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Abstract. We investigate when two orthogonal families of sets of integers can be
separated if one of them is analytic.

Two sets of integers a and b are orthogonal to each other if their inter-
section is finite. We shall let a ⊥ b denote this fact. Two families A and B
of sets of integers are orthogonal to each other if a ⊥ b for every a ∈ A and
b ∈ B. Let A ⊥ B denote this fact. One trivial condition for orthogonality
between A and B is the existence of a set of integers c which almost includes
every element of A and which is orthogonal to every element of B. In this
case we say that c separates A and B and that A and B are separated from
each other. A substantial amount of literature which starts at least with
the work of Du Bois-Reymond [4], Hadamard [9] and especially Hausdorff
([10], [11]) is devoted to the converse of this implication. The early work is
synthesized in the beautiful paper of Luzin [20] from which we take most of
our terminology. In more recent times this type of questions plays a promi-
nent role in a wide range of subjects starting from Banach algebras ([3]) and
ending with the most recent “pcf-theory” ([24]). The purpose of this note
is to study the questions of Hausdorff and Luzin in the realm of definable
families of sets of integers. The word definable refers to the classical way of
presenting a set of reals as Borel, analytic, coanalytic, etc. (see [13]). Thus,
we identify the power-set of the integers with the Cantor set in order to take
its topology together with these notions.

Question. When can we separate two orthogonal definable families A
and B?

To see that this cannot always be done, for an integer i, let ai be the set
of all integers of the form 2i(2j + 1). Let A = {ai} and B = A⊥, where A⊥
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is the set of all sets of integers orthogonal to every element of A. That is,

B = {b ⊆ N : b ⊥ ai for all i}.
Then A and B are two Borel orthogonal families which cannot be separated.
This is our first example of an analytic (in fact, Borel) gap. One thing we
learn from this example is that A is rather special, it is countably generated
in B⊥, i.e., there is a sequence cn (=

⋃
i≤n ai) of elements of B⊥ such that

every element of A is (almost) included in one of the cn’s. On the other
hand, B is rather big—it is σ-directed (i.e., for every sequence {bn} of ele-
ments of B there is an element of B which almost includes every bn). Thus,
in particular, every countable B0 ⊆ B can be separated from A. Our first
result shows essentially that there are no other kinds of analytic gaps.

Theorem 1. Suppose A and B are two orthogonal families and that A
is analytic. Then A is countably generated in B⊥ iff every countable subset
of B can be separated from A.

Corollary 1. Suppose A and B are two orthogonal σ-directed families
of subsets of N. If one of them is analytic, then they can be separated.

The assumption that one of the sets A and B is analytic is necessary by
the well-known example of Hausdorff ([10], [11]) of an (ω1, ω

∗
1)-gap in the

algebra P(N)/fin. In fact, working in the constructible universe one is able
to construct a coanalytic Hausdorff gap so the result cannot be extended to
any larger class of definable sets. Note that Theorem 1 is an asymmetrical
result which talks about an analytic family A and its separation from an
arbitrary family orthogonal to it. To find a symmetrical condition we have
to assume at least that both families A and B are analytic and analyze
examples of orthogonal pairs (A,B) which are essentially different from the
asymmetric pair A = {ai}, B = A⊥ discussed above. It turns out that the
crucial condition of nearness of two orthogonal families used by Hausdorff
in constructing his gaps shows also in the definable case. The flexibility of
Hausdorff’s idea of nearness was fully explored by Luzin ([20]) and espe-
cially by Kunen ([17], [18; Ex. II (10), p. 87]). To state the idea in its most
general form, suppose that for some single index set I we can write A as ai
(i ∈ I) and B as bi (i ∈ I) in such a way that:

ai ∩ bi = ∅ for all i ∈ I, and(1)

ai ∩ bj 6= 0 or bi ∩ aj 6= ∅ for all i 6= j in I.(2)

