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Ultrametric spaces bi-Lipschitz embeddable in Rn

by

Kerkko L u o s t o (Helsinki)

Abstract. It is proved that if an ultrametric space can be bi-Lipschitz embedded in
Rn, then its Assouad dimension is less than n. Together with a result of Luukkainen and
Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms
of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in Rn.

1. Introduction. Embeddability is a central theme in modern mathe-
matics, common to various different fields such as topology, algebra, func-
tional analysis and set theory. Here the specific notion under considera-
tion is bi-Lipschitz embeddability and the spaces are ultrametric or Eu-
clidean spaces. In this context, the metric dimension introduced by As-
souad [A], or the Assouad dimension, plays a key rôle. In [LM-L, The-
orem 3.8], Luukkainen and Movahedi-Lankarani showed that every ultra-
metric space (X, d) whose Assouad dimension dimA(X, d) is strictly less
than n is bi-Lipschitz embeddable in Rn (see Definitions 3.1 and 4.1 be-
low). In this paper I prove that the converse also holds, i.e., if an ultra-
metric space (X, d) can be bi-Lipschitz embedded in Rn, then necessarily
dimA(X, d) < n. Movahedi-Lankarani and Wells [M-LW] have independently
arrived at a weaker result implying that if (X, d) can be bi-Lipschitz embed-
ded in Rn, then the image of X under this embedding has Lebesgue measure
zero.

The result of [LM-L] implies that an ultrametric space can be bi-Lipschitz
embedded in Rn if and only if its Assouad dimension is finite (see also [A]).
According to Semmes [S, Theorem 7.1], this cannot be generalized to arbi-
trary metric spaces, since, while the necessity is clear, the Heisenberg group
with Carnot metric gives a counter-example to the sufficiency. For readers
interested in the history of this subject, I recommend the introduction of
the paper [LM-L].
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Suppose (X, d) is an ultrametric space and f : X → Rn a bi-Lipschitz
embedding. The proof that dimA(X, d) < n is organized as follows. In Sec-
tion 2, the diameters of finite subsets of Rn are estimated with the aid of a
certain fixed linear order on Rn. More specifically, given a finite set Y ⊂ Rn
and, for all y ∈ Y , the distance of y from the set of the predecessors of y in Y ,
Proposition 2.2 will give a lower bound for the diameter of Y . To motivate
this setting, note that (X, d) has a clear-cut structure being an ultrametric
space, as for every positive r, the open balls with radius r form a partition
of X. One consequence of this fact is that if we consider a finite set Z ⊂ X
and a linear order � on Z, then the set of distances of elements of Z from
the sets of their predecessors does not depend on � (compare with the dis-
cussion after the proof of Proposition 3.4). Thus the result of Section 2 can
easily be used to estimate the size of f [Z] under a bi-Lipschitz mapping f .

Section 3 deals with the structural properties of the ultrametric space
(X, d). This section introduces a function νn defined on all non-empty finite
subsets of X, which should be regarded as some kind of invariant of the
space (X, d). Using the result from Section 2, the function νn is related to
the sizes of images of finite subsets of X. In the next section everything is
drawn together and the result dimA(X, d) < n is proved. The last section
studies the bi-Lipschitz embeddability from a different point of view: special
attention is paid to bi-Lipschitz coefficients which are close to 1. The result is
roughly that the smaller the coefficient, the smaller the Assouad dimension
of the space to be embedded.

The following notation is used: N is the set of natural numbers (including
zero), N∗ = N r {0}, Z is the set of integers, R is the set of reals, R+ =
[0,∞[ = {r ∈ R | r ≥ 0}, and R∗+ = R+ r {0}. The natural number n is
identified with the set of its predecessors, i.e., n = {0, . . . , n− 1}. This set-
theoretic convention explains notation like mini∈n xi = min{x0, . . . , xn−1}
and I ⊂ n. For any set X, the power set of X is denoted by P(X), the set of
finite subsets of X by Pω(X) and the cardinality of X by |X|. We also set
P∗ω(X) = Pω(X)r {∅} and bxc = max{n ∈ Z | n ≤ x}. In the course of this
paper we shall meet several linear orders. Instead of relying on the context,
I have chosen to emphasize the particular linear order used by writing it as
a subscript, e.g., as in max�A.

For a metric space (X, d) and a set Y ⊂ X, the diameter of Y is denoted
by δ(Y ). If Y is finite and |Y | ≥ 2, the notation

a(Y ) = min{d(x, y) | x, y ∈ Y, x 6= y}
is used. The open ball with centre x ∈ X and radius r > 0 is denoted by
Bd(x, r).

I thank Jouni Luukkainen for introducing me to this subject and for his
continued interest in my work.
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2. An estimate for the diameter of a finite subset. Let us fix
a linear order v on the space Rn such that if x = (x0, . . . , xn−1) v y =
(y0, . . . , yn−1), then

∑n−1
i=0 xi ≤

∑n−1
i=0 yi. For the sake of unambiguity, let us

agree that for distinct points x = (x0, . . . , xn−1), y = (y0, . . . , yn−1) ∈ Rn,
we have x v y if and only if either

∑n−1
i=0 xi <

∑n−1
i=0 yi, or

∑n−1
i=0 xi =∑n−1

i=0 yi and xk < yk, where k is the least number such that the coordinates
xk and yk differ.

Let A = {x0, . . . , xk−1} ⊂ Rn, where k ∈ N∗ and the elements of A
are enumerated in the increasing order with respect to v. Suppose we are
given the following data: For every l < k − 1 we know the distance of xl+1

from the set {x0, . . . , xl}. The objective of this section is to derive a lower
bound for δ(A) using this piece of information. The estimate is obtained by
inductively considering for every l ≤ k the diameters of the projections of
the set {x0, . . . , xl−1} onto coordinate axes.

A crucial point here is that the order v works well with the projec-
tions, which is reflected in the fact that, by the compactness of the set
K = {x = (x0, . . . , xn−1) ∈ Rn | |x| = 1 and

∑n−1
i=0 xi ≥ 0} and the con-

tinuity of the function f : Rn → R, f(x0, . . . , xn−1) = maxi∈n xi, there is
κn ∈ ]0, 1] such that for every unit vector x = (x0, . . . , xn−1), if the sum
of its coordinates is non-negative, then maxi∈n xi ≥ κn. In fact, it can be
shown by elementary methods that κ1 = 1 and κn = 1/

√
n(n− 1) for n ≥ 2

are the best possible choices.
The linear order v on Rn and the constant κn remain fixed for the rest

of this paper. The derivation of the estimate uses the following lemma of
combinatorial nature.

