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Nonmetrizable topological dynamical characterization
of central sets
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Hong-ting S h i and Hong-wei Y a n g (Beijing)

Abstract. Without the restriction of metrizability, topological dynamical systems
(X, 〈Ts〉s∈G) are defined and uniform recurrence and proximality are studied. Some well
known results are generalized and some new results are obtained. In particular, a topolog-
ical dynamical characterization of central sets in an arbitrary semigroup (G,+) is given
and shown to be equivalent to the usual algebraic characterization.

0. Introduction. A topological dynamical system is usually defined to
consist of a compact metric space X together with a semigroup (or group)
acting on X by continuous transformations. (See [11, p. 19] or [2, Definition
6.1].) We generalize this notion by dropping the “metric” requirement and
study in Section 1 natural generalizations of uniform recurrence and proxi-
mality. These generalizations turn out to be very useful, because they enable
us to establish the equivalence of dynamical and algebraic characterizations
of central sets.

The notion of “central subset” was first developed by Furstenberg [11]
in the semigroup (N,+) of natural numbers. Later Bergelson and Hindman
[2] defined the notion of a central set in an arbitrary semigroup (G,+) in
terms of the algebra of βG, the Stone–Čech compactification of G. They
also defined a notion of *-central subset, using the natural extension of
Furstenberg’s definition, and pointed out that any *-central subset of (G,+)
is central in (G,+). Moreover, a result of Weiss (see [2, Theorem 6.11])
guarantees that in a countable semigroup (G,+), a subset of G is central if
and only if it is *-central. In Section 2 of this paper, we show (inspired by
Weiss) that if **-central is defined as the natural extension of the notion of
*-central using the more general definition of topological dynamical system,
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then in any semigroup, countable or not, a subset is central if and only if it
is **-central.

Throughout this paper, (G,+) will denote an infinite discrete semigroup
and (βG,+) will denote its Stone–Čech compactification with the operation
extending the operation in G such that λu is continuous for each u ∈ βG and
%s is continuous for each s ∈ G, where for v ∈ βG we define λu(v) = u + v
and %s(v) = v + s. Then (βG,+) is a compact left topological semigroup.
As such, (βG,+) has a unique smallest two-sided ideal which is the union
of all minimal right ideals of (βG,+) and is also the union of all minimal
left ideals of (βG,+). (See [4, Theorem 1.3.11].) We will also use the fact
that any compact left topological semigroup has an idempotent [8, Corollary
2.10].

From [12] we know that for each point u ∈ βG, there is a unique ultrafil-
ter on G which converges to u. Following [12] we will denote this ultrafilter
by Au. Given u, v ∈ βG and B ⊆ G one has B ∈ Au+v if and only if
{s ∈ G : B − s ∈ Au} ∈ Av, where B − s = {t ∈ G : t+ s ∈ B}. (See [13].)

1. Uniform recurrence and proximality. We begin by generalizing
the notion of topological dynamical system to apply to an arbitrary compact
space.

Definition 1.1. A topological dynamical system is a pair (X, 〈Ts〉s∈G),
where X is a compact Hausdorff space, (G,+) is an infinite discrete semi-
group, each Ts is a continuous mapping from X to X, and Ts ◦ Tt = Tt+s
for each s, t ∈ G.

We note that one can apply the same definition to an arbitrary com-
pletely regular Hausdorff space X. But one gains no generality by doing
so since then (X, 〈Ts〉s∈G) is a topological dynamical system if and only if
(βX, 〈T βs 〉s∈G) is a topological dynamical system.

We now recall the following definition from [10].

Definition 1.2. Let X be a topological space, let D be a discrete space,
let u ∈ βD, and for each s ∈ D, let xs ∈ X. Then for y ∈ X, y = u-lims∈Dxs
if and only if for each neighborhood U of y, {s ∈ D : xs ∈ U} ∈ Au.

It is well known and easy to see that in a compact Hausdorff space X
there is always a unique u-lims∈Dxs.

