
FUNDAMENTA

MATHEMATICAE

150 (1996)

Exactly two-to-one maps from continua onto arc-continua

by

W. D ȩb sk i (Katowice), J. Hea th (Auburn, Ala.)
and J. Mi odu s z ewsk i (Katowice)

Abstract. Continuing studies on 2-to-1 maps onto indecomposable continua having
only arcs as proper non-degenerate subcontinua—called here arc-continua—we drop the
hypothesis of tree-likeness, and we get some conditions on the arc-continuum image that
force any 2-to-1 map to be a local homeomorphism. We show that any 2-to-1 map from a
continuum onto a local Cantor bundle Y is either a local homeomorphism or a retraction
if Y is orientable, and that it is a local homeomorphism if Y is not orientable.

Define X to be an arc-continuum if X is a (metric) continuum and each
proper non-degenerate subcontinuum of X is an arc. In an earlier paper
[5] we showed that there is no exactly 2-to-1 continuous map from any
continuum onto a tree-like arc-continuum (to partially answer a question
raised by Sam Nadler, Jr. and L. E. Ward, Jr. [14]) by first showing that
any such map must be a local homeomorphism (i.e. a 2-fold covering map).
In this paper we continue our study of exactly 2-to-1 maps from continua
onto arc-continua, without the hypothesis of tree-likeness, and we have found
some simple conditions on the arc-continuum image (different for orientable
and non-orientable cases) that force any 2-to-1 map to be a local homeo-
morphism. In the case of an indecomposable arc-continuum Y that is a
local Cantor bundle, we show that any 2-to-1 map from a continuum onto
Y is either a local homeomorphism or a retraction if Y is orientable (both
situations can be realized), and any 2-to-1 map from a continuum onto Y
is a local homeomorphism if Y is not orientable. Thus more is now known
about what kinds of 2-to-1 maps are possible onto these types of spaces,
including all solenoids.

A decomposable arc-continuum is the union of two arcs, thus an arc or
a simple closed curve. Harrold showed in 1940 [8] that the arc is not the
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Fig. 1

2-to-1 image of any continuum; see also W. H. Gottschalk (1947) [6] for
an independent proof and a generalization. There are 2-to-1 maps onto the
simple closed curve. It is easy to construct a 2-fold cover from the circle onto
itself; or to retract a circle, plus finitely many abutting arcs (see Fig. 1),
2-to-1 onto the circle; or to construct a 2-to-1 map from the circle onto
itself that is neither a local homeomorphism nor a retraction. This paper,
however, studies only indecomposable arc-continua.

Now suppose that Y is an indecomposable arc-continuum. Are—as in
the case of local Cantor bundles—retractions and 2-fold covers the only
2-to-1 maps from continua onto Y ? In general it is not true. In Example 1
below, we define an indecomposable arc-continuum that is the 2-to-1 image
of a continuum under a map that is neither a local homeomorphism nor a
retraction. The arcs in the continuum Y in Example 1 do not all have a
property that we call “approximable”, a property that is very useful in our
proofs, and is automatically satisfied by any arc-continuum that is a local
Cantor bundle. We say that an arc A in an indecomposable arc-continuum
Y is approximable if every dense half-composant of Y contains a sequence
of arcs topologically convergent to A.

Example 1. Let K be an arc-continuum with two endpoints, p and q;
let Y be the arc-continuum that results when p and q are identified; and
let X be the continuum obtained by gluing together two copies of K, K1

and K2, so that p1 and p2 are identified and q1 and q2 are identified (see
Fig. 2). The natural 2-to-1 map from X onto Y obtained by folding K1

onto K2 and then identifying the points {p1, p2} and {q1, q2} is neither a
local homeomorphism nor a retraction. Note that if A is an arc in K with
endpoint p and B is an arc in K with endpoint q, then the arc T = A ∪ B
in Y is not approximable.

In the case when K is an arc, the resulting 2-to-1 map is the map from
the circle onto itself (mentioned at the beginning) that is neither a local
homeomorphism nor a retraction.
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Fig. 2

Another example can be derived from Corollary 3 in [4], where the ex-
istence of such maps onto arc-continua from some P -adic solenoids was
indicated. This example will be used to show that the approximability
properties in the hypotheses of the main theorems are necessary.

