
FUNDAMENTA
MATHEMATICAE

150 (1996)

The dimension of Xn

where X is a separable metric space

by

John K u l e s z a (Fairfax, Va.)

Abstract. For a separable metric space X, we consider possibilities for the sequence
S(X) = {dn : n ∈ N} where dn = dimXn. In Section 1, a general method for producing
examples is given which can be used to realize many of the possible sequences. For example,
there is Xn such that S(Xn) = {n, n + 1, n + 2, . . .}, Yn, for n > 1, such that S(Yn) =
{n, n+ 1, n+ 2, n+ 2, n+ 2, . . .}, and Z such that S(Z) = {4, 4, 6, 6, 7, 8, 9, . . .}.

In Section 2, a subset X of R2 is shown to exist which satisfies 1 = dimX = dimX2

and dimX3 = 2.

0. Introduction and preliminaries. In this paper, we are concerned
with problems related to the following question:

Question. Suppose D = {dn : n ∈ N} is a sequence of positive integers.
Under what conditions is there a separable metric space XD such that , for
each n ∈ N, dimXn

D = dn?

In case a sequence D has an XD, we say D is an allowable sequence and
that XD realizes D. The sequence {kn : n ∈ N} is realized by X = Ik, but
there are other allowable sequences. The well-known example of Erdős (see
[E]) shows that the sequence {dn : n ∈ N} where each dn is 1 is allowable;
Anderson and Keisler [AK] improved this, showing that each dn = k is
allowable. In [Ku1], it is shown that, given m and k with k ≥ m, there is a
sequence D where d1 = m and for all large enough n, dn = k.

Obviously, if D is an allowable sequence, then D is nondecreasing, and
for each n, dn+1 − dn ≤ d1, but not all sequences with these properties
are allowable. For example, no sequence starting out as 1, 1, 2, 3 is allowable
since if dimX2 = 1, then dimX4 = dim(X2)2 ≤ 2.

We say a sequence D = {dn : n ∈ N} of positive integers is subadditive
provided that, whenever s, t ∈ N, ds+t ≤ ds + dt. It is not hard to see that
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an allowable sequence is both increasing and subadditive. The following
conjecture says that all such sequences are allowable.

Conjecture. The allowable sequences are precisely those which are in-
creasing and subadditive.

In Section 1 we give a unified method for generating all allowable se-
quences noted above as well as several new examples of allowable sequences.
Two new types of examples give, for n ≥ 2, the sequences n, n + 1, n + 2,
n + 3, . . . and n, n + 1, n + 2, n + 2, n + 2, . . . It is also shown that, given
n ∈ N, there exists an allowable sequence D which, for n distinct values k,
satisfies dk = dk+1 < dk+2; in other words, there is a space X so that for n
distinct values k, dimXk = dimXk+1 < dimXk+2.

This method has limitations. One is that if D is a sequence realized by
an example XD from Section 1, s < t and ds < dt, then there is a sub-
space S of XD such that dimSs < dimSs+1; so while dimXs might be
the same as dimXs+1 there is a subspace of X whose dimension is grow-
ing, and we have only hidden this growth. This precludes, for example, the
method giving an example whose sequence starts out as 1, 1 and is not
constant.

In Section 2 we give an example X which satisfies dimX = dimX2 = 1,
while dimX3 = 2. In addition to giving an example not available in Sec-
tion 1, it has the property that if Y ⊆ X, then dimY 2 ≤ dimY but for
Y = X, dimY 3 > dimY .

In Section 3, we pose several questions.
Throughout this paper, we make extensive use of the technique of An-

derson and Keisler [AK], which appears to be almost essential, in some form,
for constructions of this sort.

We use R to denote the real numbers and c to denote the cardinality of R;
N denotes the natural numbers. By a hyperplane in Rn, we mean a translate
of a linear subspace of Rn; the dimension of the hyperplane is its algebraic
dimension, which is the same as its topological dimension. Hyperplanes P
and Q of dimension p and q in Rn, where p+ q ≥ n, are in general position
provided the hyperplane P ∩Q has dimension = max{0, p+ q − n}.

