y ) and Yq is closed in Y .

And as f(Y0) ⊂ f(Yq) we also have

(vi) dim f(Y0) ≤ 1.

(Note that as f is light, dimYq ≤ 1 too.)
We claim that dim g(Y0) > n. Once we show this we are done. Indeed,

g(Y0) = {f(h(y)) : y ∈ Y0}. For y ∈ Y0, h(y) ∈ W−1(t) is contained in Y0
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and it follows that g(Y0) ⊂ C(f(Y0)). This implies that dim C(f(Y0)) > n.
Hence f(Y0) (which is compact by (v) and 1-dimensional by (vi)) must
contain a 1-dimensional component Tn with dim C(Tn) > n.

Aiming at a contradiction assume dim g(Y0) ≤ n. Then we may apply
Lemma 2.4. Let Z1, . . . , Zm ⊂ Y0 be from the conclusion of Lemma 2.4 for
K = W−1(t). Then

(vii) the sets s(Zi), 1 ≤ i ≤ m, are mutually disjoint.

Indeed, the map s is a factor of g. By this we mean that the fibers of s are
contained in those of g. Hence g(Zi) ∩ g(Zj) = ∅ implies s(Zi) ∩ s(Zj) = ∅.
If for some i < j, g(Zi) ∩ g(Zj) 6= ∅ then by Lemma 2.4, dist(Zi, Zj) ≥
α(ε, n). By (iii) each fiber of q has diameter < α(ε, n), which implies that
q(Zi) ∩ q(Zj) = ∅ and as s is a factor of q too, s(Zi) ∩ s(Zj) = ∅.

(viii) s(F1) ∩ s(F2) = ∅.
This holds since q and hence s are ε-maps (by (iii)) and ε= 1

3 dist(F1, F2).
The same argument combined with the fact that diamZi < ε also implies
that

(ix) for every 1 ≤ i ≤ m, s(Zi) intersects at most one of the sets s(F1)
and s(F2).

Set H1 = s(F1) ∪ (
⋃{s(Zi) : s(F1) ∩ s(Zi) 6= ∅}) and H2 = s(F2) ∪

(
⋃{s(Zi) : s(F1)∩ s(Zi) = ∅}). By (ix), H1 ∩H2 = ∅. By (iv), dim s(Y \Yq)
≤ 1 hence there exists a closed subset L of S = s(Y ) which separates between
H1 and H2 in S such that dimL ∩ s(Y \ Yq) = 0. Then L also separates
s(F1) from s(F2) and

(x) L ∩ s(⋃mi=1 Zi) = ∅.
By (i), s−1(L) has a component M with diamM > r. Then M ∩ (Y \Yq)

= ∅.
Indeed, by (ii) fibers of s have diameter < r. Hence s(M) is a nontrivial

continuum in L. If y ∈ M ∩ (Y \ Yq) then w = s(y) ∈ L ∩ s(Y \ Yq). Since
Yq is a union of fibers of s (those fibers which are also fibers of q) we have
s(Y \ Yq) = s(Y ) \ s(Yq) and hence w ∈ L \ s(Yq) = L ∩ s(Y \ Yq). As
s(Yq) is closed and dimL \ s(Yq) = dimL ∩ s(Y \ Yq) = 0, {w} is a compo-
nent of L and hence s(M) ⊂ {w}, which contradicts the fact that s(M) is
nontrivial.

It follows that M ⊂ Yq. Let A ∈ W−1(t) be such that A ∩M 6= ∅. As
diamA < r, we have A ⊂ M ⊂ s−1(L) (by (ii)). So A ⊂ Y0 and s(A) ⊂ L.
By Lemma 2.4,

⋃m
i=1 Zi intersects A and hence s(

⋃m
i=1 Zi) intersects L,

contradicting (x). This contradiction implies dim g(Y0) > n and concludes
the proof.
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