Then for every c ⊆ N the set of all i ∈ I such that ai ⊆∗ c and c ⊥ bi
must be countable. Thus, if the index set I is uncountable, not only that
A and B cannot be separated but no countable set C ⊆ P(N) separates
A from B in the sense that for every a ∈ A and b ∈ B we can find a c
in C such that a ⊆∗ c and c ⊥ b. We call such a pair (A,B) a Luzin gap
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since Luzin was the first to notice ([20]) that a considerable simplification of
Hausdorff’s construction gives us an uncountable almost disjoint family E
of infinite subsets of N such that no two uncountable disjoint subsets of E
can be separated essentially because they can be refined to two uncountable
sets A and B satisfying (1) and (2). If the index set I is a nonempty perfect
set of reals and if the mappings i 7→ ai and i 7→ bi are continuous then we
call a pair 〈{ai}i∈I , {bi}i∈I〉 a perfect Luzin gap.

We have seen above that there are no analytic Hausdorff gaps, but it
turns out that the weaker form of gaps, Luzin gaps, can be found at this
level of complexity. To see this, we identify N with the set S = {0, 1}<ω of all
finite sequences of 0’s and 1’s and concentrate on finding a perfect Luzin gap
in P(S) rather than in P(N). Let P = {0, 1}ω be the Cantor set of all infinite
sequences of 0’s and 1’s viewed as infinite branches of the tree S. For x ∈ P
let ax be the set of all σ ∈ S such that x end-extends σ0, and let bx be the
set of all σ ∈ S such that x end-extends σ1. It is clear that A = {ax : x ∈ P}
is orthogonal to B = {bx : x ∈ P}. In fact, A∪B is an almost disjoint family
of sets. It is also clear that ax ∩ bx = ∅ for all x ∈ P , so it remains to check
the condition (2). For this purpose fix x 6= y in P and let σ be the maximal
initial segment of both x and y. Then σ is a member of the intersection
ax ∩ by or bx ∩ ay depending on whether the next digit of x after σ is 0 or 1.

Our second result shows that perfect Luzin gaps are essentially the only
kind of analytic gaps which cannot be separated by a countable subfamily
of P(N).

Theorem 2. If A and B are two orthogonal analytic families then either

(a) there is a countable set C ⊆ P(N) which separates A and B, or
(b) the restriction of (A,B) to some end-segment of N contains a perfect

Luzin gap.

Note that going to some restriction of the form ({a \ {1, . . . , n} : a ∈ A},
{b \ {1, . . . , n} : b ∈ B}) in the alternative (b) is absolutely necessary since
one might have two orthogonal families A and B such that some fixed integer
is an element of every a ∈ A and every b ∈ B, so no subgap of (A,B)
could ever satisfy (1). It should also be clear that neither separation nor
definability properties are changed by the transition from (A,B) to the pair
of end-segments of their elements, so it is reasonable to assume that A and B
are closed under this operation. Note that if A and B are σ-directed, and if
they can be separated by a countable C ⊆ P(N), then there must be a single
element c of C which separates A and B. The phenomenon of Hausdorff’s
(ω1, ω

∗
1)-gap is really an instance of the general phenomenon that two σ-

directed orthogonal families may not be separated. Theorems 1 and 2 tell us
that this phenomenon is highly nonanalytic since if, for example, an analytic
gap (A,B) contains a Luzin subgap then neither A nor B can be σ-directed.
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1. Proof of Theorem 1: Hurewicz’s phenomenon. Let [N]<ω be the
collection of all finite subsets of N considered as a tree under the relation of
end-extension. We identify the set of infinite branches of [N]<ω with the set
[N]ω of infinite subsets of N. Let

[N]<ω ⊗ [N]<ω = {(s, t) ∈ [N]<ω × [N]<ω : |s| = |t|}.
Note that [N]<ω ⊗ [N]<ω with the product ordering is also a tree. For a
family B of subsets of N, we say that a subset Σ of [N]<ω is a B-tree iff:

(3) ∅ ∈ Σ, and
(4) for every σ ∈ Σ, the set {i ∈ N : σ∪{i} ∈ Σ} is infinite and is included

in an element of B.