1. Basic facts and lemmas concerning 2-to-1 maps onto in-
decomposable arc-continua. If Y is an indecomposable arc-continuum,
then each arc-component of Y is an increasing union of arcs and is either a
continuous 1-to-1 image of a ray, or a continuous 1-to-1 image of the line.
Suppose that Y is an indecomposable arc-continuum and N is an arc in Y . If
we remove the geometric interior of N from the arc component of Y in which
N lies, then the remainder splits into two arcwise connected sets, at least one
of which, say E, is dense in Y . The set E is a continuous 1-to-1 image of the
closed half-line, and such sets will be called half-composants. The endpoint
common to E and N will be called a free endpoint of N . Each arc in Y has
at least one free endpoint. The other part of the remainder, if it is not dense,
will contain an endpoint of Y . An endpoint of Y is any point that is the
endpoint (in the usual sense) of each arc in Y that contains it. The unique
arc in the arc-continuum joining the points x and y will be denoted by 〈x, y〉.

One fact that we use often in this paper is that the set of points y in
Y at which f is open (i.e. f is open at each of the two points of f−1(y))
is open and dense in Y for any 2-to-1 map onto Y (see [13]). We shall call
such points in Y points of openness.

We will use the following two lemmas from [5]:

Lemma 1 (Lemma 3 of [5]). If Y is an indecomposable arc-continuum, f

is a 2-to-1 map from a continuum X onto Y , L is an arc in Y , and C is a

component of f−1(L), then f(C) contains a free endpoint of L.

Lemma 2 (Lemma 2 of [5]). Suppose Y is an indecomposable arc-con-

tinuum, f is a 2-to-1 map from a continuum X onto Y , L is an arc in Y

from t to x , and C is a component of f−1(L) such that t 6∈ f(C). Let N be
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an extension of L through x , i.e. an arc with endpoint t containing L. Then

there is a component D of f−1(N) for which we still have t 6∈ f(D).

Lemma 3. Let Y be an indecomposable arc-continuum, and let f be a

2-to-1 map from a continuum onto Y. Let L be an arc contained in Y. Then

f−1(L) consists of two components.

P r o o f. Suppose that the conclusion does not hold.

By Harrold’s result, the inverse image f−1(L) of L is disconnected. Thus,
in view of our assumption to the contrary, there are at least three compo-
nents of f−1(L). This forces the images, under f , of two of them, say C and
D, to be disjoint, as otherwise the images of some three components would
have a point in common, which contradicts the fact that f is 2-to-1. By
Lemma 1, the image of each of them contains a free endpoint of L. Clearly,
C and D map to different free endpoints of L, so we see that both endpoints
of L are free. It follows that L can be extended to an arc L′ whose endpoints
are both points of openness.

We shall show that f−1(L′) also must have at least three components.
Label the endpoints of L by a and b, and the endpoints of L′ by a′ and b′.
Let t denote a point of L that does not belong to either f(C) or f(D). The
arc A from t to a′ extends the arc from t to a (or b), and so by Lemma
2, some component of f−1(A) maps to a′ but not to t. Similarly, some
component of the inverse of the arc from t to b′ maps to b′ but not to t.
These two components are also components of f−1(L′) and there must be a
third component that maps to t.

Hence, without loss of generality, we may assume that the arc L is the
extended arc, and that the ends of L are points of openness. Let C,D and
t be as before.

Now we will show that in each half-composant determined by L there
are arcs that also have at least three components in their inverse. Take
disjoint neighborhoods, U1 of C, U2 of D and V of f−1(L) \ (C ∪ D). The
neighborhoods U1 and U2 can be taken so small that f(U1)∩f(U2) = ∅ and
t 6∈ f(U1) ∪ f(U2).

For each ε > 0, and each half-composant, there is an arc A in the half-
composant within ε of L such that the set {a′, b′} of endpoints of A is within
ε of the set {a, b} of endpoints of L and some point t′ of A is within ε of t
and lies outside of f(Ua ∪ U2).