2.1. Lemma. Let (A,≤) be a finite non-empty linearly ordered set and
σ : A→ R+ a function such that σ(min≤A) = 0. Suppose that n ∈ N∗ and
that Bi : A → P(A), i ∈ n, are functions such that for every a ∈ A the set
{b ∈ A | b < a} is a disjoint union of the sets Bi(a), i ∈ n. Suppose further
that functions fi : A→ R+, i ∈ n, satisfy the condition fi(a) ≥ fi(b) +σ(a),
for every i ∈ n, a ∈ A and b ∈ Bi(a). Then

max
a∈A

max
i∈n

fi(a) ≥ 1
2
n

√∑

a∈A
σ(a)n.

P r o o f. Let us first split A into classes according to how the sets Bi(a)
behave. More specifically, let Ja = {i ∈ n | Bi(a) 6= ∅}, for every a ∈ A,
and let AI = {a ∈ A | Ja = I}, for I ⊂ n. Note that A∅ = {min≤A}. The
sum S =

∑
a∈A σ(a)n may be arranged as S =

∑
I∈I

∑
a∈AI σ(a)n, where

I = {I ⊂ n | AI 6= ∅}, whence there is J ∈ I such that
∑
a∈AJ σ(a)n ≥

S/|I| ≥ S/2n. We may assume S > 0, which implies J 6= ∅. Let m = |J | > 0
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and % = (
∑
a∈AJ σ(a)m)1/m; then % ≥ (

∑
a∈AJ σ(a)n)1/n ≥ 2−1S1/n due to

a well-known inequality.
Let J = {j0, . . . , jm−1}, where j0 < . . . < jm−1, and for every a ∈ AJ

consider the set

Qa =
⋃

b∈AJ , b≤a
[0, fj0(b)]× . . .× [0, fjm−1(b)].

Since AJ is finite and linearly ordered by ≤, we may use induction on a ∈ AJ
to prove that µ(Qa) ≥∑b∈AJ , b≤a σ(b)m, where µ is the ordinary Lebesgue
measure on Rm.

1) If a is an element of AJ , then picking any bk ∈ Bjk(a), for k ∈ m, shows
that fjk(a) ≥ fjk(bk) + σ(a) ≥ σ(a). In particular, µ(Qa) =

∏m−1
k=0 fjk(a) ≥

σ(a)m =
∑
b∈AJ , b≤a σ(b)m holds for the least element a of AJ .

2) Suppose then that a ∈ AJ has an immediate predecessor c in AJ . Let
Q∗ = [fj0(a)−σ(a), fj0(a)]×. . .×[fjm−1(a)−σ(a), fjm−1(a)]. Then Q∗ ⊂ Qa
by the first inequality in the previous paragraph. If (x0, . . . , xm−1) ∈ Q∗∩Qc,
there is b ≤ c such that for all k ∈ m, fjk(a) − σ(a) ≤ xk ≤ fjk(b). As
b ∈ ⋃i∈J Bi(a), it follows that, for some k ∈ m, fjk(a) ≥ fjk(b) + σ(a),
which implies xk = fjk(a)−σ(a). Hence, Q∗∩Qc ⊂

⋃m−1
k=0 {(x0, . . . , xm−1) ∈

Rm | xk = fjk(a)−σ(a)} has measure zero and by the induction hypothesis,

µ(Qa) ≥ µ(Qc ∪Q∗) = µ(Qc) + µ(Q∗)

≥
∑

b∈AJ, b≤c
σ(b)m + σ(a)m =

∑

b∈AJ, b≤a
σ(b)m,

so the induction claim is proved.

Choosing a = max≤AJ we have µ(Qa) ≥∑b∈AJ σ(b)m = %m. So Qa is
not included in any m-cube with the length of an edge less than %, which
implies that for some b ∈ AJ , maxi∈n fi(b) ≥ %. Consequently,

max
a∈A

max
i∈n

fi(a) ≥ % ≥ 1
2
S1/n =

1
2

(∑

a∈A
σ(a)n

)1/n
.

The preceding lemma easily yields the desired lower bound for the di-
ameter of a given finite set.

2.2. Proposition. Let A ⊂ Rn be finite and non-empty and let σ :
A→ R+,

σ(x) =
{

0 for x = minvA,
κn min{|y − x| | y ∈ A, y @ x} otherwise.
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Then

δ(A) ≥ 1
2
n

√∑

x∈A
σ(x)n.

P r o o f. For i ∈ n, let pi : Rn → R, pi(x0, . . . , xn−1) = xi. Suppose
x, y ∈ A are such that x @ y. Recall that if z ∈ Rn is a unit vector such that∑
i∈n pi(z) ≥ 0, then maxi∈n pi(z) ≥ κn. This holds in particular for z =

(y−x)/|y − x|, which implies that maxi∈n pi(y−x) = |y − x|maxi∈n pi(z) ≥
κn|y − x|. Denote by ky,x the least i ∈ n such that pi(y − x) ≥ κn|y − x|.
For every i ∈ n, let Bi : A→ P(A), Bi(y) = {x ∈ A | x @ y, ky,x = i} and
fi : A → R+, fi(y) = max{pi(y − x) | x ∈ A, x v y}. One can now easily
check that the assumptions of the previous lemma are in force. In fact, if
x ∈ Bi(y), then there is z ∈ A such that z v x @ y and fi(x) = pi(x − z),
so that fi(y)− fi(x) ≥ pi(y− z)− pi(x− z) = pi(y−x) ≥ κn|y − x| ≥ σ(y).
Therefore there are x, y ∈ A and i ∈ n such that x v y and

δ(A) ≥ |x− y| ≥ pi(y − x) = fi(y) ≥ 1
2
n

√∑

z∈A
σ(z)n.

3. Ultrametric spaces and bi-Lipschitz embeddings. The results
of this section rely heavily on the fact that the open balls of fixed radius r
form a partition of an ultrametric space. This has some nice structural con-
sequences, which have been described in [LM-L, Theorem 2.2 and Remarks
2.3]. In the special case when the ultrametric space is bounded, it has tree-
like structure (cf. Example 3.2 here, where the space is actually like a binary
tree). In the sequel, the special properties of ultrametric spaces and the re-
sult of the previous section are applied to the bi-Lipschitz embeddability of
an ultrametric space in the Euclidean space Rn.