We recall from [6, 7, 8] the notion of an enveloping semigroup.

Definition 1.3. Let X be a compact Hausdorff space, let
∏
x∈X X have

the product topology, and let S be a set of continuous functions from X to
X. The enveloping semigroup E(S) of S is the closure of S in

∏
x∈X X.

We now extend the family 〈Ts〉s∈G by defining Tu for u ∈ βG.
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Definition 1.4. Let (X, 〈Ts〉s∈G) be a topological dynamical system
and let u ∈ βG. Then Tu = u-lims∈G Ts, where the limit is taken in

∏
x∈X X.

Note that if t ∈ G, then Tt = t-lims∈GTs so the above definition is
consistent with the earlier notion.

We have immediately the following characterization of E(〈Ts〉s∈G).

Theorem 1.5. Let (X, 〈Ts〉s∈G) be a topological dynamical system. Then
E(〈Ts〉s∈G) = {Tu : u ∈ βG}.

P r o o f. Define ϕ : G → ∏
x∈X X by ϕ(s) = Ts and let ϕβ be the

continuous extension to βG. Then by [5, Lemma 2.1], for each u ∈ βG,
ϕβ(u) = Tu. Thus {Tu : u ∈ βG} = ϕβ [βG] is a closed subset of

∏
x∈X X

containing {Ts : s ∈ G}. Consequently, E(〈Ts〉s∈G) ⊆ {Tu : u ∈ βG}.
On the other hand, each Tu = u-lims∈GTs ∈ cl{Ts : s ∈ G} so E(〈Ts〉s∈G)

= {Tu : u ∈ βG}.
The following observation will frequently be useful.

Lemma 1.6. Let (X, 〈Ts〉s∈G) be a topological dynamical system and let
u, v ∈ βG. Then Tu ◦ Tv = Tv+u.

P r o o f. Let x ∈ X. Then by [2, Lemma 6.10],

Tu+v(x) = (u+ v)-limlim
r∈G

Tr(x) = v-limlim
t∈G

(u-limlim
s∈G

Ts+t(x))

= v-limlim
t∈G

(Tt(u-limlim
s∈G

Ts(x))) = v-limlim
t∈G

(Tt(Tu(x))) = Tv(Tu(x)).

We now extend the notion of uniform recurrence to apply to an arbitrary
topological dynamical system (using the usual definition). We also extend
the standard notion of minimal closed invariant sets.

Definition 1.7. Let (X, 〈Ts〉s∈G) be a topological dynamical system.

(a) A subset D of G is called syndetic if and only if there exists a finite
subset F of G such that for any s ∈ G, there exists t ∈ F with s+ t ∈ D.

(b) A point x ∈ X is a uniformly recurrent point if and only if for each
neighborhood W of x, {s ∈ G : Ts(x) ∈W} is syndetic.

(c) A subset R of X is invariant if and only if for each s ∈ G, Ts[R] ⊆ R.
(d) A subset R of X is a minimal closed invariant subset if and only if

R is minimal in the set {P ⊆ X : P is nonempty, closed, and invariant}.
The following lemma generalizes [11, Theorems 1.15 and 1.17]. The proof

is the same as in [11], so we omit it.

Lemma 1.8. Let (X, 〈Ts〉s∈G) be a topological dynamical system.

(a) If R is a minimal closed invariant subset of X, then each point of
R is uniformly recurrent.
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(b) If x is a uniformly recurrent point , then cl{Ts(x) : s ∈ G} is a
minimal closed invariant subset of X and x ∈ cl{Ts(x) : s ∈ G}.

Note that (βG, 〈%s〉s∈G) is a topological dynamical system.

Theorem 1.9. Let R ⊆ βG. Then R is a minimal closed invariant
subset of the topological dynamical system (βG, 〈%s〉s∈G) if and only if R is
a minimal right ideal of the semigroup (βG,+).