The following is a more precise version of Theorem 1.

Theorem 3. Suppose A and B are two orthogonal families of subsets of
N and that A is analytic and closed under taking subsets of its elements.
Then either A is countably generated in B⊥ or there is a B-tree all of whose
branches are elements of A.

P r o o f. Suppose A is not countably generated in B⊥ and fix a down-
wards closed subtree T of [N]<ω ⊗ [N]<ω which codes a closed subset of
([N]ω)2 which projects to A ∩ [N]ω. Thus, an infinite set a ⊆ N is in A iff
there is an infinite branch f = {〈sn, tn〉}∞n=0 of T such that a is equal to the
union of the sn’s. Let fa denote the leftmost branch of T with this property.
For (s, t) ∈ T set

A(s, t) = {a ∈ A : fa extends (s, t)}.
Let

T0 = {(s, t) ∈ T : A(s, t) is countably generated in B⊥}.
Then T0 is an upward closed subset of T , so its complement T1 = T \ T0 is
downwards closed and nonempty by our assumption that A is not countably
generated in B⊥. In fact, for every a in the nonempty set

A1 = A
∖ ⋃

(s,t)∈T0

A(s, t)

the branch fa is actually a subset of T1. Moreover, for every (s, t) ∈ T1, the
set

A1(s, t) = {a ∈ A1 : fa extends (s, t)}
is not countably generated inside B⊥.

The B-tree Σ ⊆ [N]<ω satisfying the conclusion of Theorem 3 is built
recursively together with a sequence (sσ, tσ) (σ ∈ Σ) of elements of T1 and
a sequence dσ (σ ∈ Σ) of elements of B such that the following conditions
are satisfied:
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(5) if τ strictly end-extends σ, then (sτ , tτ ) strictly extends (sσ, tσ),
(6) σ ⊆ sσ for all σ ∈ Σ, and
(7) bσ = {i ∈ dσ : σ ∪ {i} ∈ Σ} is infinite for all σ ∈ Σ.

We start the recursion by letting ∅ ∈ Σ and s∅ = t∅ = ∅. Suppose that we
have put some σ in Σ and that we know (sσ, tσ) in T1. Then A1(sσ, tσ) is
not countably generated in B⊥ so its union, call it cσ, is not orthogonal to
B. Fix an element dσ of B such that cσ ∩ dσ is infinite and set

bσ = {i ∈ cσ ∩ dσ : i > max(sσ)}.
For i ∈ bσ, fix an ai ∈ A1(sσ, tσ) such that i ∈ ai and let (si, ti) be the
minimal element of the branch fai such that i ∈ si. Finally, put σ ∪ {i} in
Σ whenever i ∈ bσ, and set

sσ∪{i} = si and tσ∪{i} = ti

for every such i. This completes the description of the construction of the
B-tree Σ.

To show that it satisfies the conclusion of Theorem 3 let a = {i0, i1, . . . , }
be a given infinite branch of Σ enumerated increasingly or more precisely
an infinite subset of N which determines (and is determined by) an infinite
branch

σ0 = ∅, σ1 = {i0}, σ2 = {i0, i1}, . . .
of Σ. Then (sσi , tσi), i = 1, 2, . . . , determines an infinite branch of T whose
projection

a =
∞⋃

i=0

sσi

is a member of A which includes the set a (by (6)). Since A is closed under
taking subsets, it follows that a is also a member of A. This finishes the proof.

