
FUNDAMENTA
MATHEMATICAE

150 (1996)

On automorphisms of Boolean algebras
embedded in P (ω)/fin

by

Magdalena G r z e c h (Warszawa)

Abstract. We prove that, under CH, for each Boolean algebraA of cardinality at most
the continuum there is an embedding of A into P (ω)/fin such that each automorphism
of A can be extended to an automorphism of P (ω)/fin. We also describe a model of
ZFC + MA(σ-linked) in which the continuum is arbitrarily large and the above assertion
holds true.

It is well known that, under CH (the continuum hypothesis), each
Boolean algebra of cardinality at most 2ω can be embedded in P (ω)/fin
(see e.g. [5]). This implication cannot be reversed: there is a model of set
theory in which 2ω > ω1 and the above conclusion still holds ([1]). It is also
known that CH is equivalent to the following condition: each Parovičenko
algebra (i.e. algebra of cardinality 2ω, atomless and having neither countable
limits nor countable unfilled gaps) is isomorphic to P (ω)/fin. We begin by
proving the following.

Proposition 1. If CH holds, then for every Boolean algebra A of car-
dinality at most the continuum there is an embedding i : A → P (ω)/fin
such that each automorphism of i(A) can be extended to an automorphism
of P (ω)/fin.

P r o o f. Assume CH. Let A be a Boolean algebra of cardinality at most
the continuum. We will construct an extension A? of A such that:

1. A? is a Parovičenko algebra;
2.
⋃
α<ω1

Aα = A?, where (Aα : α < ω1) is an increasing sequence of
algebras satisfying the following two conditions:

(?) cardAα ≤ 2ω, A0 = A, Aλ =
⋃
α<λAα for every limit λ < ω1,
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(??) for every automorphism φα of Aα there exists an automorphism
φα+1 of Aα+1 such that φα ⊆ φα+1.

It is clear that if an algebra A? satisfies the above conditions then each
automorphism of A can be extended to an automorphism of A?. Thus to
prove our theorem it suffices to construct A?.

Fix a pairing k : ω1×ω1 → ω1 (one-to-one and onto) such that k(ζ, ξ) ≥ ζ
for all ζ, ξ < ω1. It remains to describe the successor step from α to α + 1.
Suppose that we have defined a sequence (Aγ : γ ≤ α) satisfying (inductive)
conditions (?) and (??).

Let Eγ(φ, a, c) abbreviate the statement: φ is an automorphism of Aγ
such that φ(a) = c.

Assume that at each stage γ ≤ α we chose an enumeration (xγξ : ξ < ω1)
of the collection of the following families:

{(ci, dj : i, j < ω) : ∃φ ∀i, j < ω [Eγ(φ, ai, ci) ∧ Eγ(φ, bi, di)]},
where (ai, bj : i, j < ω) is a countable ordered gap a0 < a1 < . . . < b1 < b0 of
elements of Aγ , {(bi : i < ω) : ∃φ ∀i < ω Eγ(φ, ai, bi)}, where (ai : i < ω) is
a decreasing chain of elements of Aγ , and the set of all atoms of the algebra
Aγ . (Since we assumed CH, we have at most ω1 objects to enumerate.)

We identify Aα with the field B(Xα) of open-closed subsets of the associa-
ted Stone space Xα. The ordinal α determines a certain object, namely xζξ ,

where ξ and ζ are ordinals such that k(ζ, ξ) = α (ζ < α). If xζξ is a family
of chains or gaps, we take Aα+1 to be the subfield of P (Xα) generated by
Aα = B(Xα) and by

{
b =

⋂

i<ω

bi : (aj , bi : i, j < ω) ∈ xζξ
}

when xζξ is a collection of gaps, or by
{
b =

⋂

i<ω

bi : (bi : i < ω) ∈ xζξ
}

when xζξ consists of countable chains. Using the Sikorski theorem (on exten-
ding homomorphisms, see e.g. [7], [5]) we extend each automorphism of Aα
to an automorphism of Aα+1 and therefore (?), (??) hold.

Now, suppose that xζξ is a set of nonzero elements of Aα. Each element
of the family is an atom of Aζ but it need not remain an atom in Aα. If
there are at least countably many elements ei < a, a ∈ xζξ , then we put
Aα+1 = Aα. (Note that the property (??) implies that if some element of
xζξ is an atom then all elements of the set are atoms.) Suppose that each

a ∈ xζξ is a finite sum of atoms a = e1 + . . . + en. (n is the same for all
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elements of xζξ by (??).) Atoms of Aα correspond to isolated points of Xα.

We delete the isolated points ei < a for all a ∈ xζξ , and put into their
places copies of a one-point compactification of the discrete ω. Let Xα+1

denote the topological space thus obtained. We put Aα+1 = B(Xα+1). Since
Xα is a continuous image of Xα+1, we have Aα ⊆ Aα+1. Obviously, each
automorphism of Aα can be extended to an automorphism of Aα+1. This
finishes the proof.

Now we consider the case of ¬CH. It is known that there exists a model of
ZFC+MA+¬CH in which the algebra P (ω1) is not embeddable in P (ω)/fin
([2]). On the other hand, it is consistent with ZFC and MA(σ-linked) that
the cardinality of the continuum is arbitrarily large and each Boolean algebra
of cardinality ≤ 2ω can be embedded in P (ω)/fin ([1]). Thus the existence
of such embeddings does not imply CH. The assertion of Proposition 1 is
stronger and we may ask if the converse holds. The answer is negative. We
prove that:

Theorem 1. It is consistent with ZFC + MA(σ-linked) that the cardina-
lity of the continuum is arbitrarily large and for each Boolean algebra B of
cardinality ≤ 2ω, there is an embedding i : B → P (ω)/fin such that each
automorphism of i(B) can be extended to an automorphism of P (ω)/fin.