P r o o f. Note first that any right ideal of (βG,+) is invariant. Conversely
any closed invariant subset P of βG is a right ideal of (βG,+). (To verify
the latter assertion, note that for each u ∈ P and each s ∈ G, u + s ∈ P .
Consequently, given u ∈ P , u+ βG = λu[clG] ⊆ cl(λu[G]) ⊆ clP = P .)

Assume now thatR is a minimal closed invariant subset of the topological
dynamical system (βG, 〈%s〉s∈G). Then R is a right ideal of (βG,+). Choose
a minimal right ideal R′ of (βG,+) which is contained in R. Since minimal
right ideals are closed [4, Theorem 1.3.11], R′ is a closed invariant subset of
R and hence R′ = R.

Similarly, if R is a minimal right ideal of (βG,+), then R is closed and
invariant while any closed invariant subset of R is a right ideal, and hence
R is a minimal closed invariant set.

Corollary 1.10. The set of all uniformly recurrent points of the topo-
logical dynamical system (βG, 〈%s〉s∈G) is the smallest two-sided ideal of
(βG,+).

P r o o f. This is an immediate consequence of Lemma 1.8, Theorem 1.9,
and the fact that the smallest ideal of (βG,+) is the union of all the minimal
right ideals of (βG,+).

The following theorem is a generalization of [2, Lemmas 6.6 and 6.9] and
[13, Theorem 6.2]. This theorem is the theoretical basis of Theorem 2.4.

Theorem 1.11. Let (X, 〈Ts〉s∈G) be a topological dynamical system, let
R be a minimal right ideal of (βG,+) and let x ∈ X. The following state-
ments are equivalent.

(a) The point x is a uniformly recurrent point of (X, 〈Ts〉s∈G).
(b) There exists u ∈ R such that Tu(x) = x.
(c) There exists y ∈ X and an idempotent u ∈ R such that Tu(y) = x.
(d) There exists an idempotent u ∈ R such that Tu(x) = x.

P r o o f. (a)⇒(b). Choose any v ∈ R. Let N be the set of neighborhoods
of x in X. For each U ∈ N let BU = {s ∈ G : Ts(x) ∈ U}. Since x is
uniformly recurrent, each BU is syndetic, so choose finite FU ⊆ G such
that for any s ∈ G there is some t ∈ FU such that s + t ∈ BU . Then for
each U ∈ N , we have G =

⋃
t∈FU (BU − t); so pick tU ∈ FU such that

BU − tU ∈ Av.
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Given any U ∈ N , let CU = {tV : V ∈ N and V ⊆ U}. Then {CU :
U ∈ N} has the finite intersection property so pick w ∈ βG such that
{CU : U ∈ N} ⊆ Aw and let u = v + w. Then u ∈ R since R is a right
ideal of (βG,+). To see that Tu(x) = x, let U ∈ N . To see that BU ∈ Au,
suppose instead that BU 6∈ Au. Then {t ∈ G : BU − t 6∈ Av} ∈ Aw and
CU ∈ Aw so pick t ∈ CU such that BU − t 6∈ Av. Pick V ∈ N with V ⊆ U
such that t = tV . Then BV − t ∈ Av and BV − t ⊆ BU − t, a contradiction.

(b)⇒(c). Let S = {v ∈ R : Tv(x) = x}. It suffices to show that S is a com-
pact subsemigroup of R, since then S has an idempotent. By assumption,
S 6= ∅. Further, if v ∈ R \ S, then there is some neighborhood U of x such
that B = {s ∈ G : Ts(x) ∈ U} 6∈ Av. Then clB is a neighborhood of v in βG
which misses S, and so S is compact. Finally, to see that S is a semigroup,
let v, w ∈ S. Then by Lemma 1.6, Tv+w(x) = Tw(Tv(x)) = Tw(x) = x.

(c)⇒(d). Again we use Lemma 1.6: Tu(x) = Tu(Tu(y)) = Tu+u(y) =
Tu(y) = x.