One may think of Theorem 3 as an instance of a classical phenomenon
first touched by Hurewicz [12] and later extended by Kechris, Louveau and
Woodin [14]. In fact, it can be shown that the Hurewicz-type result of [14;
Theorem 4] is an immediate consequence of Theorem 3. To see this, let us
recall that Theorem 4 of [14] says that if E is a compact metric space and if A
and B are two disjoint subsets of E such that A is analytic, then either there
is an Fσ-set C such that A ⊂ C and C ∩B = ∅, or there is a perfect set P ⊂
A∪B such that P ∩B is a countable dense subset of P . To see the deduction,
note first that E can be assumed to be equal to the Cantor set {0, 1}ω viewed
as the branches of the complete binary tree {0, 1}<ω. For a ∈ {0, 1}ω, let â
be the set of all infinite chains of {0, 1}<ω whose union is equal to a. Set

Â =
⋃

a∈A
â and B̂ =

⋃

b∈B
b̂.
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Then Â and B̂ are two orthogonal families of infinite subsets of {0, 1}<ω
and the two alternatives of Theorem 3 lead to the two alternatives of the
Hurewicz-type result.

2. Proof of Theorem 2: An open coloring. We may assume that
the given two orthogonal analytic families A and B are closed under fi-
nite changes of its elements and we may form the following subset of their
product:

A⊗B = {(a, b) ∈ A×B : a ∩ b = ∅}.
There is a very natural partition of the set [A ⊗ B]2 of unordered pairs of
elements of A⊗B that one associates with the problem of separating A and
B (see [26; §8]): Let K0 be the set of all {(a, b), (a′, b′)} from [A⊗B]2 such
that

(a ∩ b′) ∪ (b ∩ a′) 6= ∅.
It is clear that K0 is an open subset of [A ⊗ B]2 in the natural topology
induced from the exponential space of A⊗ B. So by the Principle of Open
Coloring ([26], [5]) we have the following two alternatives:

(i) there is a decomposition A⊗B =
⋃∞
n=0Xn such that [Xn]2∩K0 = ∅

for all n, or
(ii) there is a nonempty perfect set P ⊆ A⊗B such that [P ]2 ⊆ K0.

Note that the alternative (ii) implies the alternative (b) of Theorem 2 since,
if we write an element x of P as a pair (ax, bx), then

{ax : x ∈ P} ⊆ A and {bx : x ∈ P} ⊆ B
form a perfect Luzin gap by the definition of K0. To see what the alternative
(i) means, let π0 : A ⊗ B → A be the projection, and for n ∈ N, let cn be
the union of the image of Xn under π0. Then by the definition of K0, for all
n ∈ N,

(8) a ⊆ cn and cn ∩ b = ∅ for all (a, b) ∈ Xn.

It is clear that this means that C = {cn} is a countable family which sepa-
rates A from B.

3. Hausdorff’s gaps in the Borel algebra. For a ∈ [N]ω, set

(·, a]∗ = {b ∈ [N]ω : b ⊆∗ a}.
Then (·, a]∗ is an Fσ-subset of [N]ω and the operation a 7→ (·, a]∗ is mono-
tonic:

(9) a ⊆∗ b implies (·, a]∗ ⊆ (·, b]∗.
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It follows that (ω1, ω
∗
1)-gaps of P(N)/fin get transformed into “(ω1, ω

∗
1)-

pregaps” of the algebra of Borel subsets of [N]ω, i.e., into pairs of families

A = {(·, a]∗ : a ∈ A} and B = {(·, b]∗ : b ∈ B}
of Fσ-sets such that otp(A,⊆) = ω1, otp(B,⊆) = ω∗1 , and every element of
B includes every element of A. Is there a Borel set X ⊂ [N]ω which separates
them?

Theorem 4. If (A,B) is an (ω1, ω
∗
1)-gap of P(N)/fin then there is no

analytic set X ⊆ [N]ω such that (·, a]∗ ⊆ X ⊆ (·, b]∗ for all a ∈ A and b ∈ B.