3.1. Definition. Let (X, d) and (Y, d′) be metric spaces.

(a) A function f : X → Y is a bi-Lipschitz embedding if there is a real
number L ≥ 1 such that for every x, y ∈ X,

1
L
d(x, y) ≤ d′(f(x), f(y)) ≤ Ld(x, y).

If there is a need to stress the constant (the bi-Lipschitz coefficient) L, the
function f is also called an L-bi-Lipschitz embedding . 1-bi-Lipschitz embed-
dings are called isometric embeddings. If only the rightmost inequality is
required, for some L ≥ 0 and every x, y ∈ X, then f is called a Lipschitz
(or an L-Lipschitz ) function.

(b) The space (X, d) is an ultrametric space (and d is an ultrametric) if
for every x, y, z ∈ X, the strong triangle inequality d(x, z) ≤ max{d(x, y),
d(y, z)} holds.
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Let (X, d) be an ultrametric space and n ∈ N∗. I shall define a function
νn : P∗ω(X) → R+ which will be of help in measuring the diameter of the
image f [Y ] of a finite set Y ⊂ X under a bi-Lipschitz embedding f : X →
Rn. To this aim, note first that

∼r = {(x, y) ∈ X ×X | d(x, y) < r}
is an equivalence relation on X for every r ∈ R∗+, as (X, d) is ultrametric.
Obviously, ∼r ⊂∼s whenever 0 < r ≤ s.

Fix Y ∈ P∗ω(X) for a while. For r ∈ R∗+, let k(r) be the number of
the equivalence classes of ∼r which meet Y . Then clearly k : R∗+ → N is a
left-continuous decreasing function, and the support supt(w) = {r ∈ R∗+ |
w(r) 6= 0} of the function w : R∗+ → N, w(r) = k(r)− limx→r+ k(x), is finite.
Moreover, a(Y ) = min supt(w) provided that |Y | ≥ 2, and

∑
r∈supt(w) w(r)

= |Y | − 1. Now set

νn(Y ) =
∑
r>0

w(r)rn =
∑

r∈supt(w)

w(r)rn.

There is a very canonical class of ultrametric spaces, namely the ultra-
metric Cantor spaces. In the course of the proof it is instructive to follow
what happens in this particular case.

3.2. Example. Let C = N{0, 1} be the set of all functions f : N→ {0, 1}.
There are various ways to endow C with an ultrametric; specifically, for every
α > 1, let

dα : C × C → R+, dα(f, g) =
{

0 for f = g,
α−min{n∈N|f(n)6=g(n)} for f 6= g.

Then (C, dα) is an ultrametric space. Since dα induces the product topology
on C, the space (C, dα) is compact. Let us fix α, and consider a finite Y ⊂ C
with at least two points. Obviously, δ(Y ) = α−l and a(Y ) = α−m for some
l,m ∈ N, l ≤ m, and the restriction f¹{0, . . . , l − 1} does not depend on
f ∈ Y . Let us use the same notation k,w as above. Then it is straightforward
to check that k(r) = k(α−j) for j ∈ N and r ∈ ]α−j−1, α−j ], that supt(w) ⊂
{α−j | j ∈ N, l ≤ j ≤ m}, and that for every j ∈ N, we have k(α−l−j) ≤
2j+1 and w(α−l−j) ≤ 2j . In particular,

|Y | = k(a(Y )) = k(α−l−(m−l))(A)

≤ 2m−l+1 = 2 · (αm−l)s = 2 ·
(
δ(Y )
a(Y )

)s
,

where s = logα 2 = ln 2/ lnα. Later we learn that s is a good dimensional
parameter.
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Let n ∈ N. For the function νn we get the estimate

νn(Y ) =
m−l∑

j=0

w(α−l−j)(α−l−j)n(B)

≤ α−nl
m−l∑

j=0

2jα−nj = δ(Y )n
m−l∑

j=0

(
2
αn

)j
.

These inequalities are the best possible in the sense that there are sets Y
of arbitrarily large cardinality (and even of arbitrarily small diameter) such
that equalities hold in (A) and (B). Indeed, given f ∈ C and l,m ∈ N with
l ≤ m, let Y be the set of all g ∈ C such that g¹{0, . . . , l−1} = f¹{0, . . . , l−
1} and g(j) = 0, for every j ∈ N, j > m. Then |Y | = 2m−l+1, δ(Y ) = α−l

and a(Y ) = α−m, which implies |Y | = 2
(
δ(Y )/a(Y )

)s
. Furthermore we have

k(α−l−j) = 2j+1 and w(α−l−j) = 2j , for j ∈ N, j ≤ m− l, so that equality
holds in (B), too.

We have the following cases: If n > s, then 2/αn < 1 and the geo-
metric series

∑∞
j=0(2/αn)j converges, which gives an upper bound for the

ratio νn(Y )/δ(Y )n. If n = s, we know that for every l,m ∈ N, l ≤ m,
there exists Y such that νn(Y ) = (m − l + 1)δ(Y )n. Hence, no upper
bound can be given for νn(Y )/δ(Y )n. Note that this applies to νn(Y ) as
well, since if we choose l = 0, we have δ(Y ) = 1. Similarly, if n < s, the
fact that

∑∞
j=0(2/αn)j diverges implies that there is no upper bound for

νn(Y )/δ(Y )n.

3.3. Lemma. Let (X, d) be an ultrametric space, n ∈ N∗ and Y ⊂ X
a finite set with at least two points. Denote by Y the partition of Y cor-
responding to the equivalence relation ∼δ(Y ) ∩ (Y × Y ). Then |Y| ≥ 2
and

νn(Y ) = (|Y| − 1)δ(Y )n +
∑

Z∈Y
νn(Z).