For most of this paper we will use subsets of R2k, for k ≥ 1; it is conve-
nient to view R2k as (R2)k = {(α(1), . . . , α(k)) : α(i) ∈ R2}. For S a subset
of {1, . . . , k}, let H(S, k) = {(α(1), . . . , α(k)) : α(i) = α(j) if i, j ∈ S, and
α(i) = (0, 0) if i 6∈ S}. Then there are finitely many hyperplanes, for fixed k,
of the form H(S, k), and each is two-dimensional. By a standard translate of
H(S, k) we mean a hyperplane of the form H(S, k) + σ, where σ(i) = (0, 0)
if i ∈ S.

For information on dimension theory, the reader is referred to [E].
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1. A construction and several examples. In this section we con-
struct infinitely many spaces with several properties interrelating them.
Theorem 1.1 describes these spaces. Then we show how to produce several
examples of products related to the conjecture.

Theorem 1.1. There is a collection {A(i, j) : i, j ∈ N} of subsets of R2

such that :

(1) For all i, j ∈ N, 1 = dimA(i, j) = dimA(i, j)ω.
(2) For each j ∈ N, and K ⊆ N, dimi

∏
i∈K A(i, j) = |K|.

(3) If k, n ∈ N, and for each j ≤ k, ij ∈ N, then

dim
∏

1≤j≤k
A(ij , j)n = 1.

R e m a r k. Condition (1) follows from conditions (2) and (3) together,
condition (2) giving dimA(i, j)ω ≥ 1, and condition (3) giving dimA(i, j)ω

≤ 1. It is listed here because it is so fundamental to our applications.

In order to prove Theorem 1.1, we need the following lemmas. Lemma 1.1
can be found in [Ku1; Lemma] in a more geometric form, and is due to
Anderson and Keisler [AK].

Lemma 1.1. There is a subset T2k of R2k such that dimR2k\T2k = 1 and
if H(S, k) + σ is a standard translate of H(S, k), then

|(H(S, k) + σ) ∩ T2k| ≤ ω.
Let Q = [0, 1]N, and let {(Ai, Bi) : i ∈ N} denote its standard essential

family, that is, Ai = {x ∈ Q : x(i) = 0} and Bi = {x ∈ Q : x(i) = 1}. Let
S = {⋂i∈N S2i : S2i is a separator between A2i and B2i}. Then |S| = c, so
we can write S = {Sα : α < c}.

The following lemmas are not difficult, and are essentially proved in
[Ku1; p. 559, step 1].

Lemma 1.2. Suppose x ∈ Q and Sα ∈ S. There is s ∈ Sα such that , for
all i ∈ N, s(2i − 1) = x(2i − 1). (In other words, the projection of Sα onto
the infinite-dimensional cube determined by the odd coordinates is onto.)

Lemma 1.3. If X ⊆ Q intersects each element of S, then:

(i) X is strongly infinite-dimensional.
(ii) Viewing Q as ([0, 1]2)N, the projection of X to the 2k-cube deter-

mined by any k coordinates is ≥k-dimensional.

P r o o f o f T h e o r e m 1.1. We use transfinite induction. For each α < c,
we find sets {A(i, j)α : i, j ∈ N} such that, starting with A(i, j)0 = ∅:

(i) If α is a limit ordinal, then A(i, j)α =
⋃{A(i, j)β : β < α}, and

otherwise A(i, j)α = A(i, j)α−1 ∪ {a(i, j)α−1}.
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(ii) A(i, j)α ⊆ R2.
(iii) Given j ∈ N and β < α, (a(1, j)β , a(2, j)β , . . .) ∈ Sβ .
(iv) For each choice of k, n ∈ N, and ij ∈ N for each j ≤ k, (A(i1, 1)α)n×

(A(i2, 2)α)n × . . .× (A(ik, k)α)n ∩ T2nk = ∅.
We need only consider the case when α is not a limit ordinal. Assume

we already have {A(i, j)α : i, j ∈ N} satisfying (i)–(iv) above. We will get
{A(i, j)α+1 : i, j ∈ N} by induction on j.