(d)⇒(a). Let U be a neighborhood of x and let B = {s ∈ G : Ts(x) ∈ U}
and suppose that B is not syndetic. Then

{
G \

⋃

t∈F
B − t : F is a finite nonempty subset of G

}

has the finite intersection property, so pick some w ∈ βG such that
{
G \

⋃

t∈F
B − t : F is a finite nonempty subset of G

}
⊆ Aw.

Then (w+ βG)∩ clB = ∅. (For suppose instead one had some v ∈ βG with
B ∈ Aw+v. Then pick some t ∈ G with B − t ∈ Aw.) Let R′ = w + βG.
Then R′ is a right ideal of (βG,+), so u + R′ is a right ideal of (βG,+)
which is contained in R, and hence u + R′ = R. Thus we may pick some
v ∈ R′ such that u + v = u. Again using Lemma 1.6, Tv(x) = Tv(Tu(x)) =
Tu+v(x) = Tu(x) = x, so in particular B ∈ Av. But v ∈ R′ and R′∩clB = ∅,
a contradiction.

The previous generalizations have all been straightforward. It is not so
clear how to generalize the notion of “proximal”. Recall that in a metric
dynamical system (X, 〈Ts〉s∈G), two points x and y are proximal provided
there is a sequence 〈sk〉∞k=1 in G such that limk→∞ d(Tsk(x), Tsk(y)) = 0,
where d is the metric on X.

Definition 1.12. Let (X, 〈Ts〉s∈G) be a topological dynamical system
and let x, y ∈ X. Then x and y are proximal if and only if there is some
u ∈ βG such that Tu(x) = Tu(y).

We show first that we have indeed generalized the metric notion.
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Theorem 1.13. Let (X, 〈Ts〉s∈G) be a topological dynamical system, let
x, y ∈ X, and assume that X is a metric space with metric d. Then x and
y are proximal if and only if there is a sequence 〈sk〉∞k=1 in G such that
limk→∞ d(Tsk(x), Tsk(y)) = 0.

P r o o f. Assume we have u ∈ βG such that Tu(x) = Tu(y) = z. Then
for each k ∈ N, Bk = {s ∈ G : d(Ts(x), z) < 1/k} ∩ {s ∈ G : d(Ts(y), z) <
1/k} ∈ Au, so choose sk ∈ Bk. Then limk→∞ d(Tsk(x), Tsk(y)) = 0.

Now assume that we have a sequence 〈sk〉∞k=1 in G such that
limk→∞ d(Tsk(x), Tsk(y)) = 0. Choose u ∈ βG such that {{sn : n ≥ k} :
k ∈ N} ⊆ Au. Let z = Tu(x). To see that z = Tu(y), let ε > 0 be given
and let B = {s ∈ G : d(Ts(x), z) < ε/2}. Then B ∈ Au. Pick k ∈ N such
that for all n > k, d(Tsn(x), Tsn(y)) < ε/2 and let C = {sn : n ≥ k}. Then
B ∩ C ∈ Au and B ∩ C ⊆ {s ∈ G : d(Ts(y), z) < ε}.

The following theorem is a generalization of [11,Theorem 8.7].

Theorem 1.14. Let (X, 〈Ts〉s∈G) be a topological dynamical system and
let x ∈ X. Then there is a uniformly recurrent point y ∈ cl{Ts(x) : s ∈ G}
such that x and y are proximal.

P r o o f. Let R be any minimal right ideal of (βG,+) and pick an idem-
potent u ∈ R. Let y = Tu(x). Then trivially y ∈ cl{Ts(x) : s ∈ G}. By
Theorem 1.11, y is a uniformly recurrent point of (X, 〈Ts〉s∈G). By Lemma
1.6 we have Tu(y) = Tu(Tu(x)) = Tu+u(x) = Tu(x) so x and y are proxi-
mal.

The following theorem is a generalization of [2, Lemma 6.4], which was
itself a generalization of [8, Lemma 5.15].