P r o o f. As δ(Y ) > 0, there are points of Y which are inequivalent
with respect to ∼δ(Y ), whence |Y| ≥ 2. For every Z ∈ Y and r ∈ R∗+,
let kZ(r) be the number of the equivalence classes of ∼r which meet Z,
and let wZ : R∗+ → N, wZ(r) = kZ(r) − limx→r+ kZ(x). Moreover, let k
and w be the corresponding functions for Y . Then one easily checks that
k(r) =

∑
Z∈Y kZ(r), for every r ≤ δ(Y ), which implies

w(δ(Y )) = k(δ(Y ))− 1 =
(∑

Z∈Y
kZ(δ(Y ))

)
− 1

=
∑

Z∈Y
(kZ(δ(Y ))− 1) + |Y| − 1 = |Y| − 1 +

∑

Z∈Y
wZ(δ(Y ))
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and for every r < δ(Y ), w(r) =
∑
Z∈Y wZ(r). Hence by definition,

νn(Y ) =
∑
r>0

w(r)rn =
∑

r∈]0,δ(Y )[

w(r)rn + w(δ(Y ))δ(Y )n

=
∑

r∈]0,δ(Y )[

∑

Z∈Y
wZ(r)rn + δ(Y )n

(
|Y| − 1 +

∑

Z∈Y
wZ(δ(Y ))

)

= (|Y| − 1)δ(Y )n +
∑

Z∈Y

∑
r>0

wZ(r)rn

= (|Y| − 1)δ(Y )n +
∑

Z∈Y
νn(Z).

The following proposition gives an alternative definition for the function
νn in terms of linear orders.

3.4. Proposition. Suppose (X, d) is an ultrametric space and � is a
linear order on X. Then for every Y ∈ P∗ω(X),

νn(Y ) =
∑

x∈Y
σY (x)n

where

σY : Y → R+, σY (x) =
{

0 for x = min� Y ,
min{d(y, x) | y ∈ Y, y ≺ x} otherwise.

P r o o f. The proof proceeds by induction on the cardinality of Y . The
claim is clearly true if Y = {y} is a singleton, as then νn(Y ) = 0 = σY (y),
so let us assume that |Y | ≥ 2. Let Y be the partition defined in the previous
lemma. For Z ∈ Y and z ∈ Z, let us compare the sets of predecessors
P = {x ∈ Y | x ≺ z} and Q = {x ∈ Z | x ≺ z}. Since Z is a ∼δ(Y )∩(Y ×Y )-
equivalence class, P r Q = {x ∈ Y | x ≺ z, d(x, z) = δ(Y )}. This readily
gives the comparison of the values σY (z) and σZ(z) for the occurring three
cases: If z = min� Y , then also z = min� Z and σY (z) = σZ(z) = 0.
If z = min� Z 6= min� Y , then P r Q 6= ∅, so that σY (z) = δ(Y ) and
σZ(z) = 0. Finally, if z 6= min� Z, then

σY (z) = min{d(x, z) | x ∈ P} = min({δ(Y )} ∪ {d(x, z) | x ∈ Q})
= min{d(x, z) | x ∈ Q} = σZ(z),

because d(x, z) < δ(Y ), for every x ∈ Q. Altogether, using the notation
xZ = min� Z and applying the induction hypothesis, for each Z ∈ Y, we
have

∑

x∈Y
σY (x)n =

∑

Z∈Y

(
σY (xZ)n +

∑

x∈Zr{xZ}
σY (x)n

)
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= (|Y| − 1)δ(Y )n +
∑

Z∈Y

∑

x∈Z
σZ(x)n

= (|Y| − 1)δ(Y )n +
∑

Z∈Y
νn(Z) = νn(Y ),

by the previous lemma, and the induction is completed.

Observe that, in the previous proposition, even the set σY [Y ] = {σY (x) |
x ∈ Y } is independent of the linear order �. This is because σY [Y ] obeys
the following recursion formula, which can be deduced along the same lines
as the proof itself: σY [Y ] = {0}, for a singleton Y ∈ P∗ω(X), and σY [Y ] =⋃
Z∈Y σZ [Z]∪ {δ(Y )}, where Y is as defined in Lemma 3.3, for Y ∈ P∗ω(X),
|Y | ≥ 2.

The next step is to show that νn(Y ) is related to the size of the image
f [Y ].

3.5. Lemma. Suppose f is an injection of an ultrametric space (X, d) in
the Euclidean space Rn such that f−1 is L-Lipschitz with L > 0. Then for
every Y ∈ P∗ω(X),

δ(f [Y ]) ≥ κn
2L

n
√
νn(Y ).

P r o o f. The linear order v and the injection f induce a natural lin-
ear order � on X, namely � = {(x, y) ∈ X × X | f(x) v f(y)}. Let
Y ∈ P∗ω(X) be arbitrary and let σ, σY be as in Propositions 2.2 and 3.4
with A = f [Y ]. Since f−1 is an L-Lipschitz function, σ(f(x)) ≥ κnσY (x)/L,
for every x ∈ Y r {min� Y }. Using Propositions 2.2 and 3.4 (and their no-
tation) we get

δ(f [Y ]) ≥ 1
2
n

√∑

x∈Y
σ(f(x))n ≥ 1

2
n

√∑

x∈Y

(κn
L
σY (x)

)n

=
κn
2L

n

√∑

x∈Y
σY (x)n =

κn
2L

n
√
νn(Y ).

3.6. Example. Consider the compact ultrametric space (C, dα) in the
special case α = 21/n with n ∈ N∗. Let us show that there is no bounded
injection, and in particular, no topological embedding, f : C → Rn for
which f−1 : f [C]→ C is a Lipschitz function. Suppose on the contrary that
such a function f exists. Choose L ≥ 1 such that f−1 is L-Lipschitz; then
for every Y ∈ P∗ω(C), we have δ(f [C]) ≥ δ(f [Y ]) ≥ (κn/(2L)) n

√
νn(Y ), by

the previous lemma. But on the other hand, by Example 3.2, νn(Y ) can
be arbitrarily large, which is in contradiction with the hypothesis that f is
bounded.
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4. Bi-Lipschitz embeddability and Assouad dimension

4.1. Definition. For C, s ∈ R+, a metric space (X, d) is (C, s)-homoge-
neous if the inequality

|X0| ≤ C
(
b

a

)s

holds for a, b ∈ R∗+ and X0 ⊂ X provided that b ≥ a and that for every
distinct x, y ∈ X0, a ≤ d(x, y) ≤ b holds. The space (X, d) is s-homogeneous
if it is (C, s)-homogeneous for some C ∈ R+. The Assouad dimension of
(X, d) is

dimA(X, d) = inf{s ∈ R+ | (X, d) is s-homogeneous},
if this infimum exists; otherwise dimA(X, d) =∞.

The following expected result (due to Assouad [A]) is a good illustration
of the dimensional contents of Proposition 2.2.