P r o o f. Suppose such an X exists. Set

C = {N \ b : b ∈ B}.
Then C is σ-directed and C ⊥ X. By Theorem 1 there is a sequence {cn} of
elements of C⊥ which generates X, i.e., which has the property that every
element of X is (almost) included in some cn. Then for some fixed n, the set

A0 = {a ∈ A : a ⊆∗ cn}
is uncountable. But this means that cn splits the gap (A,B), a contradiction.

Theorem 4 leads to a quite general method of constructing (ω1, ω
∗
1)-gaps

in the Borel algebra. Of course, there are other ways for getting such objects
but none of them is as canonical as this one, nor produces gaps consisting of
sets of such low complexity. For example, one of the more generous sources
of Hausdorff’s gaps in the Borel algebra is found by considering decompo-
sitions of R into ℵ1 many disjoint Borel sets. [It is known that Fσδ is the
smallest possible complexity of sets occurring in such decompositions (see
[7]). It is also interesting that the first such decomposition was found by
Hausdorff himself using his (ω1, ω

∗
1)-gap (see [11]).] To see the relevance of

such decompositions

R =
⋃

ξ<ω1

Xξ,

note that there must be many subfamilies of Xξ (ξ < ω1) whose unions are
not Borel subsets of R. Otherwise, we would be able to find a countable
sequence {Bn} of such unions with the property that for every ξ 6= η there
is n such that Bn ⊇ Xξ and Bn∩Xη = ∅. So if we define f : R→ {0, 1}ω by

f(x)(n) = 1 iff x ∈ Bn,
we get a Borel map whose range (an analytic set) has size exactly ℵ1 no
matter what the size of the continuum is. Now given an uncountable co-
uncountable set I ⊆ ω1 such that

⋃
ξ∈I Xξ is not Borel, the sets

⋃
ξ∈I∩αXξ

and R \ ⋃ξ∈α\I Xξ, for α a countable ordinal, would form an (ω1, ω
∗
1)-gap

in the Borel algebra.



62 S. Todorčevi ć

4. Analytic ideals. An ideal on N is a family of subsets of N closed
under taking subsets and finite unions. We shall consider only ideals on N
which include the Fréchet ideal , the ideal of finite sets. If it is σ-directed un-
der almost inclusion we call it a P -ideal . Many of the familiar ideals on N are
analytic and in fact Borel of very low complexity. For example, consider the
ideal Z0 of subsets of N of asymptotic density 0. It is an example of an ana-
lytic (in fact Fσδ) P-ideal which is moreover dense in [N]ω, i.e., every infinite
subset of N includes an infinite subset which is a member of Z0. Another in-
teresting example comes when one considers a bounded sequence f = {fn} of
continuous real-valued functions defined on a Polish space X. Assuming that
the constantly zero function 0 is a pointwise accumulation point of {fn}, let

If = {a ⊆ N : 0 6∈ {fn : n ∈ a}},
where the closure is taken in RX . Note that the orthogonal I⊥f is just the
set of all a ⊆ N which are either finite or have the property that {fn}n∈a
pointwise converges to 0. The equality I⊥⊥f = If simply means that every
subsequence of {fn} which pointwise accumulates to 0 contains a subse-
quence which pointwise converges to 0. A rather deep result of Bourgain,
Fremlin and Talagrand [2] says that this happens whenever the pointwise
closure K = {fn} ⊆ RX is relatively small, e.g. it consists only of Baire
class-1 functions. Such compact sets K are in the literature called separable
Rosenthal compacta ([23]). Many directed sets occurring in Analysis can be
represented as analytic ideals on N ordered by the inclusion. For example,
this is true about the lattice `1 of absolutely converging series, or the lattice
NN of integer-valued sequences (x ≤ y iff x(n) ≤ y(n) for all n). Results that
would relate some of these ideals as directed sets are often connected to ques-
tions which naturally arise in the context of Real Analysis and Measure The-
ory (see [6]). For example, a typical question of this sort is the question ([1],
[21]) about characters of points of Rosenthal compacta, which reduces to the
question about possible cofinalities of ideals of the form If . Our first result
says that the lattice NN has a particular place among analytic ideals on N and
at the same time hints at the relevance of Theorems 1 and 2 in this context.