P r o o f. Let V be a ground model satisfying the generalized continuum
hypothesis (GCH). Thus there exists a regular cardinal κ in V such that
κ > ω1 and if κ = λ+, then cf(λ) > ω, moreover ♦κ (the diamond principle)
holds in the form:

There is a sequence (Tα : α < κ, cf(α) = ω1) such that for every set
X ⊆ H(κ) the set {α < κ : cf(α) = ω1, X ∩Hα = Tα} is stationary in κ.

H(κ) denotes as usual the family of all sets of hereditary power < κ,
H(κ) =

⋃
α<κHα, and (Hα : α < κ) is a continuously increasing sequence

of sets of cardinality < κ.
We will define a finite support iteration (Pα : α < κ) having the c.c.c.

(countable chain condition) such that, in the corresponding generic exten-
sion V[G], the conclusion of Theorem 1 will be satisfied. The model V will
be extended in such a way that given a system of generators for a certain
Boolean algebra B (cardB < 2ω) there will be an embedding sending the
generators to generic sets added at some steps α < κ. The embedding will
be defined by induction: If a certain monomorphism embeds the subalgebra
B0 of B generated by the initial α (α < 2ω) generators and if the image
(under the monomorphism) of each of them is a generic subset of P (ω)/fin
then the next generator determines in B0 two sets (which form a gap): one
consists of elements less than the generator (called the “lower class”), and
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the elements of the other (called the “upper class”) are disjoint from the
generator. An image of the gap is a gap in the subalgebra of P (ω)/fin which
is generated by some generic sets. The monomorphism can be extended if
there is an element of P (ω)/fin which fills this gap. Thus, to ensure embed-
dability of Boolean algebras, we will add generic sets Xα ⊆ ω filling gaps
in subalgebras of P (ω)/fin generated by some previously added Xβ , β < α.
Simultaneously, in a similar way, we will extend automorphisms of the sub-
algebras. In constructing embeddings of Boolean algebras and extensions
of their automorphisms, we have to avoid the following problem: It is well
known that there are gaps in P (ω)/fin which are unfillable by c.c.c. forcing.
It could happen, unless steps are taken to prevent it, that an image (under
an extension of an automorphism of one of the embedded algebras) of some
gap filled in a later step is an unfillable gap.

To ensure that every automorphism of an embedded Boolean algebra can
be extended we use the ♦ principle. It guarantees that each such automor-
phism is “approximated” by an increasing sequence of automorphisms which
belong to models V[G|α]. To be more precise: if F is a canonical Pκ-name
for some automorphism f of a given algebra B (from the model V[G]) then
there is a subset A of κ such that

cardA = κ and
⋃

α∈A
(F ∩Hα) =

⋃

α∈A
Tα

and Tα is a Pα-name for an automorphism from V[G|α]. We will extend
automorphisms using those of the Tα’s which are their names. To obtain
MA(σ-linked) we will enumerate at some stages (with repetition) all σ-linked
forcings R with card R < κ (cf. [1], [4]).

Assume the following notation:
Let X be a set and let Tξ denote a homomorphism. Then for ε ∈ {−1, 1},

εX denotes X, if ε = 1, or \X, if ε = −1. Moreover, T εξ is Tξ, if ε = 1, or
T−1
ξ , if ε = −1. (We abbreviate (T εξ )n to T εnξ .)

For ϕ : α → {0, 1} let B(ϕ) be the subalgebra generated by {Xβ :
ϕ(β) = 1}, where Xβ is a generic subset of ω added at stage β. If s is a
finite sequence with dom(s) ⊆ {β : ϕ(β) = 1} and rg (s) ⊆ {−1, 1} then

X(s) =
⋂

s(ξ)=1

Xξ ∩
⋂

s(ζ)=−1

(ω \Xζ).

Thus B(ϕ) consists of finite unions of sets of the form X(s). A gap in B(ϕ)
is a system of the form

L = ({X(s) : s ∈ S}, {X(t) : t ∈ T}),
where X(s) ∩X(t) =? ∅ for all s ∈ S and t ∈ T .
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An increasingly ordered gap L of type (λ, γ) is a gap as above such that
there are enumerations S = {sα : α < λ} and T = {tβ : β < γ} satisfying

α1 < α2 < λ ⇒ X(sα1) ⊆? X(sα2),

β1 < β2 < γ ⇒ X(tβ1) ⊆? X(tβ2).

We assume that each gap except the increasingly ordered ones satisfies
the condition: if s1, . . . , sn ∈ S and X(s) ⊆? X(s1)∪ . . .∪X(sn) then s ∈ S
(and similarly for T ).

We will use two notions of forcing: Kunen’s forcing filling a gap, and
the other, which adds an uncountable antichain to Kunen’s forcing of type
(ω1, ω1).

Now we describe the two forcings:
Let L = ({X(s) : s ∈ S}, {X(t) : t ∈ T}) be a gap. Kunen’s forcing

Q(L) consists of elements of the form (uq, xq, wq), where uq and wq are
finite subsets of S and T (respectively) and xq is a finite zero-one sequence.
Moreover, ⋃

s∈uq

X(s) ∩
⋃
t∈wq

X(t) ⊆ dom(xq).

Let p = (up, xp, wp) and q = (uq, xq, wq); then p is an extension of q (written
p ≤ q) iff uq ⊆ up, wq ⊆ wp, xq ⊆ xp and for each i with dom(xq) ≤ i <
dom(xp),

if i ∈
⋃
s∈uq

X(s) then xp(i) = 1 and if i ∈
⋃
t∈wq

X(t) then xp(i) = 0.

It is known that if L is separated, then Q(L) has the c.c.c.
Now let L = ({X(sα) : α < ω1}, {X(tβ) : β < ω1}) be an increasingly

ordered gap. A condition of forcing E(L) is a finite set e consisting of se-
quences of the type (α, sα, tα) such that if (α, sα, tα), (β, sβ , tβ) ∈ e and
α 6= β then either X(sα)∩X(tβ) 6= ∅ or X(sβ)∩X(tα) 6= ∅. E(L) is ordered
by inverse inclusion. It is well known that if L is an unfilled gap then E(L)
has the c.c.c. and

E(L) ° “Q(L) has an uncountable antichain”.