To see this, take an ε-neighborhood of L in the form of the union of a
closed ε-chain from a to b, U(a) and U(b) denoting the (closed) links to
which a and b belong, respectively. Take ε so small that the point t in L
is not in U(a) ∪ U(b) and the links to which t belongs do not intersect the
set f(U1 ∪ U2). There exists a sequence of points tn belonging to the half-
composant which converges to t. Let Jn be the component of the point tn



Exactly two-to-one maps 117

in the union of the chain from a to b. For sufficiently large n, the endpoints
of the arc Jn will lie in U(a)∪U(b) since otherwise the limit of Jn sequence
together with the arc L will be a continuum in Y that is not an arc, contrary
to the fact that Y is an arc-continuum. The above mentioned Jn can be
taken for the arc A.

If ε is small enough, then (1) f−1(A) ⊂ U1 ∪ U2 ∪ V , (2) some point
p of f−1(A) that maps to a′ and some point q of f−1(A) that maps to b′

lies in U1 ∪ U2 (this is because a and b are points of openness), and (3)
both points of f−1(A) that map to t′ lie in V . The component of f−1(A)
that contains p cannot equal the component of f−1(A) that contains q since
these components lie in U1 ∪ U2 and cannot map to t′. Hence f−1(A) has
at least three components, one in V that contains a point that maps to t′,
one containing p and one containing q. So we have three arcs, L1, L2, and
L3 in the same composant, each with three or more components in their
inverse image, and having the properties of the arcs described above. Label
the endpoints of Li by ai and bi, so that their order in the composant is
a1 < b1 < a2 < b2 < a3 < b3. Let Ci be a component of f−1(Li) that
maps onto ai but not onto bi, let Di be a component of f−1(Li) that maps
onto bi but not onto ai, and let ti denote a point of Li that is not in the
image of Ci ∪ Di. Such components Ci and Di exist, as was mentioned in
the introductory fragment of this proof.

Some component of f−1([a1, b3]) has a point that maps to t2 and a
point that maps to either a1 or b3, say a1, by Lemma 1. By Lemma 0
of [10], this component is arcwise connected (in fact, locally connected),
since f is finite-to-1. So, there exists an arc A contained in f−1([a1, b3])
such that the set of endpoints of A goes onto {a1, t2} under f and the
image of A is the arc [a1, t2]. But f is 2-to-1, hence f maps A onto [a1, t2]
homeomorphically. Notice that both C2 and D1 are disjoint from A. To see
this, suppose there is a point z in both A and D1, for instance. Then D1

union the subarc of A from z to the point of A that maps to a1 maps into
L1 and contains D1 properly; but this is impossible as D1 is a component
of f−1(L1). Since f maps A onto [a1, t2] homeomorphically, some subarc
A′ of A maps homeomorphically onto [b1, a2]. In addition, C2 has a point
x that maps to a2, and D1 has a point y that maps to b1. We showed that
x and y do not belong to A′, so x and y are the only points outside of A′

that map to either b1 or to a2. But f−1([b1, a2]) cannot be connected, so it
has a component E different from the component containing A′. Then E
must contain one of x or y, by Lemma 1. If E contains x but not y, then
E ∪C2 is a component of f−1([a1, b3]) that fails to map to either a1 or b3; if
E contains y but not x then E ∪D1 is such a component; and if E contains
both y and x, then E ∪ D1 ∪ C2 is such a component. In any case, Lemma
1 is violated. This contradiction completes the proof.
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Suppose ε is a positive number and the arcs B and A lie in the same
composant of an indecomposable arc-continuum. Endow the composant
with an orientation. We say that the arc B has reverse orientation within

ε of A if B lies in the ε-neighborhood of A and the ε-neighborhood of the
last point of A contains the first point of B and the ε-neighborhood of the
first point of A contains the last point of B.

Lemma 4. Let Y be an indecomposable arc-continuum, let L be an arc

in Y containing an endpoint y of Y , and let ε be a positive number. Then

there is an arc in the same composant as L with reverse orientation within

ε of L.

P r o o f. Let L be an arc in Y containing the endpoint y of Y and let ε
be a positive number. Denote the other endpoint of L by y′, and let U be
an ε-neighborhood of L.