Theorem 5. Suppose A is an analytic ideal whose orthogonal A⊥ is not
a P -ideal. Then there is a Borel monotonic map which transfers A to a
cofinal subset of NN.

P r o o f. Choose a sequence {cn} of elements of A⊥ with the property
that no element of A⊥ almost includes every member of the sequence. Let
Φ : A→ NN be defined by

Φ(a)(n) = min{m ∈ N : a ∩ ci ⊆ {1, . . . ,m} for all i ≤ n}.
It is clear that Φ is monotonic and Borel and that its range R = Φ′′A con-
sists only of monotonic members of NN. Note that R must be unbounded
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in NN even if we take the ordering <∗ of eventual dominance. [For x ∈ NN,
the union of the family cn \ {1, . . . , x(n)} (n ∈ N) is a subset of N which
almost includes every cn, and it would be a member of A⊥ if x eventually
dominates R.] It is well known (see [0]) that an unbounded analytic directed
subset of NN consisting of monotonic functions must in fact be dominating
in the ordering <∗. Thus we conclude that for every x ∈ NN there is r ∈ R
such that x <∗ r. By a Lemma of Kunen [16], this means that there is a
k ∈ N such that R is dominating on N\{1, . . . , k} even if we take the order-
ing of everywhere dominance, that is, for every x ∈ NN there is r ∈ R such
that x(n) < r(n) for all n > k. Thus, if we define Ψ : A→ NN by

Ψ(a)(n) = Φ(a)(n+ k)

we get the desired mapping. This finishes the proof.
To get a better understanding of this kind of results let us give an il-

lustration by using the separable Rosenthal compactum K = {fn} ⊆ RX
introduced above. Assuming that K contains the constantly zero map 0,
let us examine the corresponding analytic ideal If . We claim that either 0
has countable character in K, or there is a monotonic map from If onto
a cofinal subset of NN. To see that this is so, one only needs to compare
Theorems 1 and 5 and the result I⊥⊥f = If of [2] mentioned above. It follows
that the character of a point in a separable Rosenthal compactum is either
countable or at least as big as the cofinality of NN. This result has already
been achieved by Krawczyk [15] by using a quite different argument. In or-
der to state our next result, let us say that an ideal A on N is atomic if it
is generated over the Fréchet ideal by a single subset of N.

Theorem 6. For every nonatomic analytic P-ideal A on N there is a
Borel monotonic map from A onto a cofinal subset of NN.

P r o o f. It will be convenient to monotonically transfer A to another
analytic P-ideal A on N, so for this purpose with every subset a of N we
associate the set

a = {2i(2j + 1) : i ∈ N, j ≤ |a ∩ {1, . . . , i}|}.
Let A be the ideal generated by {a : a ∈ A}. It is clear that a 7→ a is a
monotonic Borel map from A onto a cofinal subset of A, so we can from now
on concentrate on the ideal A. Note that A is indeed a P-ideal and this is
where the assumption that A is nonatomic is used. For suppose we are given
a sequence {an} of elements of A. Applying the fact that A is a nonatomic
P-ideal to the corresponding sequence {an} we find an a in A which not only
almost includes all an’s but it also has the property that a \ an is infinite
for all n. Then a will be an element of A which almost includes all an’s. For
i ∈ N, set

Ni = {2i(2j + 1) : j ∈ N},
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and