Suppose that, for all r < j and ir ∈ N, A(ir, r)α+1 satisfies (i)–(iii) for
α+1 and that (iv) is satisfied with A(ir, r)α+1 replacing A(ir, r)α whenever
r < j.

We must find, for each i ∈ N, a(i, j)α ∈ R2 so that letting A(i, j)α+1 =
A(i, j)α∪{a(i, j)α}, the previous sentence holds with r ≤ j instead of r < j.

To achieve (iv), we use Lemma 1.1. We assume k, n are fixed, as well as
j ≤ k and i1, . . . , ik, with ij = i. Then we assume

(A(i1, 1)α+1)n × . . .× (A(ij−1, j − 1)α+1)n

× (A(i, j)α)n × . . .× (A(ik, k)α)n ∩ T2nk = ∅.
We want to choose a(i, j)α, for each i, so that A(i, j)α+1 = A(i, j)α ∪

{a(i, j)α} can be substituted for A(i, j)α in the above statement. If a is a
candidate for a(i, j)α, then a is possibly a bad choice if placing a in some
of the n R2 coordinates, the coordinates in W = {n(j − 1) + 1, n(j − 1) +
2, . . . , n(j − 1) + n}, reserved for A(i, j)α+1 in R2nk, and filling in the other
coordinates with points from

Z =
⋃
{A(it, t)α+1 : t < j} ∪

⋃
{A(it, t)α : j ≤ t ≤ k}

causes an intersection with T2nk. Thus possible bad choices for a(i, j)α are
contained in intersections of T2nk with standard translates of H(S, nk) by
elements of R2nk whose nonorigin coordinates are in Z, where S ⊆ W .
By Lemma 1.1, each such intersection is countable, and there are clearly
fewer than c translates involved. Thus there are fewer than c bad choices for
a(i, j)α with respect to property (iv) and this choice of k, n, and i1, . . . , ij−1,
i, ij+1, . . . , ik. Over all k’s, n’s and ij ’s there are then fewer than c bad
choices. Thus there is a set Y ⊆ R with fewer than c points in it such that,
for any i ∈ N, if a(i, j)α = (u, t) where u 6∈ Y , then (iv) will be satisfied.
Fix b ∈ [0, 1]\Y . By Lemma 1.2, there is s ∈ Sα such that s(2i− 1) = b for
each i ∈ N. Let a(i, j)α = (b, s(2i)). Then (i)–(iv) are satisfied.

Finally, let A(i, j) =
⋃{A(i, j)α : α < c}. Condition (3), with ≤ in-

stead of =, follows from (iv); in particular, dimA(i, j) ≤ 1. By (iii) and
Lemma 1.3(ii), condition (2) is satisfied with ≥ used in place of =; taken
together these give the desired equalities for conditions (2) and (3).

Now assume that {A(i, j) : i, j ∈ N} satisfy Theorem 1.1. For each j ∈ N,
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let A(j) = {A(i, j) : i ∈ N}, and let A =
⋃{A(j) : j ∈ N}. We will use the

symbol U to denote free union; if C is a collection of topological spaces,
then UC is the free union of the spaces in C. We call a space X a term if
X is a product of distinct elements of A, and call a space Y a base space
if Y is a free union of at most ω terms; then all base spaces are separable
and metrizable. All of our examples are base spaces. For a base space Y and
j ∈ N, let deg(Y, j) denote |{i : A(i, j) is a factor of a term of Y }|, and let
deg(Y ) = supj(deg(Y, j)) (so deg(Y ) ∈ N or deg(Y ) = ω).

Suppose Y = UX, where X = {Xi : i ∈ {1, . . . ,m}} or X = {Xi :
i ∈ N}, and each Xi is a term. The following facts are immediate from
Theorem 1.1.

Fact 1. dimY = supj(deg(Xi)) (if the supremum is ω, then dimY
=∞).

Fact 2. dimY k = supK deg(UK), where K ⊆ X and |K| ≤ k.

These facts make the computation of dimension easy in powers of base
spaces. We are now in a position to give several examples.

Example 1. There is a space Y1 which realizes the constant sequence
{n}, the Anderson–Keisler sequence. Just let Y1 be the term

∏
1≤i≤nA(i, 1).