Let yi be a sequence converging to y such that each yi does not belong to
L but does belong to the same composant as y. Assume also that each yi has
a distance less than ε from y. Let Li be the arc from y′ to yi and let Di be the
closure of the component of U ∩Li that contains yi. Assume without loss of
generality that the sequence {Di} topologically converges. The topological
limit D of {Di} is a continuum, thus an arc, contained in the closure of U ,
and D has a point on the boundary of U which does not belong to L. Since
D contains the point y, the endpoint of the arc component on which L lies,
the continuum D must contain the arc L. Thus, if i is sufficiently large, the
component Di contains a point pi at a distance less than ε from y′. The
arc in Di joining the points pi and yi is the desired arc having a reverse
orientation within ε of L.

2. Two conditions on an indecomposable arc-continuum Y
whose arcs are approximable that each imply that any 2-to-1 map
from any continuum onto Y must be a local homeomorphism. Sup-
pose f is a 2-to-1 map from a continuum onto a continuum Y . A proper
subcontinuum L in Y will be called (following our paper [5]) trivial if f−1(L)
splits into two disjoint subcontinua, each of which is mapped by f homeo-
morphically onto L. If f is a 2-to-1 local homeomorphism from a continuum
onto an arc-continuum Y , then each arc A in Y is trivial. (This follows from
the proof of Lemma 3 in [9] and Harrold’s result that the inverse of each
arc in Y cannot be connected.) It was also shown in [9] (Theorem 1) that if
each proper subcontinuum of Y is trivial, then f is a local homeomorphism.

Now, suppose f is a 2-to-1 map from a continuum onto an indecompos-
able arc-continuum Y whose arcs are approximable. The two main results
of this section (Theorems 1 and 2) are that if either (1) the arcs in any
half-composant of Y are trivial, or (2) Y has an endpoint, then f is a local
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homeomorphism. We also show, in Lemma 5, that, under the hypothesis of
approximability of arcs, f is weakly confluent, i.e. at least one component
of the inverse of each arc in Y maps onto the arc.

Recall the continuum Y in Example 1 in the introduction. Y is an inde-
composable arc continuum that will not satisfy the conclusion of Theorem 1,
and some arcs in Y are not approximable (for instance, the arc T , defined
in the paragraph preceding the description of Y ). Thus it is clear that the
hypothesis of approximability will be required in Theorem 1.

Theorem 1. Let Y be an indecomposable arc-continuum such that all

arcs in Y are approximable and let f be a 2-to-1 map from a continuum

onto Y. If each arc of some half-composant of Y is trivial then all arcs of Y

are trivial and hence f is a local homeomorphism.

P r o o f. Suppose L is an arc of Y that is not trivial. We can assume
without loss of generality that the free ends of L are points of openness of Y
and that the end of L which is not free (if there is one) is the endpoint of the
composant containing L. This is true because, as before, we can enlarge L
to such an arc (since the points of openness form an open set in Y ) and since
if the larger arc is trivial, so is L. By Lemma 3, f−1(L) has two components
and one of them, say C, satisfies f(C) 6= L, since L is assumed not to be
trivial. By Lemma 1, f(C) contains a free endpoint, say p, of L, which by
assumption is a point of openness. Let q be the endpoint of L which does
not belong to f(C). Since f(C) does not contain q, choose a neighborhood
G of q such that f(C) ∩ Ḡ = ∅. Let H be a neighborhood of f−1(L) such
that H = H ′ ∪ H ′′, where H ′ and H ′′ are open and disjoint, C ⊂ H ′, and
f(H ′)∩G = ∅. Let V be a neighborhood of p so small that f−1(y)∩H ′ 6= ∅
for y ∈ V . (Recall that p is a point where f is open.)

Let S be a half-composant of Y whose arcs are trivial, as assumed by
the hypothesis. In view of approximability, take an arc L′ in S lying so
close to L in the sense of topological limit that (1) f−1(L′) ⊂ H and (2) L′

intersects both G and V . Since L′ is trivial, f−1(L′) splits into two arcs,
each of which is mapped homeomorphically under f onto L′. Since L′ has
points in V , we have f−1(L′) ∩ H ′ 6= ∅ . Thus, for one of the two arcs
mentioned above, say K, we have K ∩H ′ 6= ∅. It follows that K ⊂ H ′, and
in consequence, f(K) ∩ G = ∅, contrary to the fact that K maps onto L′.

We have shown that all of the arcs in Y are trivial, so from Theorem 1
of [9], f must be a local homeomorphism.