Theorem 1.15. Let (X, 〈Ts〉s∈G) be a topological dynamical system and
let x, y ∈ X. If x and y are proximal , then there is a minimal right ideal
R of (βG,+) such that Tu(x) = Tu(y) for all u ∈ R.

P r o o f. Pick v ∈ βG such that Tv(x) = Tv(y) and pick a minimal right
ideal R of (βG,+) such that R ⊆ v + βG. To see that R is as required, let
u ∈ R and choose w ∈ βG such that u = v+w. Then, again using Lemma 1.6,
we have Tu(x) = Tv+w(x) = Tw(Tv(x)) = Tw(Tv(y)) = Tv+w(y) = Tu(y).

2. Central, *-central, and **-central sets. Recall that an idempo-
tent u in a compact left topological semigroup (S,+) is said to be minimal
if and only if u is a member of the smallest ideal of (S,+). Of course, since
the smallest ideal is the union of all of the minimal right ideals, this is the
same as saying that u is a member of some minimal right ideal of (S,+).
Less obvious is that this is equivalent to being minimal with respect to the
ordering of idempotents which has u ≤ v if and only if u + v = v + u = u.
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(See [4] or [2, Lemma 3.2] for a proof of this equivalence.) We also recall the
following definitions from [2].

Definition 2.1. Let (G,+) be a discrete semigroup.

(a) A subset B of G is central if and only if there is a minimal idempotent
u of (βG,+) such that B ∈ Au.

(b) A subset B of G is *-central if and only if there exists a topological
dynamical system (X, 〈Ts〉s∈G) such that X is a (compact) metric space
and there exist x, y ∈ X and a neighborhood U of y such that x and y are
proximal, y is uniformly recurrent, and B = {s ∈ G : Ts(x) ∈ U}.

We extend the notion of *-central by dropping the requirement that X
be a metric space. Note that the fact which allows us to do this is that we
were able to extend the notion of “proximal” to the nonmetric situation.

Definition 2.2. Let (G,+) be a discrete semigroup. A subset B of
G is **-central if and only if there exists a topological dynamical system
(X, 〈Ts〉s∈G) and there exist x, y ∈ X and a neighborhood U of y such that
x and y are proximal, y is uniformly recurrent, and B = {s ∈ G : Ts(x) ∈ U}.

We have the following easy consequence of the results in Section 1.

Theorem 2.3. Let (X, 〈Ts〉s∈G) be a topological dynamical system and let
x, y ∈ X. There is a minimal idempotent u in (βG,+) such that Tu(x) = y
if and only if both y is uniformly recurrent and x and y are proximal.

P r o o f. (⇒). Since u is minimal, there is a minimal right ideal R of
(βG,+) such that u ∈ R. Thus by Theorem 1.11, y is uniformly recurrent.
By Lemma 1.6, Tu(y) = Tu

(
Tu(x)

)
= Tu+u(x) = Tu(x) so x and y are

proximal.
(⇐). Pick by Theorem 1.15 a minimal right ideal R of (βG,+) such that

Tu(x) = Tu(y) for all u ∈ R. Pick by Theorem 1.11 an idempotent u ∈ R
such that Tu(y) = y.

The following is the main result of this paper. The proof of the necessity
is inspired by the result of Weiss [2, Theorem 6.11].

Theorem 2.4. Let (G,+) be an infinite discrete semigroup and let B ⊆
G. Then B is central if and only if B is **-central.

P r o o f. (⇒). We may assume G has an identity 0. (If not, adjoin one, in
which case 0 6∈ B.) Let X =