Example 2. There is an example Y2 which realizes the sequence n,
n+ 1, n+ 2, n+ 3, . . . Let Y2 = Y1 ∪U{A(i, 1) : i > n}. The question of the
existence of such a space was posed to the author by Gary Gruenhage.

Example 3. There is an example Y3 which realizes the sequence n,
n + 1, n + 2, . . . , k, k, k, . . . , where k is any integer > n. This is just like
Y2, but with fewer terms. Set Y3 = Y1 ∪ U{A(i, 1) : n + 1 ≤ i ≤ k}. This
gives the examples in [Ku1] with knowledge of intermediate values.

Example 4. There is an example Y4 which realizes the sequence 4, 4, 6, 6,
7, 8, 9, 10, . . . Let T1 = A(1, 1)×A(2, 1)×A(3, 1)×A(4, 1), let T2 = A(1, 2)×
A(2, 2) ∪ A(3, 2) × A(4, 2) ∪ A(5, 2) × A(6, 2), and let T3 = U{A(1, 3) ×
A(2, 3), A(3, 3)×A(4, 3), A(5, 3), A(6, 3), A(7, 3), . . .}. Then let Y4 = T1 ∪T2

∪ T3.

The space Y4 is an example which, for 2 distinct values of k (1 and 5),
satisfies dimY k = dimY k+1 < dimY k+2. Using this idea it is easy to see
that the following can be achieved.

Example 5. Given n ∈ N, there is an example Y5(n) which satisfies, for
some k1 < . . . < kn, dimY ki = dimY ki+1 < dimY ki+2.

It is possible to vary the specifics of the sequences in the types of exam-
ples given above, and clearly there are many other possibilities but there are
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limitations. One was alluded to in the introduction. Another related limita-
tion is that the n in Example 5 cannot be replaced by an infinite set. In the
next section, we give a partial solution to the problem from the introduction.
We pose the other problem as a question in Section 3.

2. An example X where dimX = dimX2 = 1 but dimX3 = 2. The
main idea here is to produce three subsets A, B, and C of R2, each of which
is one-dimensional, so that:

(i) the square of each is one-dimensional,
(ii) the product of any two is also one-dimensional, and

(iii) the product of all three is two-dimensional.

Getting properties (i) and (ii) together was accomplished in Section 1, as
well as getting properties (i) and (iii) together, with “at least two” in place
of “two” for property (iii). The main difficulty is in getting properties (ii)
and (iii) simultaneously; this imposes constraints on our use of geometry,
which the following addresses.

Let

P# = {(x, t, y, t) : x, y, t ∈ R};
then P# is a three-dimensional hyperplane in R4. For k ∈ R, let P#(k) =
{(x, k, y, k) : x, y ∈ R}; then P#(k) is a two-dimensional hyperplane and a
translate of P#(0). Let 0 denote (0, 0), and let Pa = {(a,0) : a ∈ R2}, Pb =
{(0, b) : b ∈ R2}, and Paa = {(a, a) : a ∈ R2}. Then Pa, Pb, and Paa are all
two-dimensional hyperplanes in R4. Let

F = {P#, P#(0), Pa, Pb, Paa}.
We need the following technical lemma, which is crucial for reconciling

the opposing demands that dimX2 = 1 and dimX3 = 2 impose. It can be
viewed as a generalization of Lemma 1.1 in the particular case k = 2.

Lemma 2.1. In R4 there are 3 collections H(i) = {Hj(i) : j ∈ N} for i ∈
{1, 2, 3} of three-dimensional hyperplanes and corresponding S(i) = {Sj(i) :
j ∈ N} of two-spheres such that :

(i) For i ∈ {1, 2, 3} and j ∈ N, Sj(i) ⊆ Hj(i).
(ii) For i ∈ {1, 2, 3}, dimR4\⋃S(i) = 1.

(iii) Hj(i) is in general position with respect to each translate of each
element of F .