The definition of the iteration is inductive and uses a “bookkeeping”
technique. At each inductive step α < κ we enumerate some objects in
V(Pα), and at higher stages we add some generic sets to them. The objects
occur in an order determined by a function Nb. To be more precise, we
divide κ into five unbounded sets:

A = {α < κ : cf(α) = ω1}, M = {α ∈ κ \A : α is odd},
E = k(A), Q1 = k(M), Q2 = k(κ \ (A ∪M)),

where k : κ→ κ \ (A ∪M) is an increasing bijection.
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Let {να : α < κ} be an increasing enumeration of the set {β < κ : β ≥
λ}, if κ = λ+, or of the set {β < κ : β is a cardinal and cf(β) > ω}, if κ is a
limit cardinal.

Let n : κ× κ→ κ be a pairing function satisfying:

ξ, ζ < n(ξ, ζ) for all ξ, ζ < κ,

n(α, β) ∈M for all α ∈M, β < κ,

n(α, β) ∈ Q1 for all α ∈ Q1, β < κ,

n(α, β1) < n(α, β2) for all α ∈ A, β1 < β2 < κ,

n(α, β) ∈ Q2 for all α ∈ A, β < να,

n(α, β) ∈ E for all α ∈ A, β > να,

n(α1, β1) < n(α2, β) for β1 < να1 , α1 < α2, β < κ.

Using this function we will define (by induction) a function Nb. At stages
ξ ∈ M , we will add generic filters to σ-linked forcings. In steps ξ ∈ Q1, we
add (by Kunen’s forcing) the generic set Xξ which fills a gap consisting of
some sets previously added (in Q1 steps). In the model V[G], each Boolean
algebra will be embedded in a certain algebra generated by sets obtained in
these steps. At stage ξ ∈ Q2 we also add (by the same forcing) the generic
set Xξ which separates a gap, but this gap is generated by sets previously
added both in Q1 and Q2 steps. In the model V[G] each of these sets Xξ,
ξ ∈ Q2, will be an image (under one of the extended automorphisms) of
some element of P (ω)/fin which appeared in some model V[G|δ], δ < ξ. In
steps ξ ∈ E we will add uncountable antichains to Kunen’s forcing to keep
gaps in the ranges (of the extended automorphisms) unfilled.

The sequence in which new elements of P (ω)/fin appear is important
in our construction. It will be described by the function Ind from P (ω)/fin
into κ, defined inductively simultaneously with iteration. We begin with the
condition: if x ∈ P (ω)/fin ∩ V then Ind(x) = 0. At each higher stage we
extend the function Ind according to the rule:

If Pα+1 ° “x 6∈ dom(Ind) and x ∈ P (ω)/fin” then Ind(x) = α+ 1.

If ξ < κ, cf(ξ) = ω1 and Pξ ° “Tξ is an automorphism of B(ϕ)” (Tξ is an
element of the ♦-sequence), then we begin to define (inductively) families
of monomorphisms according to the following conditions:

(a) T ξξ = Tξ.
(b) For γ ≥ ξ,

Pγ° “T γξ is a monomorphism from a subalgebra of P (ω)/fin into P (ω)/fin”.

(c) If γ1 < γ2 then T γ2
ξ is an extension of T γ1

ξ .
(d) If γ1 ≤ γ2, 0 < ξi ≤ γi, Pξi ° “Tξi is an automorphism of B(ϕi)”
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(i = 1, 2) and

Pmax(ξ1,ξ2) ° “For some ordinal %, ϕ1 ¹% = ϕ2 ¹% and

Tξ1 and Tξ2 agree on B(ϕ1 ¹%)”,

then

T γ1
ξ1

¹{X ∈ P (ω)/fin : Ind(X) < %} ∩ dom(T γ1
ξ1

)

= T γ2
ξ2

¹{X ∈ P (ω)/fin : Ind(X) < %} ∩ dom(T γ2
ξ2

).

(e) If λ ≤ α is a limit ordinal then Tλξ =
⋃
γ<λ T

γ
ξ .

At each stage we will compute cardP (ω)/fin using the following two
(well known) theorems (see e.g. [5], [6]):

Theorem 2. Assume that P has the c.c.c. in V and let ν be a cardinal in
V such that V ° “card P ≤ ν, νω = ν”. Let Q be such that P ° “card Q ≤ ν”.
Then card P ? Q ≤ ν in V.

Theorem 3. Assume that P has the c.c.c. in V and λ, ν ≥ ω are cardi-
nals in V such that V °“card P ≤ ν and λ = νω”. Let G be P-generic over
V. Then 2ω ≤ λ in V[G].

Thus we have to show that for each α, Pα has the c.c.c. We will do that
in the second part of the proof; now we assume that it is true.

We describe the inductive step α ⇒ α + 1. Assume that the forcing
Pα and families of monomorphisms T γξ (ξ ≤ γ ≤ α) satisfying the above
conditions (a)–(e) are already defined. Assume also that card Pα ≤ να and
Pα ° “2ω ≤ να”. Since the cardinality of each of the forcings occurring in
Cases 1 to 5 below is ≤ να, by Theorems 1 and 2 we have card Pα+1 ≤ να+1

and Pα ° “2ω ≤ να+1”.
We distinguish five cases. In Cases 1, 2 and 5 we set Tα+1

ξ = Tαξ .

C a s e 1: α ∈ M . We enumerate all Pα-names of σ-linked forcings of
cardinality < κ so that each forcing occurs κ times in the enumeration and
the following holds:

If R is ξth element of the enumeration then Pα ° “card R ≤ ξ”.