4.2. Proposition. Let n ∈ N∗ and equip Rn with the usual Euclidean
metric d. Then dimA(Rn, d) = n.

P r o o f. Let s < n and consider Al = {0, . . . , l}n, for l ∈ N∗. Then

lim
l→∞

|Al|
/ ( δ(Al)

a(Al)

)s
= lim
l→∞

(l + 1)n

(l
√
n)s

=∞,

so that (Rn, d) is not s-homogeneous. On the other hand, suppose A ⊂ Rn
is a finite set with at least two points. Let σ be as in Proposition 2.2; then
σ(x) ≥ κna(A), for every x ∈ Ar {minvA}. By Proposition 2.2,

δ(A) ≥ 1
2
n

√∑

x∈A
σ(x)n ≥ 1

2
n
√

(|A| − 1)(κna(A))n

≥ 1
2
κna(A)

n

√
|A|
2
≥ κna(A)

4
n
√
|A|,

which implies that

|A| ≤
(

4δ(A)
κna(A)

)n
.

Hence, (Rn, d) is ((4/κn)n, n)-homogeneus and dimA(Rn, d) = n.

Another example is the Cantor space (C, dα), α > 1, from Example 3.2.
By inequality (A) there, (C, dα) is (2, s)-homogeneous for s = logα 2 =
ln 2/ lnα. It was also mentioned in the example that inequality can be re-
placed by equality for finite subsets Y ⊂ C of arbitrarily large cardinality.
Hence, dimA(C, dα) = s. Compare also Example 3.6, where s = n.
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At this last stage it will be shown that it is possible to find an upper
bound for dimA(X, d) from the bi-Lipschitz embedding properties of the
space (X, d). For that purpose, a technical lemma is necessary.

4.3. Lemma. Let c ∈ ]0, 1[ and k = (1 − log2(1 − c))−1 ∈ ]0, 1[. Then
f : ]0, 1/c[→ R, f(x) = (1−cx)k(1+x)1−k, is a function such that f(x) ≤ 1,
for every x ∈ [1, 1/c[.

P r o o f. The function f is differentiable and f ′(x) = f(x)h(x), for every
x ∈ ]0, 1/c[, where h : ]0, 1/c[→ R, h(x) = −kc/(1−cx)+(1−k)/(1+x). The
constant k is so chosen that f(1) = (1−c)k ·21−k = 2k log2(1−c)+1−k = 20 = 1.
Therefore, it is enough to show that f ′(x) < 0, for every x ∈ ]1, 1/c[.

Consider the value

h(1) = f ′(1)/f(1) =
−kc
1− c +

1− k
2

=
c+ 1 + (c− 1)k−1

2k−1(c− 1)
=

2c+ (1− c) log2(1− c)
2k−1(c− 1)

.

The denominator is obviously negative. To estimate the numerator, let g :
]−∞, 1[→ R, g(x) = 2x+ (1− x) log2(1− x) = 2x+ (1− x)ln(1− x)/ ln 2.
Then g(0) = 0, g is differentiable and g′(x) = 2 − (1 + ln(1 − x))/ ln 2, for
every x < 1. Since g′(0) = 2 − 1/ ln 2 > 0 and g′ is increasing, g′(x) > 0
holds, for every x ∈ ]0, 1[. Hence, g(c) > 0, which implies h(1) < 0.

The function f takes only positive values; in particular, f ′(1) = h(1)f(1)
< 0. One readily sees that h is decreasing on [1, 1/c[, whence for every
x ∈ [1, 1/c[, h(x) ≤ h(1) < 0, and consequently f ′(x) < 0.

4.4. Proposition. Let (X, d) be an ultrametric space L-bi-Lipschitz em-
beddable in Rn. Suppose Y ⊂ X is a finite set with at least two points. Then
δ(Y )n ≥ C0νn(Y ) and |Y | ≤ C1

(
νn(Y )/a(Y )n

)k
, where C0 = (κn/(2L2))n

∈ ]0, 1[, C1 = (1− (1− C0)k)−1 > 1 and k = (1− log2(1− C0))−1 ∈ ]0, 1[.

P r o o f. By assumption, there is an L-bi-Lipschitz embedding f : X →
Rn. Lemma 3.5 implies that for every Y ∈ P∗ω(X), we have δ(Y ) ≥
δ(f [Y ])/L ≥ (κn/(2L2)) n

√
νn(Y ) = n

√
C0νn(Y ). It is easy to check that

C0 ∈ ]0, 1/2], C1 ≥ 2 and k ∈ ]0, 1[. The claim of the proposition is proved
by induction on the cardinality of Y . Observe that by the definition of νn
and since |Y | ≥ 2, the inequality νn(Y ) ≥ a(Y )n > 0 holds. As C1 ≥ 2, the
starting case |Y | = 2 is part of Step 1.

1) Assume |Y | ≤ C1. Then C1(νn(Y )/a(Y )n)k ≥ C1 ≥ |Y |.
2) Assume |Y | > C1 ≥ 2. Let Y be the partition from Lemma 3.3. Then

|Y| ≥ 2 and νn(Y ) = (|Y| − 1)δ(Y )n +
∑
Z∈Y νn(Z). Here we have two

subcases according to whether Y contains singletons or not.
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2a) Suppose {x0} ∈ Y for some x0 ∈ Y . Let Y0 = Y r {x0}; if Y =
{Y0, {x0}}, then νn(Y ) = (2 − 1)δ(Y )n + νn(Y0) + νn({x0}) = 1 · δ(Y )n +
νn(Y0) + 0 = νn(Y0) + δ(Y )n. On the other hand, if Y0 6∈ Y, then there are
y1, y2 ∈ Y0 such that y1 6∼δ(Y ) y2, because Y is the partition corresponding
to the equivalence relation ∼δ(Y ) ∩ (Y × Y ). Hence δ(Y0) = δ(Y ) and the
partition of Y0 related to ∼δ(Y0) ∩ (Y0 × Y0) is simply Y0 = Y r {{x0}}.
Applying Lemma 3.3 to both Y and Y0 in place of Y (note that |Y0| ≥ 2)
we get νn(Y )− νn(Y0) = (|Y| − |Y0|)δ(Y )n +

∑
Z∈YrY0

νn(Z) = 1 · δ(Y )n +
νn({x0}) = δ(Y )n, so that νn(Y ) = νn(Y0) + δ(Y )n holds anyway.