(iv) If u ∈ {1, 2, 3} and j ∈ N, then Π1,2Sj(u)∩P# and Π3,4Sj(u)∩P#

are either one-point sets or nondegenerate ellipses.
(v) If u, v ∈ {1, 2, 3} with u 6= v, and j, k ∈ N, then the ellipses in

{Π1,2Sj(u)∩P#,Π3,4Sj(u)∩P#} are distinct from the ellipses in {Π1,2Sk(v)
∩ P#,Π3,4Sk(v) ∩ P#} (assuming they are not one-point sets).
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In order to prove Lemma 2.1, we need the following.

Lemma 2.2. Let H = {H : H is a three-dimensional hyperplane in R4

whose equation can be written as ax+ by+ z+dw = e, where a 6= 0}. Then:

(1) If H ∈ H and S ⊆ H is a two-sphere, then

(i) H ∩ P# is a two-dimensional hyperplane.
(ii) If S ∩ P# 6= ∅, then S ∩ P# is a circle or a point. If S ∩ P#

is a circle, then Π1,2S ∩P# and Π3,4S ∩P# are nondegenerate
ellipses.

(2) If H1,H2 ∈ H with S1 ⊆ H1 and S2 ⊆ H2, where S1 and S2

are two-spheres with S1 ∩ P# and S2 ∩ P# both circles, and Hi

is given by the equation aix + biy + z + diw = ei, then the el-
lipses in {Π1,2S1 ∩ P#,Π3,4S1 ∩ P#} are distinct from the ellipses
in {Π1,2S2 ∩ P#,Π3,4S2 ∩ P#} provided that for i ∈ {1, 2}:
(a) ai(bi+di)/(a2

i+1) are distinct (this gives Π1,2S1∩P# 6= Π1,2S2∩
P#);

(b) a1(b1+d1)/(a2
1+1) 6= (b2+d2)/(a2

2+1) (this gives Π1,2S1∩P# 6=
Π3,4S2 ∩ P#);

(c) (b1+d1)/(a2
1+1) 6= a2(b2+d2)/(a2

2+1) (this gives Π3,4S1∩P# 6=
Π1,2S2 ∩ P#);

(d) (bi+di)/(a2
i +1) are distinct (this gives Π3,4S1∩P# 6= Π3,4S2∩

P#).

P r o o f o f (1)(i). H ∩ P# can easily be seen to be two-dimensional.

P r o o f o f (1)(ii). S ∩ P# is contained in H ∩ P#, and thus it is the
intersection of a two-sphere with a two-plane. This is either empty, a point,
or a circle. Suppose it is a circle C; then, by translating, we may assume
C is centered at the origin. Since translating does not affect the x2, z2,
t2, xt, or tz terms of the ellipses, in what follows this causes no problems,
and simplifies matters. Thus C is the set of points simultaneously satisfying
(substituting t for y and w)

ax+ (b+ d)t+ z = 0,(I)

x2 + 2t2 + z2 = r2.(II)

Solving for z in (I), we have z = −(ax+ (b+ d)t), and substituting in (II),
we obtain

(∗) (a2 + 1)x2 + (2 + (b+ d)2)t2 + 2a(b+ d)xt = r2.

Solving for x in (I), we have x = −a−1(z + (b + d)t), and substituting in
(II), we obtain

(∗∗) (1 + a−2)z2 + 2(b+ d)a−2zt+ ((b+ d)2a−2 + 2)t2 = r2.



50 J. Kulesza

Now (∗) is the equation for Π1,2S ∩ P# and (∗∗) is the equation for
Π3,4S∩P#. Each of these is easily seen to be the equation of a nondegenerate
ellipse.

P r o o f o f (2). This follows from examining (∗) and (∗∗) with the H1

and H2 given in the statement of the lemma and observing that in any
equivalent formulation of the conic section ax2 + bxy+ cy2 = d, the ratio of
the coefficient of xy to the coefficient of x2 will always be constant at b/a.
The statements (a)–(d) just say that for the appropriate ellipses these ratios
are different.

Corollary 2.1. Let H be as in Lemma 2.2, and let K be a countable
subset of H. Let H ∈ H, where H has equation ax+ by + z + dw = e. Then
given ε > 0, there is b′ within ε of b such that if H ′ is the plane whose
equation is ax + b′y + z + dw = e, and C is a circle in H ′ ∩ P#, then for
any H∗ ∈ K, and any circle C∗ in H∗, the ellipses in {Π1,2C,Π3,4C} are
distinct from the ellipses in {Π1,2C

∗,Π3,4C
∗}.