We extend the function Nb: if

Pα ° “R is σ-linked and card R < β ”

and R is the βth element of the above enumeration then Nb(R) = n(α, β).
If there are γ < α and β < κ such that α = n(γ, β), then we put

Pα+1 = Pα ? R,

where Pγ ° “R is σ-linked and card R < κ” and Nb(R) = α.
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C a s e 2: α ∈ Q1. In this case we enumerate all pairs (L, ϕ) of Pα-names
such that Pα forces the following properties:

(a) ϕ ∈ Dα, where Dα consists of all ψ ∈ VPα with dom(ψ) ≤ α,
rg(ψ) ⊆ {0, 1} and Γ = {γ : ψ(γ) = 1} ⊆ Q1, and such that if {γξ : ξ < δ}
is an increasing enumeration of Γ , then for each ξ < δ there is a gap Lξ in
B(ψ ¹γξ + 1) satisfying γξ+1 = Nb(Lξ, ψ ¹γξ + 1).

(b) L is a gap in B(ϕ).

Each of these pairs occurs κ times in the enumeration.
If there are γ < α and β < κ such that n(γ, β) = α then we put

Pα+1 = Pα ? Q(L),

where Pγ ° “L is a gap in B(ϕ)” for some ϕ ∈ Dγ .

C a s e 3: cf(α) = ω1. If

Pα ° “For some γ < α and ϕ ∈ Dγ , Tα is an automorphism of B(ϕ)”

then two cases are possible:

(?) Pα ° “There is no ξ < α such that Tξ is an automorphism of B(ψ)
and Tα and Tξ agree on B(ψξ), where ψξ = ϕ¹%ξ = ψ ¹%ξ for some ordinal
%ξ ≤ ξ”, and

(??) Pα ° “There are ordinals ξ, %ξ and a function ψ ∈ Dξ such that
%ξ ≤ ξ < α, cf(ξ) = ω1, ψξ = ϕ¹%ξ = ψ ¹%ξ, Tξ is an automorphism of B(ψ)
and Tα is an extension of Tξ ¹B(ψξ)”.

Let Υ denote the set of all pairs (%ξ, ξ) such that Pα forces that Tξ is
an automorphism of B(ψ), ψξ = ϕ ¹ %ξ = ψ ¹ %ξ and Tα is an extension
of Tξ ¹ B(ψξ). Let ζ = sup{%ξ : (%ξ, ξ) ∈ Υ}. We enumerate all triples
(X,Tα, εn) of Pα-names such that

Pα ° “X ∈ P (ω)/fin”,

and Ind(X) < dom(ϕ) (case (?)), or ζ ≤ Ind(X) < dom(ϕ) (case (??)),
ε ∈ {−1, 1}, n ∈ ω. We fix a function j from the set of these triples into κ
with the following properties:

(a) If X ∈ Bdom(ϕ) = {Xγ : γ ∈ Q1, γ < dom(ϕ)} and Y 6∈ Bdom(ϕ)
then

j((X,Tα, εn)) < j((Y, Tα, εm)) for all n,m < ω.

(b) If X1, X2 ∈ Bdom(ϕ) [resp. Y1, Y2 6∈ Bdom(ϕ)] and Ind(X1) < Ind(X2)
[resp. Ind(Y1) < Ind(Y2)] then

j((X1, Tα, εn)) < j((X2, Tα, εm)) [resp. j((Y1, Tα, εn)) < j((Y2, Tα, εm))].

(c) For all X with Ind(X) < dom(ϕ) and all n ∈ ω,

j((X,Tα,−n)) = j((X,Tα, n)) + 1,
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j((X,Tα, n+ 1)) = j((X,Tα,−n)) + 1.

Since Pα ° “cardP (ω)/fin ≤ να”, the domain of the sequence of the triples
is ≤ να.

Using ordinals > να we also enumerate all triples (L, Tα, εn) of Pα-names
such that Pα forces: L = ({X(sγ) : γ < ω1}, {X(tβ) : β < ω1}) is an
increasingly ordered gap of the type (ω1, ω1), Ind(X(sγ)) ≤ dom(ϕ) and
Ind(Y (tβ)) ≤ dom(ϕ) for all γ < ω1 and β < ω1, and Q(L) does not have
the c.c.c. We can assume that (L, Tα,−n) follows (L, Tα, n) and precedes
(L, Tα, n+ 1).

We extend the function Nb to the set of objects described above in the
following way:

Nb((X,Tα, εn)) = n(α, j(X,Tα, εn))
and if (L, Tα, n) is the βth element of the (second) enumeration then

Nb((L, Tα, n)) = n(α, β).

We set
Pα+1 = Pα.

We also define Tαα = Tα+1
α = Tα in case (?) and Tαα = Tα+1

α = monomor-
phism generated by Tα and

⋃
(%ξ,ξ)∈Υ T

α
ξ ¹ {X ∈ P (ω)/fin : Ind(X) < %ξ}

in case (??). The families Tαγ defined at earlier stages are not changed:
Tα+1
γ = Tαγ .

It is easy to check by using Sikorski’s theorem and the following lemma
that the above definitions are correct.

Lemma 1. Let X be an element of P (ω)/fin in V, let p = (up, xp, wp) ∈
Q(L) and let Xγ stand for a generic subset added by Q. Then we have:

if p ° “X ⊆? Xγ” then X ⊆?
⋃
s∈up

X(s),

if p ° “X ∩Xγ =? ∅” then X ⊆?
⋃
t∈wp

X(t).

C a s e 4: α ∈ Q2. Suppose that α = Nb((X,Tγ , εn)), where

Pγ ° “Tγ is an automorphism of B(ϕ), X 6∈ B(ϕ)′′.

If ε = 1 and X 6∈ dom(Tαξ ) or ε = −1 and X 6∈ rg(Tαξ ) then we extend the
monomorphism Tαξ .