By the induction hypothesis, |Y0| ≤ C1(νn(Y0)/a(Y0)n)k. Moreover, δ(Y )
≥ n
√
C0νn(Y ) implies

νn(Y )
νn(Y0)

=
νn(Y )

νn(Y )− δ(Y )n
≥ νn(Y )
νn(Y )− C0νn(Y )

=
1

1− C0
.

Consequently,

|Y | = |Y0| |Y ||Y | − 1
≤ |Y0| C1

C1 − 1
≤ C1

(
νn(Y0)
a(Y0)n

)k
(1− C0)−k

≤ C1

(
νn(Y0)

a(Y )n(1− C0)

)k
≤ C1

(
νn(Y )
a(Y )n

)k
.

2b) Suppose |Z| ≥ 2 for every Z ∈ Y. Since k ∈ ]0, 1[, the function
x 7→ xk is concave and owing to the induction hypothesis and a well-known
inequality concerning concave functions we get

|Y | =
∑

Z∈Y
|Z| ≤

∑

Z∈Y
C1

(
νn(Z)
a(Z)n

)k
≤
∑

Z∈Y
C1

(
νn(Z)
a(Y )n

)k

=
C1|Y|
a(Y )nk

∑

Z∈Y

νn(Z)k

|Y| ≤ C1|Y|
a(Y )nk

(∑
Z∈Y νn(Z)
|Y|

)k

=
C1|Y|1−k
a(Y )nk

(∑

Z∈Y
νn(Z)

)k
.

On the other hand,

νn(Y ) = (|Y| − 1)δ(Y )n +
∑

Z∈Y
νn(Z)

≥ C0(|Y| − 1)νn(Y ) +
∑

Z∈Y
νn(Z)

and thus (1−C0(|Y|− 1))νn(Y ) ≥∑Z∈Y νn(Z). Applying Lemma 4.3 with
c = C0 and x = |Y| − 1 ≥ 1, which is possible as 1− cx > 0, gives
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|Y | ≤ C1|Y|1−k
a(Y )nk

(∑

Z∈Y
νn(Z)

)k

≤ C1νn(Y )k

a(Y )nk
(1− C0(|Y| − 1))k|Y|1−k ≤ C1

(
νn(Y )
a(Y )n

)k
.

4.5. Theorem. For every L ≥ 1 and n ∈ N∗ there are C ≥ 1 and s < n
such that the following holds: Suppose (X, d) is an ultrametric space and
there is an L-bi-Lipschitz embedding f : X → Rn. Then (X, d) is (C, s)-
homogeneous and thus dimA(X, d) < n.

P r o o f. Choose C = (C0
k(1− (1− C0)k))−1 > 1 and s = nk, where C0

and k are as in the preceding proposition. Then

|Y | ≤ 1
1− (1− C0)k

(
νn(Y )
a(Y )n

)k

≤ 1
1− (1− C0)k

(
δ(Y )n/C0

a(Y )n

)k
= C

(
δ(Y )
a(Y )

)s
,

for every Y ∈ P∗ω(X) with at least two elements. If now Y ⊂ X and a, b ∈
R∗+, b ≥ a, are such that a ≤ d(x, y) ≤ b for every distinct x, y ∈ Y , then
either |Y | < 2 or a ≤ a(Y ) ≤ δ(Y ) ≤ b. Hence, |Y | ≤ C(b/a)s.

When this is combined with [LM-L, Theorem 3.8], we get the following
corollary.

4.6. Corollary. Let n be a positive integer. Then an ultrametric space
(X, d) can be bi-Lipschitz embedded in Rn if and only if dimA(X, d) < n.

Other known notions of dimension do not seem to be good for character-
izing those ultrametric spaces which can be bi-Lipschitz embedded in Rn for
fixed n, even if we restrict our attention to compact spaces. This is trivial
for the topological dimension, since every ultrametric space has a clopen
basis and is therefore zero-dimensional. We study the difference of Assouad
dimension and Hausdorff dimension dimH in some detail.

4.7. Example. Fix s > 0 and let α = 21/s. Then in the case of Ex-
ample 3.2 the Assouad and Hausdorff dimensions coincide: dimH(C, dα) =
dimA(C, dα) = s. On the other hand, it is not too difficult to find a countable
compact ultrametric space (Z, d′′) with infinite Assouad dimension. With-
out loss of generality, C ∩Z = ∅ and the diameter of Z is 1. Let Y = C ∪Z
and d′ : Y × Y → R+,

d′(x, y) =

{
dα(x, y) if x, y ∈ C,
d′′(x, y) if x, y ∈ Z,
1 otherwise.
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Then (Y, d′) is a compact ultrametric space for which

dimH(Y, d′) = max{dimH(C, dα),dimH(Z, d′′)} = max{s, 0} = s

<∞ = max{s,∞}
= max{dimA(C, dα), dimA(Z, d′′)} = dimA(Y, d′).

Consequently, for every s > 0, there are compact ultrametric spaces (X, d)
and (Y, d′) such that s = dimH(X, d) = dimA(X, d) and s = dimH(Y, d′) <
∞ = dimA(Y, d′), so that any attempts to characterize bi-Lipschitz embed-
dability of ultrametric spaces in Rn in terms of Hausdorff dimension are
bound to fail. By [LM-L, Example 3.6], a similar statement holds for the
upper fractal dimension.

5. Approximating isometry. Suppose (X, d) is an ultrametric space
and f : X → Rn an L-bi-Lipschitz embedding. In the preceding section we
learnt that not only do we have dimA(X, d) < n, but also there is an upper
bound s for dimA(X, d) depending only on L and n. A closer look at the
proofs of Theorem 4.5 and Proposition 4.4 reveals, however, that the bound
there is very modest. Indeed, we chose s = nk, where k = (1−log2(1−C0))−1

and C0 = (κn/(2L2))n. For n = 1, we have C0 = (κ1/(2L2))1 = 1/(2L2) ≤
1/2 and k ≥ (1 − log2(1 − 1/2))−1 = 1/2 = 1 − 1/2; if n ≥ 2, then C0 =
(κn/(2L2))n ≤ (κn/2)2 = (4n(n−1))−1 ≤ 1/(4n) and k ≥ 1+log2(1−C0) ≥
1− 2C0 ≥ 1− 1/(2n). Hence, s = nk ≥ n(1− 1/(2n)) = n− 1/2.