P r o o f. By (2) of Lemma 2.2, there are only 4 possible choices for b′ for
each element of H∗ which could be bad, that is, giving equality in one of
the conditions in (2) of Lemma 2.2, if a, d, and e are left fixed. Thus there
are only countably many bad choices altogether.

P r o o f o f L e m m a 2.1. Let B = {Bi : i ∈ N} be a base of balls for
R4; letting Wi be the boundary of Bi, W = {Wi : i ∈ N} is a collection of
three-spheres in R4 such that dimR4\⋃W = 0. If Z is a subset of R4 whose
intersection with each Wi is zero-dimensional, then dim(R4\⋃W ∪ Z) ≤
1. This is because it has a base of open sets whose boundaries are zero-
dimensional.

For each i ∈ N, we can find a collection Hi of countably many hy-
perplanes of dimension three so that Wi intersects each hyperplane in a
two-sphere, and so that dimWi\

⋃
Hi = 0. Then

⋃
i∈NHi almost serves as

an H(j) required by this lemma, with, for h ∈ H(j), h ∈ Hi for some i, so
the sphere corresponding to h is h∩Wi. The problem is now only to satisfy
conditions (iii), (iv), and (v).

For each Wi let Di be a countable dense subset, and let T = {(Wi, d, n) :
d ∈ Di, n ∈ N}. Let T = {Ti : i ∈ N} enumerate the elements of T in such
a way that for each i ∈ N, T3i−2, T3i−1, T3i are the same element of T .
Inductively, we choose a hyperplane Vi in H of Lemma 2.2 such that:

(i) If Ti = (Wt, d, n), then Ni = Vi ∩Wt separates the (1/n)-neighbor-
hood of d in Wt from the (2/n)-neighborhood of d in Wt.

(ii) Vi is in general position with respect to each translate of each member
of F .
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(iii) For any circle C in Vi∩P#, {Π1,2C,Π3,4C} are distinct ellipses from
those in {Π1,2C

∗, Π3,4C
∗}, where C∗ is a circle in Vt ∩ P# for some t < i.

This can be accomplished as (i) is easy to get, and if V ′i satisfies (i) then
so will any small alteration of it (that is, of the coefficients in the equation
defining V ′i ). With an appropriate small alteration V ′′i of V ′i , we can get (ii);
now any small enough alteration of V ′′i will satisfy (i) and (ii). By applying
Corollary 2.1, a small enough alteration Vi of V ′′i additionally gives (iii).

Now let Hi(j) = V3i−j+1, Si(j) = N3i−j+1; then H(j) = {Hi(j) : i ∈ N}
and S(j) = {Si(j) : i ∈ N} will satisfy the conditions of the lemma.

For the next lemma, we assume, for j ∈ {1, 2, 3}, the collections H(j)
and S(j) that Lemma 2.1 gives. For fixed t ∈ R, let Pt = {(x, t, y, t, z, t) :
x, y, z ∈ R}. Then Pt is a three-dimensional hyperplane in R6 (as op-
posed to P#(t) which is a two-dimensional hyperplane in R4). Also let
Bt = {(x, t, y, t, z, t) ∈ Pt : (x, t, y, t) ∈ ⋃S(1), (y, t, z, t) ∈ ⋃S(2), and
(x, t, z, t) ∈ ⋃S(3)}.

Lemma 2.3. Let B = {t ∈ R : dimPt\Bt < 2}. Then B is countable.

P r o o f. From (v) of Lemma 2.1, since 5 points determine an ellipse, for
r, s ∈ {1, 2, 3} with r 6= s and i, j ∈ N, we have:

(i) |Π1,2Si(r) ∩ P# ∩Π1,2Sj(s) ∩ P#| ≤ 4,
(ii) |Π1,2Si(r) ∩ P# ∩Π3,4Sj(s) ∩ P#| ≤ 4, and

(iii) |Π3,4Si(r) ∩ P# ∩Π3,4Sj(s) ∩ P#| ≤ 4.