Suppose that ε = 1. Let L be a gap in rg(Tαξ ) defined by X:

L = ({(Tαξ )εn(Z) : Z ⊆? X}, {(Tαγ )εn(Y ) : X ⊆? Y })
(Pα forces all the properties). All elements of the gap have been defined at
the previous stages, because of the definition of j (Case 3). We set

Pα+1 = Pα ? Q(L).
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We extend Tαξ setting

Tα+1
γ = homomorphism generated by Tαξ ∪ {((Tαξ )εn(X), Xα+1)},

where

Xα+1 = {i ∈ ω : ∃p ∈ G [xp(i) = 1]},
and G ⊆ Q(L) is a generic filter. If Tξ is a Pα-name such that

Pα ° “Tξ is an automorphism of B(ψ) and

for some ordinal %, ϕ¹% = ψ ¹% and Tξ and Tγ agree on B(ϕ¹%)”,

and Ind(X) < dom(B(ψ)), then

Tα+1
ξ = homomorphism generated by Tαξ ∪ {((Tαξ )εn(X), Xα+1)},

and Tα+1
ζ = Tαζ in the remaining cases. If ε = −1 we proceed with the

construction in a similar way: we add a generic set to the domain of Tαξ
and to the domains of each of the Tαγ ’s which agree with Tαξ on an “initial
segment” of their domains.

(It is easy to prove, by using Lemma 1 and Sikorski’s theorem, that the
definitions of the monomorphism Tαγ are correct.)

C a s e 5: α ∈ E. Assume that α = Nb((L, Tγ , εn)), where Pγ ° “L is
an increasingly ordered gap in P (ω)/fin and Q(L) does not have the c.c.c.”
Suppose that L = ({X(sζ) : ζ < ω1}, {X(tβ) : β < ω1}) and let L? denote
the gap

({(Tαγ )εn(X(sζ)) : ζ < ω1}, {(Tαγ )εn(X(tβ)) : β < ω1}).
We set

Pα+1 = Pα ? E(L?) and Tα+1
γ = Tαγ .

For limit ordinals λ < κ we define Pλ as a direct limit of {Pα : α < λ}.
We also assume Pα+1 = Pα in all cases not mentioned above. This completes
the definition of the iteration.

We conclude this part of the proof by checking that the above construc-
tion is correct, i.e. that there is no gap L of the type (ω1, ω1), consisting
of generic subsets of ω, which is an image (under one of the extending
monomorphisms) of some gap L′ such that Q(L′) does not have the c.c.c.
and which is filled by the generic set Xγ at some stage γ < κ.

Claim 1. Let Bi (i = 1, 2) denote one of the following subalgebras
of P (ω)/fin : B(ϕi) (where ϕi ∈ Dηi); the domain of Tαγ ; the range of
Tαξ . Assume that

⋃n
i=1X(si) ∈ B1,

⋃m
j=1X(tj) ∈ B2 and

⋃n
i=1X(si) ⊆?⋃m

j=1X(tj). Then there are finite functions r1, . . . , rk such that rg(rl) ⊆
{−1, 1} (l = 1, . . . , k) and for each ξ ∈ ⋃kl=1 dom(rl) we have Xξ ∈ B1 ∩B2
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and
n⋃

i=1

X(si) ⊆?
k⋃

l=1

X(rl) ⊆?
m⋃

j=1

X(tj).

This is proved by using Lemma 1.

Lemma 2. Let α < κ. Assume that Pα has the c.c.c. Suppose that Pα
forces the following :

(1) For each β < α and each ϕ ∈ Dβ , if Lϕ is a gap in B(ϕ), then Q(Lϕ)
has the c.c.c.

(2) If Lζ = (Sζ ,Uζ) is a gap in the domain or range of (Tαζ )εk such that
Pα ° “ Q(L) has the c.c.c.” and for all X(s) ∈ Sζ and X(t) ∈ Uζ there are⋃n
i=1X(si) ∈ Sζ and

⋃m
j=1X(tj) ∈ Uζ such that

X(s) =
n⋃

i=1

X(si) ∧X(t) =
m⋃

j=1

X(tj)

∧ Ind
( n⋃

i=1

X(si)
)
< Ind

(
(Tαζ )εk

( n⋃

i=1

X(si)
))

∧ Ind
( m⋃

j=1

X(tj)
)
< Ind

(
(Tαζ )εk

( m⋃

j=1

X(tj)
))

then Pα ° “Q((Tαζ )εk(L)) has the c.c.c.”
(3) Lξ = ({(Tαξ )ε1m(X(sη)) : X(sη) ∈ S}, {(Tαξ )ε1m(X(tη)) : X(tη) ∈

U}) is an increasingly ordered gap such that Pξ ° “Tξ is an automorphism
of B(ψ), L = (S,U) is an increasingly ordered gap of the type (ω1, ω1) in
P (ω)/fin and Q(L) does not have the c.c.c.”

Under the above assumptions, there is an α0 < ω1 such that for each
γ > α0 and any finite subsets {X(s1), . . . , X(sn)}, {X(t1), . . . , X(tm)} of
the lower and upper classes (respectively) of the gap Lϕ or Lζ the following
holds:

X(sγ) 6⊆?
n⋃

i=1

X(si) or X(tγ) 6⊆?
m⋃

j=1

X(tj)

where X(sα0), X(sγ) and X(tα0), X(tγ) are elements of the lower and upper
classes of Lξ (respectively).

P r o o f. Assume to the contrary that for every γ ∈ ω1 there are sγ1 , . . .
. . . , sγn, tγ1 , . . . , t

γ
m such that
[
X(sγ) ⊆?

n⋃

i=1

X(sγi )
]
∧
[
X(tγ) ⊆?

m⋃

j=1

X(tγj )
]
.
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Applying Claim 1 to X(sγ) ⊆?
⋃n
i=1X(sγi ) and X(tγ) ⊆?

⋃m
j=1X(tγj )

(for each γ < ω1) we obtain elements
⋃nγ
i=1X(rγi ),

⋃mγ
j=1X(pγj ) such that

X(sγ) ⊆?
⋃nγ
i=1X(rγi ) ⊆?

⋃n
i=1X(sγi ), X(tγ) ⊆?