Lemma 5. Let Y be an indecomposable arc-continuum such that arcs in

Y are approximable, and let f be a 2-to-1 map from a continuum X onto Y.

Then f is weakly confluent , i.e. if L is an arc contained in Y , then there

exists a component of f−1(L) that maps onto L under f.
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P r o o f. Let us suppose that the conclusion does not hold. Let A be the
union of components of f−1(L) the images of which under f contain one
end of L, and let B be the union of components of f−1(L) the images of
which contain the other end of L. The sets A and B, being finite unions
of components (in fact, exactly one as easily follows from Lemma 3) of
f−1(L), are closed. By the assumption, the sets A and B are disjoint and,
by Lemma 1, they cover f−1(L). Let U and V be open disjoint sets, one
containing A and the other containing B. Since L is approximable, there
is an arc L′ lying in the same arc component as L, disjoint from L, and so
close to L in the sense of Hausdorff distance that (1) f−1(L′) ⊂ U ∪ V , and
(2) the inverse images of the endpoints of L′ lie one in U and the other in
V . Let M be an arc joining L and L′, having only endpoints in common
with L and L′. Let C be a component of the inverse image f−1(L∪M ∪L′)
of the arc L∪M ∪L′ meeting the set f−1(M). By Lemma 1, f(C) contains
an endpoint of L ∪ M ∪ L′. This endpoint lies in L or in L′. Assume that
it lies in L′. We have L′ ⊂ f(C). The map f restricted to C is onto f(C)
and is weakly confluent, as follows from the result proved by Gryspolakis
and Tymchatyn in [6]. This means that there exists a component D of
f−1(L′) such that f(D) = L′. We get a contradiction, as the continuum D
is contained in the union of open and disjoint sets U and V , being contained
in neither of them.

Theorem 2. Suppose f is a continuous 2-to-1 map from a continuum X

onto an indecomposable arc-continuum Y , all arcs in Y are approximable,
and Y has an endpoint y. Then f is a local homeomorphism.

P r o o f. If each arc in Y containing y is trivial, then f is a local home-
omorphism by Theorem 1. So assume that L is a non-trivial arc in Y
containing y. As in the proof of Theorem 1, we may assume that the other
endpoint, x, of L is a point where f is open. Since L is non-trivial there
is a component C of f−1(L) that does not map onto L, and by Lemma 1,
f(C) contains x and not y. By Lemmas 5 and 3 the other component F
of f−1(L) is mapped onto L under f . Note that because of y 6∈ f(C), F is
the only component that maps onto L. It follows that one of the two points
that maps to x, say a, belongs to C and the other, say b, belongs to F . Let
V and W be open sets such that C ⊂ V , W contains the component F ,
V ∩ W = ∅, and y 6∈ f(V ).

Let U be an open neighborhood of x, an open value of f , such that
f−1(U) splits into two open sets each of which is homeomorphically mapped
by f onto U . If a point x′ lies in U , then f−1(x′) has points in both of these
open sets. Assume, moreover, that U is so small that the two points of
f−1(x′) lie in distinct sets V and W . From Lemma 4 we know that there
is, for each ε > 0, an arc L′, lying in the same arc component of Y as L,
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with reverse orientation within ε of L. We may choose ε small enough that
the first point, x′, of L′ lies in U (and thus f−1(x′) has points in both V
and W ), that f−1(L′) ⊆ W ∪ V , and that for the other endpoint y′ of L′,
we have y′ 6∈ f(V ). Let C ′ denote a component of f−1(L′) having points in
V , and let a′ and b′ denote the points of f−1(x′) in V and W respectively.
Note that exactly one component F ′ of f−1(L′) maps onto L′, and F ′ must
contain b′ and lie in W , since both inverse points of y′ lie in W . Let M be
the arc from x to x′. Consider the arc S = L ∪ M ∪ L′. By Lemma 5, one
of the components of f−1(S), say A, maps onto S.

The following is a list of properties of f restricted to f−1(S):

1. The component A contains components of f−1(L), f−1(M), and
f−1(L′) that are mapped onto the corresponding arcs L, M , and L′. To
see this, recall that every map to an arc is weakly confluent [7]. Thus A
contains F ∪ F ′ and hence the points b and b′ that map to x and x′. Since
A is arc-connected [10], some component of f−1(M) contains b and b′.