Now let K = {(a, t) : (a, t) is in one of the intersections from (i)–(iii)
above}. Then K is countable, and so is T = {t : (a, t) ∈ K for some a ∈ R}.

Fix t 6∈ T ; we claim that dimPt\Bt ≥ 2.
If x ∈ R, there is at most one r ∈ {1, 2, 3} such that for some i ∈ N,

(x, t) ∈ Π1,2Si(r) ∩ P# or (x, t) ∈ Π3,4Si(r) ∩ P#. So if (x, t, y, t) ∈ Si(r)
and (a, t, b, t) ∈ Sj(s) where r 6= s, then x 6= a, x 6= b, y 6= a, and y 6= b.
Also, since Hi(r) is in general position with respect to P#(t), the dimension
of P#(t) ∩ Hi(r) is 1, so |Si(r) ∩ P#(t)| ≤ 2, since Si(r) ∩ P#(t) is the
intersection of a sphere with a line.

Now let, for i ∈ {1, 2, 3}, Mi =
⋃S(i)∩P#(t) = {(x, t, y, t) : (x, t, y, t) ∈⋃S(i)}. Then for i 6= j, Π1Mi ∩ Π1Mj = ∅, Π3Mi ∩ Π1Mj = ∅, and

Π3Mi ∩Π3Mj = ∅, and Mi is countable.
Thus Bt is a union of lines in Pt of 3 types, countably many of each type.

Namely:

L1 = {(x, t, y, t, z, t) : (x, t, y, t) ∈M1, z ∈ R},
L2 = {(z, t, x, t, y, t) : (x, t, y, t) ∈M2, z ∈ R},
L3 = {(x, t, z, t, y, t) : (x, t, y, t) ∈M3, z ∈ R}.
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Now we claim that no two lines in L1 ∪L2 ∪L3 intersect. Clearly this is
true for lines in a fixed Li. Suppose without loss of generality that l ∈ L1

and m ∈ L2, and (x, t, y, t, z, t) ∈ l ∩m. Then y ∈ Π3M1 ∩Π1M2, which is
impossible.

Thus Bt is a union of countably many pairwise disjoint lines in Pt. By
the argument of Sitnikov (see [E]), dimPt\Bt ≥ 2.

The Example. We view R6 as R2 × R2 × R2, and the example X will
be the disjoint union of subsets A, B, and C of R2. The requirements are
that:

(1) dimA2 = dimB2 = dimC2 = 1,
(2) dimA×B = dimA× C = dimB × C = 1,
(3) dimA×B × C = 2.

We assume H(j) and S(j) for j ∈ {1, 2, 3} as in Lemma 2.1, and also the
corresponding B as in Lemma 2.3. Let G = {g : g is a Gδ subset of R6 such
that dim g = 1}. Then we can write G = {gα : α < c}. If Y ⊆ R6 intersects
the complement of each element of G, then dimY ≥ 2.

The sets A,B,C are produced by transfinite induction so that A =
{aα : α < c}, B = {bα : α < c}, and C = {cα : α < c}. At stage α, we
start with approximations Aα = {aβ : β < α}, Bα = {bβ : β < α}, and
Cα = {cβ : β < α} such that:

(i) None of A2
α, B

2
α, C

2
α intersect

⋃S(1).
(ii) Aα×Bα∩

⋃S(1) = ∅, Aα×Cα∩
⋃S(3) = ∅, Bα×Cα∩

⋃S(2) = ∅.
(iii) For each β < α, (aβ , bβ , cβ) ∈ R6\gβ .

We must produce, simultaneously, aα, bα, cα so that on setting Aα+1 =
Aα ∪ {aα}, Bα+1 = Bα ∪ {bα}, Cα+1 = Cα ∪ {cα}, the conditions (i)–(iii)
are satisfied with α+ 1 in place of α.

With A, B, and C so constructed, condition (1) is met due to (i), con-
dition (2) is met due to (ii), and condition (3) is met due to (iii).