⋃mγ
j=1X(pγj ) ⊆?

⋃m
j=1X(tγj )

and Xη ∈ B∩rg((Tαξ )ε1m) for each η ∈ ⋃nγi=1 dom(ri)∪
⋃mγ
j=1 dom(pj). (Here

B denotes B(ϕ) or the domain or range of Tαζ .) Thus

L′ =
({ nγ⋃

i=1

X(rγi ) : γ < ω1

}
,
{ mγ⋃

j=1

X(pγj ) : γ < ω1

})

is a gap in B ∩ rg(Tαξ ).
If B = B(ϕ) then L′ is a gap in B(ϕ ∩ ψ). Thus L′ξ, the image of L′

under (Tαξ )−ε1m, is a gap in B(ψ) and by (1), Q(L′ξ) has the c.c.c., but by
(3) it does not have the c.c.c., a contradiction.

If B = dom(Tαγ ) then (Tαξ )−ε1m(L′) = L′′ is a gap in dom((Tαξ )ε1m). By
(2), Q(L′′) has the c.c.c. but by (3) it does not have the c.c.c., a contradic-
tion.

We show that the assertion of Theorem 1 holds in the extension V[G],
where G ⊆ Pκ is a generic filter. It is clear that V[G] ° “2ω = κ” and (by
Theorems 2 and 3), V[G|α] ° “2ω < κ” for each α < κ. Let B be a Boolean
algebra in V[G] with cardB = κ. There are elements bγ ∈ B for γ < κ such
that B =

⋃
α<κBα, where Bα is the subalgebra generated by bγ , γ ≤ α.

Assume inductively that we have an embedding i : Bα → P (ω)/fin such
that i(bξ) = Xβξ with βξ ∈ Q1 for each ξ < α. We define a sequence
ϕα : sup{βξ : ξ < α} → {0, 1} putting ϕα(βξ) = 1 for each ξ < α, and
ϕα(ζ) = 0 otherwise. Thus B(ϕα)/fin is an isomorphic image of the algebra
Bα. Let

b(s) =
( ∏

s(ζ)=1

bζ

)
·
( ∏

s(η)=−1

−bη
)
,

where s is a finite function on α with rg(s) ⊆ {−1, 1}. The next generator
bα determines a gap

LBα = ({b(s) : b(s) ≤ bα}, {b(t) : b(t) · bα = 0})
in the algebra Bα. Let L be the image of LBα under i. So L is a gap in
B(ϕα) and

L = ({X(si)}, {X(ti)}),
where si is defined on {βξ : ξ ∈ dom(s)} by the equality si(βξ) = s(ξ) (ti is
defined similarly).

Let γ > sup(ϕα), γ ∈ Q1 and γ = Nb(L, ϕα). We define i(bα) = Xγ and
ϕα+1 = ϕα ∪ {(β, 0) : dom(ϕα) < β < γ} ∪ {(γ, 1)}. This extends i to an
embedding from Bα+1 onto B(ϕα+1)/fin (we check this using Lemma 1).
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Let Φ =
⋃
α<κ ϕα. It is clear that B is isomorphic to B(Φ).

Let f be an automorphism of B. Then i ◦ f ◦ i−1 is an automorphism of
B(Φ) and there is a canonical name F for it, F ⊆ H(κ), consisting of some
pairs ((x, y)(Pκ), p), where x, y are canonical names for the elements of B(Φ)
and the set F (x, y) = {p ∈ Pκ : ((x, y), p) ∈ F} is an antichain. Since Pκ
has the c.c.c., the set

N1 = {α < κ : ∀x, y [x, y ∈ V(Pα) → F (x, y) ⊆ Pα]}
is ω1-club (closed and unbounded) in κ. For any α ∈ N1 the restriction

Fα = F ∩ (V(Pα) × Pα)

is a Pα-name and Fα[G|α] = i ◦ f ◦ i−1 ∩ V[G|α]. So, for all α ∈ N1, the
monomorphism Fα[G|α] belongs to V[G|α]. On the other hand, the sets

N2 = {α < κ : β < α, cf(α) = ω1, F ∩Hα = Fα}
are ω1-club for all β < κ. From the diamond principle it follows that there
is an increasing sequence {γβ ∈ N1 ∩ N2 : β < κ} such that Fγβ = Tγβ .
Let A(F ) =

⋃
β<κ T

γβ+1
γβ and f = A(F )[G]. Then f is an automorphism of

P (ω)/fin and i ◦ f ◦ i−1 ⊆ f .
It remains to show that Pα has the c.c.c. for each α ≤ κ. Let P′α consist

of all p ∈ Pα satisfying the following conditions:

1. For each γ ∈ supp(p) ∩ (Q1 ∪Q2) there are uγ(p), xγ(p), wγ(p) such
that

p¹γ ° “p(γ) = (uγ(p), xγ(p), wγ(p))”
and dom(s) ⊆ supp(p) for each s ∈ uγ(p) ∪ wγ(p). Moreover, for each γ ∈
supp(p)∩ (Q1∪Q2), the number dom(xγ(p)) is constant (independent of γ).
We write l(p) for this value.

2. For each γ ∈ supp(p) ∩ E there are (α1, sα1 , tα1), . . . , (αn, sαn , tαn)
such that

p¹γ ° “p(γ) = {(α1, sα1 , tα1), . . . , (αn, sαn , tαn)}”
and dom(sαi) ∪ dom(tαi) ⊆ supp(p) for i ≤ n.

Let P?α ⊆ P′α be the set of all p ∈ P′α with the property:

3. If γ ∈M then there is an n ∈ ω such that

p¹γ ° “hγ(p(γ)) = n”,

where hγ is a Pγ-name of a function such that

Pγ ° “hγ : Rγ → ω and ∀n ∈ ω [h−1
γ (n) is linked]”.

(We can choose the hγ since Pγ ° “Rγ is σ-linked”.)