2. By the theorem of Harrold [8], the counterimage f−1(M) is not con-
nected. Hence there is a component C ′′ of f−1(M) that does not contain
either b or b′ and must contain either a or a′.

3. By assumption, the counterimage f−1(L) has a component C con-
taining a such that y 6∈ f(C) (and there is only one such component).

4. The counterimage f−1(L′), of the arc L′ close to L, has a compo-
nent C ′ containing a′ such that y′ 6∈ f(C ′) (and there is only one such
component). Recall that y′ 6∈ f(V ) and C ′ ⊂ V .

In view of properties 1–4, we infer that there exists a component of
f−1(S) whose image contains neither of the points y and y′. This is a
contradiction to Lemma 1. To find such a component, consider two cases:

1. C ′′ contains exactly one of a and a′, say a. Then C ′′ ∪ C is such a
component.

2. C ′′ contains both of a and a′. Then C ′′∪C∪C ′ is such a component.

N o t e. Most of the proof of Theorem 2 comes directly from the proof
of Lemma 8 of [5], but because the statement of Lemma 8 is quite different
from that of Theorem 2, we include the proof for completeness.

Example 2. We construct a continuum Y ′ as in Example 1 except
that we start with an arc continuum K ′ with three endpoints (and we do
not identify this third endpoint with anything in the construction of Y ′),
then Y ′ is still an indecomposable arc-continuum, the arc T ′ is still not
approximable, and the conclusion of Theorem 2 does not hold. Furthermore,
the map is not weakly confluent at the arc T ′. Hence approximability cannot
be removed from Lemma 5 either.
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N o t e. An example of an arc-continuum with three endpoints can be
found in Hocking and Young [11], p. 142.

3. A study of 2-to-1 maps (from continua) onto indecomposable
arc-continua that are local Cantor bundles. A continuum Y is a local

Cantor bundle if each point of Y has a neighborhood homeomorphic to
C × (0, 1), where C denotes the Cantor discontinuum. This is a special
case of what Aarts and Martens [2] call a matchbox manifold, i.e. a space
Z such that if z is a point of Z then there is a zero-dimensional space Sz

and a neighborhood of z that is homeomorphic to Sz × (0, 1). Note that Sz

need not be compact. Although the Cantor bundle property is a local one,
it follows from Aarts and Martens’ “Pasting” Lemma [2] that each arc in
a local Cantor bundle Y has a neighborhood homeomorphic to C × (0, 1);
hence, if A is any arc in Y (where the arc- continuum Y is a local Cantor
bundle) then A is approximable. Thus all of our earlier lemmas and theorems
apply.

If Y is an orientable (defined below) matchbox manifold, then Aarts and
Martens in [2] showed that there is a homeomorphism h from C × {0} onto
C × {1} such that Y is homeomorphic to C × [0, 1] with 〈x, 0〉 identified
with 〈h(x), 1〉. Two special cases of the latter structure theorem were done
earlier; by Keynes and Sears [12] if Y is compact, and by Aarts [1] if Y is
an arc component of a continuum. These are in fact the two cases we use
in this paper.

A technical definition for what it means to say that a matchbox manifold
is orientable can be found in [3], but for arc-continua that are local Can-
tor bundles the definition is equivalent to the following natural one. The
arc-continuum Y is orientable if each separate arc component can be param-
eterized (given a direction) so that if A is an arc in Y then there is an ε > 0
such that no arc B of Y has reverse orientation within ε (defined earlier in
this paper) of A.

Suppose Y is an indecomposable arc-continuum that is a local Cantor
bundle. We will show in Theorem 3 that the only 2-to-1 maps from continua
onto Y are retractions or covering maps, and in Theorem 4 we show that
if Y is not orientable, then in fact the only 2-to-1 maps from continua onto
Y are covering maps. In Theorem 5 we show that if Y is orientable, then
there is a 2-to-1 retraction from a continuum onto Y . (Note that Theorem 5
does not require that Y be an indecomposable arc-continuum.) But, as was
shown in [4], even for solenoids, in some sense the simplest of orientable
indecomposable arc-continua that are local Cantor bundles, 2-fold covers
need not exist; for instance the dyadic solenoid does not admit a 2-fold cover.
However, as was indicated in [4], 2-folds between some P -adic solenoids can
exist.
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However, we have no example that demonstrates that the full strength
of the hypothesis of local Cantor bundle is necessary in Theorem 3.