In this section, these bounds will be improved significantly in the special
case when L is close to 1. To be precise, for L > 1 and n ∈ N∗, let s(L, n)
be the supremum over all dimA(X, d), where (X, d) is an ultrametric space
L-bi-Lipschitz embeddable in Rn. We shall find out that for every n ∈ N∗,
we have limL→1+ s(L, n) = 0. Intuitively, if an ultrametric space (X, d) can
be embedded in Rn by a bi-Lipschitz function which approximates isometry,
then the Assouad dimension of (X, d) is small.

The theorem of this section is simply an elaboration of the fact that
only finite ultrametric spaces can be isometrically embedded in Euclidean
spaces (see, e.g., [ABBW]). While one reads through the following lemmas,
it is instructive to think what happens if the bi-Lipschitz coefficient L is
replaced by 1. Thus, it is easy to see that an ultrametric subspace of R has
at most two points. If X ⊂ Rn is a finite ultrametric subset with at least
two points and n > 1, it is also relatively simple to find two points a, b of
X such that X r {a, b} is a subset of some hyperplane of Rn. Bearing these
two ideas in mind makes it easy to follow the next lemmas.

5.1. Lemma. Let (X, d) be a finite ultrametric space with at least three
points. Suppose (X, d) can be L-bi-Lipschitz embedded in R. Then L ≥√

1 + a(X)/δ(X).
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P r o o f. Choose an L-bi-Lipschitz embedding f : X → R. Since (X, d)
is an ultrametric space, we may choose three points x0, x1, y ∈ X such
that d(x0, x1) = a(X) and d(x0, y) = d(x1, y) = δ(X). If L ≥ √2, we
have nothing to prove, as

√
1 + a(X)/δ(X) ≤ √1 + 1 =

√
2, so assume

1 ≤ L < √2. Then f(y) is not between f(x0) and f(x1), since otherwise for
i = 0 or i = 1 we would have

δ(X)
L

=
d(xi, y)
L

≤ |f(xi)− f(y)|

≤ |f(x0)− f(x1)|
2

≤ L

2
d(x0, x1) =

L

2
a(X),

implying δ(X)/a(X) ≤ L2/2 < 1, which is impossible. Therefore, without
loss of generality, we may assume that f(x1) is between f(x0) and f(y).
Then we have

a(X)/L ≤ |f(x0)− f(x1)|
= |f(x0)− f(y)| − |f(x1)− f(y)| ≤ (L− 1/L)δ(X),

which implies L2 − 1 ≥ a(X)/δ(X), so that L ≥
√

1 + a(X)/δ(X).

5.2. Lemma. Let (X, d) be a finite ultrametric space with |X| ≥ 2 and
let f : X → Rn+1 be an L-bi-Lipschitz embedding , where n ∈ N∗. Assume
k = (L4 − 1)(δ(X)/a(X))2 < 1 and let L∗ = L(1− k2)−1/4. Then there are
points x0, x1 ∈ X and an L∗-bi-Lipschitz embedding h : X r {x0, x1} → Rn.

P r o o f. Choose x0, x1 ∈ X such that d(x0, x1) = a(X) and denote X r
{x0, x1} by X∗. Let e = (f(x1)− f(x0))/|f(x1)− f(x0)|, let T be the set of
those x ∈ Rn+1 which are perpendicular to e and let c ≥ 1 be a constant to
be fixed later. For y ∈ X∗, we have the unique representation

f(y) =
f(x0) + f(x1)

2
+
g(y)
c

+ γ(y)e,

where γ : X∗ → R, γ(y) = (f(y) − (f(x0) + f(x1))/2) · e, and g : X∗ →
T , g(y) = c(f(y) − (f(x0) + f(x1))/2 − γ(y)e). We intend to show that
f(y) − (f(x0) + f(x1))/2 is close to the hyperplane T , or in other words,
|γ(y)| is small. (If L = 1, we simply have γ(y) = 0.)

Let u = |f(x1)− f(x0)|. For y ∈ X∗ and i ∈ {0, 1}, we have

|f(y)− f(xi)|2 = |g(y)|2/c2 + (γ(y) + (−1)iu/2)2,

so that

|f(y)− f(x0)|2− |f(y)− f(x1)|2 = (γ(y) + u/2)2− (γ(y)− u/2)2 = 2γ(y)u.

On the other hand, as (X, d) is an ultrametric space and d(y, xi) ≥ a(X) =
d(x0, x1), for i = 0, 1, we know that d(y, x0) = d(y, x1) = b, where b depends
on y, of course. Since f is an L-bi-Lipschitz embedding, we have

(1/L2 − L2)b2 ≤ |f(y)− f(x0)|2 − |f(y)− f(x1)|2 ≤ (L2 − 1/L2)b2,
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so that

|γ(y)|
a(X)

=
| |f(y)− f(x0)|2 − |f(y)− f(x1)|2|

2ua(X)
≤ (L2 − 1/L2)b2

2ua(X)

≤ (L2 − 1/L2)δ(X)2

2a(X)2/L
=
L4 − 1

2L

(
δ(X)
a(X)

)2

=
k

2L
.

Now that we know that |γ(y)| is small, let us proceed to show that with the
right choice of c, the function g is an L∗-bi-Lipschitz embedding. For every
y, y′ ∈ X∗, y 6= y′, we have

|f(y)− f(y′)|2 =
1
c2
|g(y)− g(y′)|2 + (γ(y)− γ(y′))2,

implying that

1
c
· |g(y)− g(y′)|
|f(y)− f(y′)| =

√
1− (γ(y)− γ(y′))2

|f(y)− f(y′)|2

≥
√

1− (γ(y)− γ(y′))2

(a(X)/L)2 ≥
√

1−
(
L
|γ(y)|+ |γ(y′)|

a(X)

)2

≥
√

1−
(
L · 2 · k

2L

)2

=
√

1− k2.

But trivially |g(y)− g(y′)| ≤ c|f(y)− f(y′)|, so that if we fix c to be
(1− k2)−1/4 ≥ 1, we get

1
cL
d(y, y′) ≤ c

√
1− k2 · |f(y)− f(y′)| ≤ |g(y)− g(y′)| ≤ cLd(y, y′),

as c−2 =
√

1− k2. Because L∗ = L(1− k2)−1/4 = cL and there is a natural
isometry j : T → Rn, the composition h = j ◦ g : X∗ → Rn is the L∗-bi-
Lipschitz embedding we were looking for.