Lemma 3. For each p ∈ Pα and m ∈ ω, there is a q ∈ P?α such that p ≥ q
and l(q) ≥ m.
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P r o o f. The proof (except for the case β ∈ E) is similar to the proof of
Lemma 4.4 in Chapter 9 of [5].

Assume (inductively) that the lemma holds for α, β = α+1, β ∈ supp(p)
and β ∈ E. There is a p1 ≤ p¹β such that

p1 ° “p(β) = {(α1, sα1 , tα1), . . . , (αn, sαn , tαn)}”
for some Pβ-names (α1, sα1 , tα1), . . . , (αn, sαn , tαn). We may assume that
dom(sαi) ∪ dom(tαi) ⊆ supp(p) for i ≤ n. By the inductive assumption
there is a p2 ≤ p1 such that p2 ∈ P?β and l(p2) ≥ m. Thus, the element
p2 ? p(β) has all the required properties.

We precede the next two lemmas with the following note: Fix α < κ and
suppose that Pα has the c.c.c. and the assumptions of Lemma 2 are satisfied.
Let Pα force that L is the image under Tαγ of an increasingly ordered gap
L′ such that

Pγ ° “Q(L′) does not have the c.c.c.”

Suppose that {pξ : ξ < ω1} ⊆ P?α is a set of pairwise compatible conditions
and that eξ are Pα-names of conditions of the forcing E(L) such that

∀ξ < ω1 [pξ ° “eξ = {(αξ1, sαξ1 , tαξ1), . . . , (αξnξ , sαξnξ
, tαξnξ

)}”].

Let zi, i = 1, . . . , n, be finite functions with dom(zi) ⊆
⋂
ξ<ω1

supp(pξ) ∩
(Q1∪Q2). From Lemma 2 it follows that there are (at most) two possibilities:

1. There is an uncountable set B ⊆ ω1 such that

∀ξ1, ξ2 ∈ B [rξ1,ξ2 ° “eξ1 = eξ2”],

where rξ1,ξ2 ≤ pξ1 , pξ2 .
2. Any set A ⊆ ω1 satisfying the following condition:

If ξ1, ξ2 ∈ A then for some i0 ∈ {1, . . . , nξ1} and j0 ∈ {1, . . . , nξ2} we
have

pξ1 ° “X(s
α
ξ1
i0

) ⊆?
n⋃

i=1

X(zi)” and pξ2 ° “X(t
α
ξ2
j0

) ⊆? ω \
n⋃

i=1

X(zi)”

and for all rξ1,ξ2 ≤ pξ1 , pξ2 ,

rξ1,ξ2 ° “∀k ∈ {1, . . . , nξ2} [αξ1i0 6= αξ2k ] and ∀l ∈ {1, . . . , nξ1} [αξ2j0 6= αξ1l ]”

is at most countable.

Lemma 4 ([5]). Let p ° “X(s) ∈ fin” and γ = max dom(s). If p ∈ P′α
then there is an r ∈ P′α with r ≤ p and l(p) = l(r) such that if r¹γ ° “r(γ) =
(ur
γ , x

r
γ , w

r
γ)”, then r ° “s ¹ γ ∈ ur

γ” (if s(γ) = −1) or r ° “s ¹ γ ∈ wrγ” (if
s(γ) = 1).
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Lemma 5. Assume that p, q ∈ P?α+1 satisfy the following conditions:

1. p¹α and q¹α are compatible.
2. If ξ ∈ supp(p) ∩ supp(q) ∩M and

p¹ξ ° “p(ξ) ∈ h−1
ξ (n)” and q¹ξ ° “q(ξ) ∈ hξ(m)”

then n = m.
3. If ξ ∈ supp(p) ∩ supp(q) ∩ (Q1 ∪Q2) and

p¹ξ ° “p(ξ) = (up
ξ, x

p
ξ, w

p
ξ)” and q¹ξ ° “q(ξ) = (uq

ξ, x
q
ξ, w

q
ξ)”

then xp
ξ = xq

ξ.
4. Let ξ ∈ supp(p) ∩ supp(q) ∩ E and

p¹ξ ° “p(ξ) = {(αξ1, sαξ1 , tαξ1), . . . , (αξnξ , sαξnξ
, tαξnξ

)}”,
q¹ξ ° “q(ξ) = {(βξ1 , sβξ1 , tβξ1 ), . . . , (βξmξ , sβξmξ

, tβξmξ
)}”.

Define Aξ = {i : (αξi , sαξ
i
, tαξ

i
) ∈ p(ξ) and αξi 6= βξj for all j such that

(βξj , sβξ
j
, tβξ

j
) ∈ q(ξ)} (Bξ is defined in a similar way). Assume that for any

i ∈ Aξ and j ∈ Bξ there is no sl with dom(sl) ⊆ supp(p) ∩ supp(q) such
that

p ° “X(sαξ
i
) ⊆?

⋃
X(sl)” and q ° “X(tβξ

j
) ⊆? ω \

⋃
X(sl)”.

Then p and q are compatible.

P r o o f. Denote by ∆ the set supp(p)∩ supp(q)∩E. The required condi-
tion will be constructed in the following way: First we define extensions of
the conditions p and q by extending zero-one sequences xp

ξ and xq
ξ such that

p¹ξ ° “p(ξ) = (up
ξ, x

p
ξ, w

p
ξ)” and q¹ξ ° “q(ξ) = (uq

ξ, x
q
ξ, w

q
ξ)”.

This will be done in such a way that if % ∈ ∆ and if some extension r of the
conditions p and q forces

X(sαi) = εi1Xγi1
∩ . . . ∩ εiniXγini

, i ∈ A%,
and

X(tβi) = εj1Xξj1
∩ . . . ∩ εjmjXξjmj

, j ∈ B%,
then for some n ≥ l(p),

xξj
k
(n) =

{ 0, εξj
k

= −1,
1, εξj

k
= 1, xγi

l
(n) =

{
0, εγi

l
= −1,

1, εγi
l

= 1,

xξj
k
⊂ xξj

k
, xγi

l
⊂ xγi

l
.