B = {b ∈ A⊥ : Ni \ b is finite for all i}.
By Theorem 5, we may assume that the Ni’s can be separated from A, or
equivalently, that the set B is nonempty. We claim that there is a countable
subset of B which cannot be separated from A, which would give us the con-
clusion of Theorem 6 similarly to the proof of Theorem 5. If this is not the
case, then by Theorem 1 there is a sequence {cn} of elements of B⊥ which
generates A, i.e., every element of A is almost included in some cn. Since A
is a P-ideal, there is a single cn which almost includes every element of A.
By adding to cn finitely many elements, we may assume that cn intersects
all Ni’s. For i ∈ N, set

mi = max(Ni ∩ cn) and bi = Ni \ {1, . . . ,mi − 1}.
Let b be the union of the bi’s. Then b∩cn is infinite as it includes the infinite
set {mi}. Since cn belongs to B⊥ this means that b is not a member of B,
so we can find a ∈ A such that a ∩ b is infinite. Then a intersects bi for
infinitely many i’s, so there is an infinite set E ⊆ N such that mi ∈ a for
all i ∈ E. [This follows from the fact that a ∩ Ni is an initial segment of Ni
for all i.] Since A is a proper ideal we can find a d ∈ A such that a ⊆ d and
d \ a 6= ∅. So for almost all i ∈ N,

|d ∩ {1, . . . , i}| > |a ∩ {1, . . . , i}|.
It follows that for almost all i ∈ N, the set d contains at least one integer ni
from Ni which is above mi. But this means that {ni : i ∈ E} is an infinite
subset of d which is orthogonal to cn, contradicting the fact that cn almost
includes every element of A.

In [22], R. Pol showed that if (A,B) is an (ω1, ω
∗
1)-gap in P(N)/fin then

the set

Ǎ = {c ⊆ N : a ⊆∗ c for all a ∈ A}
is not analytic. Our Theorem 1 says a bit more, not only that Ǎ is not
analytic but no analytic subset of Ǎ contains the other half, B, of the gap.
Note that A⊥ = {N \ c : c ∈ Ǎ}, so this shows that the orthogonal of the
lower part of an (ω1, ω

∗
1)-gap is never analytic. There is another result in

the literature with a similar conclusion. In [15], Krawczyk showed that if If
is the analytic ideal associated with the point 0 in a separable Rosenthal
compactum K = {fn} considered above, then its orthogonal I⊥f is analytic
only in the trivial case when If is countably generated. Our next result gives
yet another instance of this phenomenon.

Theorem 7. Let B be a P-ideal on N. Then its orthogonal B⊥ is analytic
iff it is an Fσ-set iff it is countably generated.
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P r o o f. Assume A = B⊥ is analytic. By our assumption that B is a
P-ideal every countable subset of B is separated from A. So, applying The-
orem 1 to A and B we conclude that A must be countably generated in
B⊥ = A. The rest of the implications are immediate.

Note that if we use the sharper version of Theorem 1, Theorem 3, the
results of this section about P-ideals can be extended to the wider class of
ideals on N. These are the ideals A with the property that for every sequence
{an} of infinite elements of A there is an element a of A which intersects
all an’s. It turns out that this property has already been considered in the
context of analysis of the pointwise convergence of continuous functions, i.e.,
when A is the ideal of converging subsequences of a fixed bounded sequence
{fn} of real functions defined on a Polish space X (see [8], [27], [25], [21]). It
simply means that if we are given a sequence {gkn} of subsequences of {fn}
such that gkn

n→ 0 for all k, then we can find a diagonal sequence {gknk} such

that gknk
k→ 0. It is interesting that this property of the orthogonal A = I⊥f is

as restrictive as the assumption that the ideal If (of all subsequences of {fn}
which do not accumulate to 0) is countably generated. This is the Szlenk
Theorem ([25]) as referred to in [21]. It is an immediate corollary of our
Theorem 3.
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les fonctions indéfiniment croissantes, Acta Math. 18 (1894), 319–336.

[10] F. Hausdor f f, Die Graduierung nach dem Endverlauf , Abh. Königl. Sächs. Gesell.
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