∏
s∈G {0, 1} and for s ∈ G define Ts : X → X

by Ts(x)(t) = x(s+t). It is routine to verify that each Ts is continuous. Now
let x = χB , the characteristic function of B. That is, x(t) = 1 if and only if
t ∈ B. Pick a minimal u in (βG,+) such that B ∈ Au and let y = Tu(x).
Then by Theorem 2.3, y is uniformly recurrent and x and y are proximal.
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Now let U = {z ∈ X : z(0) = y(0)}. Then U is a neighborhood of y in X.
We note that y(0) = 1. Indeed, y = Tu(x) so {s ∈ G : Ts(x) ∈ U} ∈ Au and
we may choose some s ∈ B such that Ts(x) ∈ U . Then y(0) = Ts(x)(0) =
x(s+ 0) = 1. Thus given any s ∈ G,

s ∈ B ⇔ x(s) = 1⇔ Ts(x)(0) = 1⇔ Ts(x) ∈ U.
(⇐). Choose a topological dynamical system (X, 〈Ts〉s∈G), points x, y ∈

X, and a neighborhood U of y such that x and y are proximal, y is uniformly
recurrent, and B = {s ∈ G : Ts(x) ∈ U}. Choose by Theorem 2.3 a minimal
idempotent u in (βG,+) such that Tu(x) = y. Then B ∈ Au.

As was the situation with *-central sets, it is not obvious that the notion
of **-central is closed under supersets.

Corollary 2.5. Let (G,+) be an infinite discrete semigroup and let
B ⊆ C ⊆ G. If B is **-central , then C is **-central.

P r o o f. This follows from Theorem 2.4 and the fact that supersets of
central sets are central.

In most cases a given topological dynamical system (X, 〈Ts〉s∈G) will
determine infinitely many **-central sets. We close with an interesting class
of exceptions. (Note that the hypothesis of Theorem 2.6 is satisfied if one
has no s, t ∈ G with t = t+ s.)

Theorem 2.6. Let (G,+) be an infinite discrete semigroup and assume
that for any t ∈ G the set {s ∈ G : t = t + s} is not syndetic. Then there
is a topological dynamical system (X, 〈Ts〉s∈G) such that the only **-central
subset of G determined by (X, 〈Ts〉s∈G) is G.

P r o o f. Let X be the hedgehog space of spininess |G|. (See [9].) That is,
the set X is the quotient of the set [0, 1]×G obtained by collapsing {0}×G
to a point, which we will call 0. Define a metric on X by %

(
0, (x, t)

)
= x and

%((x, s), (y, t)) =
{ |x− y| if s = t,
x+ y if s 6= t.

It is routine to verify that % is a metric on X.
Given s ∈ G define Ts : X → X by Ts(0) = 0 and Ts(x, t) = (x, t + s).

It is routine to verify that each Ts is continuous. Note also that the only
uniformly recurrent point of (X, 〈Ts〉s∈G) is 0. To see this, suppose that
(x, t) ∈ (0, 1]×G is uniformly recurrent and let U be the open ball of radius
x around (x, t), that is,

U =
{ {(y, t) : 0 < y < 2x} if 0 < x ≤ 1/2,
{(y, t) : 0 < y ≤ 1} if 1/2 < x ≤ 1.

Then {s ∈ G : Ts(x, t) ∈ U} = {s ∈ G : t = t+ s}, which is not syndetic by
hypothesis.
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Further, the only point of X which is proximal to 0 is 0 itself. Given any
neighborhood W of 0, G = {s ∈ G : Ts(0) ∈W}.

Acknowledgements. The manuscript of this paper was completed
while the first author was visiting Peking University during the 1993–94 aca-
demic year. We would like to express our sincere thanks to Professor Zhang
Zhifen, Professor Tanyun and Dr. Qi Dongwen for many helpful discussions
and suggestions. We are particularly grateful to the referee for providing an
improved version of the original paper.

References

[1] J. Aus lander, Minimal Flows and their Extensions, North-Holland, Amsterdam,
1988.

[2] V. Berge l son and N. Hindman, Nonmetrizable topological dynamics and Ramsey
theory , Trans. Amer. Math. Soc. 320 (1990), 293–320.

[3] J. Berg lund and N. Hindman, Filters and the weak almost periodic compactifi-
cation of a discrete semigroup, ibid. 284 (1984), 1–38.

[4] J. Berg lund, H. Junghenn and P. Mi lnes, Analysis on Semigroups, Wiley, New
York, 1989.
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