Combining these lemmas, we have:

5.3. Lemma. For every n ∈ N∗ and c ≥ 1, there exists L > 1 which
satisfies the following condition: Let (X, d) be a finite ultrametric space with
|X| ≥ 2 which can be L-bi-Lipschitz embedded in Rn and for which δ(X) ≤
ca(X). Then |X| ≤ 2n.

P r o o f. Let us fix c ≥ 1. Obviously, we can choose Ln > 1, for n ∈ N∗,
such that L1 =

√
1 + 1/(2c) and Ln = Ln+1(1 − (Ln+1

4 − 1)2c4)−1/4, for
n ∈ N∗. We are to prove that if (X, d) is an ultrametric space with |X| ≥ 2,
X is Ln-bi-Lipschitz embeddable in Rn and δ(X) ≤ ca(X), then |X| ≤ 2n.

Assume for contradiction that there exists m ∈ N∗, a finite ultrametric
space (X, d) with |X| > 2m and δ(X) ≤ ca(X), and an Lm-bi-Lipschitz
embedding f : X → Rm. Suppose further that m is the least possible.
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Lemma 5.1 implies that m > 1, as L1 <
√

1 + 1/c, so m = n + 1, where
n ∈ N∗. Now Ln and Lm are so chosen that, by Lemma 5.2, there are
x0, x1 ∈ X and an Ln-bi-Lipschitz embedding h : X∗ = Xr {x0, x1} → Rn.
Because |X∗| > 2n and δ(X∗) ≤ δ(X) ≤ ca(X) ≤ ca(X∗), we have a
contradiction with the minimality of m.

As a by-product, we get the following well-known result [ABBW] about
the isometric embeddability of ultrametric spaces. Of course, this corollary
could also be shown directly in the manner that was outlined in the para-
graph preceding Lemma 5.1.

5.4. Corollary. Suppose that (X, d) is an ultrametric space which can
be isometrically embedded in a Euclidean space Rn for some n ∈ N∗. Then
X is finite.

P r o o f. Let us prove that for every n ∈ N∗, if (X, d) can be isometrically
embedded in Rn, then |X| ≤ 2n (by [ABBW, Lemma 4.1], n+ 1 instead of
2n is the best possible bound). Suppose this does not hold. Then there is
an ultrametric space (X, d) with |X| = 2n+ 1 and an isometric embedding
f : X → Rn. Choose c = δ(X)/a(X) and note that f is an L-bi-Lipschitz
embedding for every L > 1; then we have arrived at a contradiction with
the previous lemma.

Having Lemma 5.3, it is quite easy to derive the theorem of this sec-
tion. Although that lemma restricts to finite sets X with bounded ratio
δ(X)/a(X), the following proposition (cf. [A, Remarque 2]) shows that the
estimate for |X| in 5.3 implies a more general one.

5.5. Proposition. Let (X, d) be a metric space, k ∈ N∗ and c > 1.
Suppose that for every finite Y ⊂ X with |Y | ≥ 2, we know that if Y ⊂
Bd(x, ca(Y )) for some x ∈ Y , then |Y | ≤ k. Then dimA(X, d) ≤ logc k.

P r o o f. We prove by induction on j ∈ N∗ that if Y ∈ Pω(X), |Y | ≥ 2
and Y ⊂ Bd(x, cja(Y )) for some x ∈ Y , then |Y | ≤ kj . By hypothesis, the
claim holds for j = 1. Suppose now that the claim holds for j ∈ N∗, and
that Y ∈ Pω(X), |Y | ≥ 2, x ∈ Y and Y ⊂ Bd(x, cj+1a(Y )). Let Z ⊂ Y be
a maximal set with the following two properties:

1◦ x ∈ Z,
2◦ |Z| ≤ 1 or a(Z) ≥ cja(Y ).

If |Z| ≥ 2, we have Z ⊂ Y ⊂ Bd(x, cj+1a(Y )) ⊂ Bd(x, ca(Z)); so in any
case, |Z| ≤ k. If y ∈ Y , then by the maximality of Z, there is z ∈ Z such
that d(y, z) < cja(Y ). For z ∈ Z, let Yz = {y ∈ Y | d(y, z) < cja(Y )};
then either |Yz| = 1 or a(Yz) ≥ a(Y ) and thus Yz ⊂ Bd(z, cja(Yz)), which
implies |Yz| ≤ kj , by the induction hypothesis. On the other hand, we have
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Y ⊂ ⋃z∈Z Yz, so that |Y | ≤ ∑z∈Z |Yz| ≤ k · kj = kj+1, and the induction
is complete.

Let s = logc k. Assume Y ⊂ X and a, b ∈ R∗+ are such that a ≤ b and for
every distinct x, y ∈ Y , we have a ≤ d(x, y) ≤ b. Let j = blogc(b/a)c + 1 ∈
N∗; then cja > b. I claim that |Y | ≤ k(b/a)s. We may assume that |Y | ≥ 2
and Y is finite. Then a(Y ) ≥ a and for any x ∈ Y , Y ⊂ Bd(x, cja) ⊂
Bd(x, cja(Y )). Consequently, |Y | ≤ kj ≤ k(b/a)s. Hence, (X, d) is (k, s)-
homogeneous.

5.6. Theorem. For every n ∈ N∗ and s ∈ ]0, n[ there exists L > 1
such that the following holds: If (X, d) is an ultrametric space which can be
L-bi-Lipschitz embedded in Rn, then dimA(X, d) ≤ s.

P r o o f. Fix n ∈ N∗ and s ∈ ]0, n[, let c = (2n)1/s > 1 and choose
L > 1 as in Lemma 5.3. Consider an ultrametric space (X, d) which can
be L-bi-Lipschitz embedded in Rn by some f : X → Rn. Let us apply
Proposition 5.5 with k = 2n. Suppose that Y ⊂ X is finite, |Y | ≥ 2 and
there is x ∈ Y such that Y ⊂ Bd(x, ca(Y )). Since d is an ultrametric, the
last condition is actually equivalent to δ(Y ) < ca(Y ). Now we know that
f¹Y : Y → Rn is an L-bi-Lipschitz embedding, so by the choice of L, we get
|Y | ≤ 2n. Hence, the hypothesis of Proposition 5.5 holds, and we get

dimA(X, d) ≤ logc k = 1/ logk k
1/s = s.
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