Question. Does there exist a 2-to-1 map from a continuum onto an

indecomposable arc-continuum whose arcs are approximable such that the

map is neither a local homeomorphism nor a retraction?

Theorem 3. Let Y be an indecomposable arc-continuum that is a local

Cantor bundle. Then every exactly 2-to-1 map f from a continuum onto Y

is a local homeomorphism or a retraction.

P r o o f. If we assume that f is not a local homeomorphism, then from
Theorem 2 of this paper we know that Y has no endpoint. If each arc of
some half-composant of Y is trivial then f is a local homeomorphism, by
Theorem 1, so we also may assume that in every half-composant of Y some
arc is not trivial. Let A be the set of points a of X with the following
property: (∗) for each arc L through f(a) there exists an arc M through a
such that f restricted to M is a homeomorphism onto L.

We shall show that f is a retraction by showing that (1) f(A) = Y , (2)
f is 1-to-1 on A, and (3) A is a continuum. To show (3), we need only show
that A is closed.

(1) Let p ∈ Y . Let a be such that f(a) = p. There is nothing to prove
if a ∈ A. So, let us suppose that a 6∈ A. There exists an arc L through
f(a) such that a is not in any arc M which is mapped homeomorphically
onto L under f . If L′ is an arc in Y containing L then by Lemma 5, there
exists a component of f−1(L′) which is mapped onto L′ under f . Since this
component is arc-connected, it contains an arc that maps onto L′. But any
map from an arc to an arc that sends the endpoints onto both endpoints and
is at most 2-to-1, must be 1-to-1; and so there exists an arc M ′ contained in
f−1(L′) such that the set of endpoints of M ′ goes onto the set of endpoints
of L′ under f and f maps M ′ onto L′ homeomorphically. The arc M ′

cannot go through a by assumption. Observe that if we diminish L′, the
above property will be preserved. This means that, if b denotes the point of
f−1(p) different from a, then b ∈ A, and so p ∈ f(A).

(2) Suppose p = f(a) = f(b), where a and b belong to A and a 6= b.
Since Y has no endpoints, the point p divides the composant on which
it lies into two half-composants. In the case under consideration, both of
these half-composants contain non-trivial arcs. Let L1 and L2 be such arcs.
Since arcs that contain non-trivial arcs are themselves non-trivial, we may
assume that p is an endpoint of both L1 and L2. Since a and b belong to A,
there exist arcs, M through a and N through b, which are mapped under f
homeomorphically onto L1 ∪ L2. Since the arcs L1 and L2 are non-trivial,
M ∩ f−1(Li) and N ∩ f−1(Li) intersect for i = 1, 2. Hence, for i = 1, 2,
(M∪N)∩f−1(Li) is connected and is contained in the component of f−1(Li)
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that maps onto Li. Since a and b are in this component, the component of
f−1(Li) that does not map onto Li maps onto the endpoint of Li different
from p. Hence we have found three components in f−1(L1 ∪ L2), contrary
to Lemma 3.

(3) To finish the proof we shall show that the set A is closed. Let an be
a sequence of points of A convergent to the point a, and let L be an arc to
which f(a) belongs. Because Y is a local Cantor bundle, it follows from the
Long and Wide Lemma of Aarts and Martens [2] that there exists a sequence
of arcs Ln convergent to L in such a way that f(an) ∈ Ln. For each n there
exists an arc Mn through an such that f maps Mn homeomorphically onto
Ln. Without loss of generality we can assume that the sequence of arcs
Mn is topologically convergent. Denote by M the topological limit of the
sequence Mn.

We shall show that f maps M homeomorphically onto L; this will imply
that M is an arc through a and that the point a belongs to A.