Remembering condition (iii) of Lemma 2.1, each element of H(j) is in
general position with respect to each translate of the planes Pa, Pb, and Paa.
Thus, by using an argument similar to that used in the proof of Theorem 1.1,
the set K = {u ∈ R : there is v ∈ R such that choosing aα, bα, or cα to be
(v, u) would cause (i) to fail} has fewer than c points.

We know, for example, that Aα×Bα∩
⋃S(1) = ∅; similarly to the above

there are fewer than c choices for aα so that {aα} ×Bα ∩
⋃S(1) 6= ∅. More

generally, the sets La, Lb, Lc ⊆ R given by La = {u ∈ R : there is v ∈ R such
that if aα = (v, u) then {aα} ×Bα ∩

⋃S(1) 6= ∅ or {aα} × Cα ∩ S(3) 6= ∅},
Lb = {u ∈ R : there is v ∈ R such that if bα = (v, u) then Aα × {bα} ∩ S(1)
6= ∅ or {bα}×Cα ∩

⋃S(2) 6= ∅}, and Lc = {u ∈ R : there is v ∈ R such that
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if cα = (v, u) then Aα × {cα} ∩ S(3) 6= ∅ or Bα × {cα} ∩ S(2) 6= ∅} all have
fewer than c points.

Let L = La ∪ Lb ∪ Lc; then L has fewer than c points. Now choose t ∈
R\(K ∪ L ∪B). Since t 6∈ B, dimPt\Bt ≥ 2; in particular, (Pt\Bt)\gα 6= ∅.
Choose (a, t, b, t, c, t) ∈ (Pt\Bt)\gα, and let aα = (a, t), bα = (b, t), and
cα = (c, t). Then (i) is satisfied since t 6∈ K; (iii) is obviously satisfied. We
check (ii) is satisfied in the case of Aα+1 ×Bα+1. We have, by assumption,
Aα × Bα ∩

⋃S(1) = ∅. Since t 6∈ La ∪ Lb, it follows that {aα} × Bα ∩⋃S(1) = ∅ = Aα × {bα}. We need only check that (aα, bα) 6∈ ⋃S(1); if
(a, t, b, t) ∈ ⋃S(1) we would have (a, t, b, t, c, t) ∈ Bt, which is not possible.
The other cases are checked similarly.

3. Questions. The first question is the ultimate goal.

Question 1. Is the conjecture true or false? If it is false, what is the
correct conjecture?

Question 1 may be very difficult. There are other interesting parts of the
Conjecture. A couple of them are contained in:

Question 2. Given k and n � k, is there X such that dimXr = k if
r < n, and dimXn > k? More specifically, is there a space Xn, for each
n > 3, such that dimXr

n = 1 if r < n and dimXn
n = 2? Our example in

Section 2 is X3.

Question 3. Is there a space X such that, for infinitely many k, dimXk

= dimXk+1 < dimXk+2? Note that if 1 = dimX = dimX2, and 2 =
dimX3, and dimXω = ∞, then X is such an example, since dimX2m ≤
dim(X2)m ≤ m, so half the time dimXm = dimXm+1.

Question 4. Suppose D = {dn : n ∈ N} and E = {en : n ∈ N} are
allowable sequences. Is D+E = {dn + en : n ∈ N} allowable? This question
is due to Jim Lawrence. Any sequences built in a nontrivial way from old
sequences would be interesting.

For a finite-dimensional separable metric space X, let e(X) = min{n :
X embeds in Rn}. We will call e(X) the embedding number for X.

Question 5. What are the possibilities for the sequence e(X), e(X2),
e(X3), . . .? The embedding number sequences are related to allowable se-
quences since dimX ≤ e(X) ≤ 2 dimX + 1. The results in [DRS], [Sp] and
[K], along with that in [L], suggest that, at least for locally compact spaces,
the connection may be stronger, while the result in [Ku2] shows it is not as
strong in the general case.

Hattori [H] showed that examples with the properties of those found in
[Ku1] can be chosen to be topological groups.
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Question 6. Can any allowable sequence be realized by a topological
group? If so, a precompact topological group? Less generally, can any of
the allowable sequences realized by base spaces be realized by topological
groups (precompact topological groups)?
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