Suppose that f does not map M homeomorphically onto L. Then f is
not 1-to-1, as f(M) = L. Let b and c be different points of M such that
q = f(b) = f(c). Let bn and cn be different points of Mn such that the
sequence {bn} converges to b and the a sequence {cn} converges to c. For
each n, let L′

n
be a subarc of Ln joining the points f(bn) and f(cn). Without

loss of generality we can assume that the sequence {L′

n
} is convergent. The

topological limit of the sequence of arcs {L′

n
} consists of a single point,

namely q, since the endpoints converge to q and Y is a local Cantor bundle
at the point q. For each n, let M ′

n
be a subarc of Mn joining the points bn

and cn. We have f(Mn) = Ln and f(M ′

n
) = L′

n
. Without loss of generality

we can assume that the sequence of arcs {M ′

n
} is topologically convergent

to the arc T from b to c. Then T is contained in the two-point set f−1(q),
and in consequence, since T is connected, T must be equal to a one-point
set. A contradiction.

Theorem 4. Suppose Y is an indecomposable arc-continuum that is a

non-orientable Cantor bundle. Then the only exactly 2-to-1 maps from any

continuum onto Y are 2-fold covers.

P r o o f. Firstly, we show that if Y is not orientable, then composants of
Y are not orientable, i.e. there is an arc A in Y such that if ε is a positive
number then there is an arc B in the same composant as A that has reverse
orientation within ε of A.

So suppose that D is a composant in Y that is itself orientable. We can
use Aarts’ structure theorem [1] for arc components to construct a totally
disconnected (non- compact) space C ′ and a homeomorphism h from C ′×{0}
onto C ′×{1} such that D is homeomorphic to C ′×[0, 1] with 〈x, 0〉 identified
with 〈h(x), 1〉. This solenoidal structure on D makes it clear that there is an



Exactly two-to-one maps 125

ε > 0 such that no two arcs in D have opposite orientation within ε of each
other. But the orientation on D can be used to construct an orientation on
all of Y . For each arc B in Y , there is a sequence of arcs from D converging
to B, and all but finitely many are within ε/2 of B and hence must be going
in the same direction. Give B the same direction. No arc in Y can have arcs
arbitrarily close with opposite direction since this would generate two arcs
from D with reverse orientation within ε of each other. Thus we see that if
Y is non-orientable, then each composant of Y is also non-orientable.

Now suppose that f is a 2-to-1 map from a continuum X onto Y that
is not a 2-fold cover. Then some arc of Y is not trivial and we know that if
it is enlarged to an arc L whose endpoints are points of openness then L is
also not trivial, since the property of being trivial is hereditary. As in the
proof of Theorem 2 we infer that there is a positive number ε such that no
arc in one of the half-composants D of L has reverse orientation within ε
of L.

This is enough to imply that the composant D itself is orientable. For,
suppose D is given a direction and suppose some other arc A in D is a limit
of arcs from D whose direction opposes that of A. Using Aarts’ “Pasting”
Lemma [1], there is, for some arc B in D containing both L and A, a
neighborhood of B in D that is a product of a totally disconnected space,
C ′ and (0, 1). This is a contradiction for arcs arbitrarily close to A to go in
the opposite direction to the long arc B whereas no arc sufficiently close to
L goes in the opposite direction.

In the orientable case there are examples for both possibilities (see com-
ments in the introductory section), i.e. 2-fold covers and retractions. How-
ever, concerning retractions we can state the following stronger result.

Theorem 5. If Y is an orientable local Cantor bundle, then there is a

continuum Z such that Z admits an exactly 2-to-1 retraction onto Y.

P r o o f. We will use the orientable structure described in the introduc-
tion of this section.

Let h be a homeomorphism from C × {0} onto C × {1} such that Y is
homeomorphic to C×[0, 1] with 〈x, 0〉 identified with 〈h(x), 1〉. Let X be the
continuum obtained when spikes are added to Y as follows: At each point
(c, 1/4) of Y , add an interval I(c, 1/4) so that the collection is homeomorphic
to C× [0, 1], and each I(c, 1/4) intersects Y exactly at (c, 1/4). Do the same
at the points (c, 3/4) of Y . This describes X. For the retraction, uniformly
fold each I(c, 1/4) onto the subarc of Y from (c, 1/4) to (c, 3/4) and fold each
I(c, 3/4) onto the subarc of Y with beginning point (c, 3/4) and endpoint
(d, 1/4), where (d, 0) is the point that is identified with (c, 1) under the
sewing h.
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