Thus we obtain extensions p′ and q′ which force “n ∈ X(sαi)” and “n ∈
X(tβj )” respectively. In the next step of the proof we will consider the
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conditions (uγi
l
, xγi

l
, wγi

l
) and (uξj

k
, xξj

k
, wξj

k
) and extend some of xγ , xξ for

γ ∈ dom(s), s ∈ uγi
l
∪wγi

l
, ξ ∈ dom(t), t ∈ uξj

k
∪wξj

k
. We will repeat this step

for all xγ which have been just extended. Finally, we extend each remaining
xγ with γ ∈ (supp(p) ∪ supp(q)) ∩ (Q1 ∪ Q2). The construction should be
careful in order to avoid a situation where for some γ ∈ (supp(p)∩supp(q))∩
(Q1 ∪ Q2) there are s ∈ up

γ , t ∈ wq
γ and n ≥ l(p) such that the extensions

p′ and q′ force that “n ∈ X(s)” and “n ∈ X(t)”. (Such conditions p′ and q′

are incompatible.)
For all % ∈ supp(p) ∩ supp(q) ∩ E = ∆ we define a function

Ψ% : (α+ 1) ∩ (supp(p) ∪ supp(q)) ∩ (Q1 ∪Q2)→ {1, 0}.
(At the end of the proof we will extend the sequences xγ with γ ∈ (supp(p)∪
supp(q)) ∩ (Q1 ∪ Q2) putting xγ(n%) = Ψ%(γ), where n% = l(p) + k(%) and
k is an increasing enumeration of the set ∆.)

Let r < p¹α, q¹α force that

X(sαi) = εi1Xγi1
∩ . . . ∩ εiniXγini

, i ∈ A%,
and

X(tβi) = εj1Xξj1
∩ . . . ∩ εjmjXξjmj

, j ∈ B%.
(We denote α%i , β

%
j by αi, βj respectively.) We put

Ψ%(γil ) =
{

1 if εil = 1,
0 if εil = −1, i ∈ A%, l ≤ ni,

and

Ψ%(ξjk) =
{

1 if εjk = 1,
0 if εjk = −1, j ∈ B%, k ≤ mj .

Note that there are no sf , sp
l , s

q
k with dom(sf ), dom(sp

l ), dom(sq
k) ⊆

supp(p) ∩ supp(q) such that

p ° “
⋂

i∈A′%

⋂

l∈N ′
i

εilXγi
l
∩
⋃
X(sq

k) ⊆?
⋃
X(sf ) and

⋂

i∈A′′%

⋂

l∈N ′′
i

εilXγi
l
⊆?
⋃
X(sp

l )”,

q ° “
⋂

j∈B′%

⋂

k∈M ′
j

εjkXξj
k
∩
⋃
X(sp

l ) ⊆? ω \
⋃
X(sf ) and

⋂

j∈B′′%

⋂

k∈M ′′
j

εjkXξj
k
⊆?
⋃
X(sq

k)”

(where A′%, A
′′
% ⊆ A%, B′%, B

′′
% ⊆ B%, N ′i , N

′′
i ⊆ ni and M ′j ,M

′′
j ⊆ mj). Thus,

if we put xγl
i
(l(p)) = Ψ%(γli) and xξk

j
(l(p)) = Ψ%(ξkj ) then the extensions we

have obtained will be compatible.
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Let p ¹ γli ° “p(γli) = (uγl
i
, xγl

i
, wγl

i
)” and s ∈ uγl

i
, t ∈ wγl

i
. If we put

xγl
i
(l(p)) = Ψ%(γli) then the sequences xγ , γ ∈ dom(s) ∪ dom(t), have to

be defined in such a way that the extension we obtain forces “l(p) 6∈ X(s)”
when Ψ%(γli) = 0, and “l(p) 6∈ X(t)” when Ψ%(γli) = 1. (Similar conditions
should hold for q.)

For each Xγi
l
, Xξj

k
we define

vγi
l

=

{
uγi

l
if εil = −1,

wγi
l

if εil = 1,

where

p¹γil ° “p(γil ) = (uγi
l
, xγi

l
, wγi

l
)”.

(The definitions of vξj
k

are similar.)

Let {sp
i : i ≤ k%} be an enumeration of all s ∈ ⋃i∈A%

⋃
k≤ni vγik . We

enumerate also sp
i = {−sp

i(γ)Xγ : γ ∈ dom(sp
i)} = {εi1Xi

1, . . . , ε
i
ki
Xi
ki
}.

Denote by I(a) the intersection ε1
a(1)X

1
a(1) ∩ . . . ∩ ε

k%
a(k%)X

k%
a(k%), where a :

k% + 1 3 i → a(i) ≤ ki, and by I the set of all the functions a. (J(b) and J
are defined in a similar way for vξj

k
.)

Thus

X(sαmin) ⊆? ω \
⋃

i∈A%

ni⋃

l=1

⋃
s∈v

γi
l

X(s) =
⋃

a∈I

I(a),

where αmin = min{α%1, . . . , α%n%}. It is easy to check that there exist se-
quences a ∈ I and b ∈ J such that

p ° “X(sαmin) ∩ I(a) 6=? ∅” and q ° “X(tβmin) ∩ J(b) 6=? ∅”
and the following holds: for any

a′, a′′ ⊆ a, b′, b′′ ⊆ b, A′%, A
′′
% ⊆ A%,

N ′i , N
′′
i ⊆ ni, M ′j ,M

′′
j ⊆ mj , B′%, B

′′
% ⊆ B%,

there are no sp
l , s

q
k, sIl , s

J
k , sf which satisfy the conditions below:

(1) The domains of the functions are subsets of supp(p) ∩ supp(q).

(2) p ° “I(a′) ∩
⋂

i∈A′%

⋂

l∈N ′
i

εilXγi
l
∩
⋃
X(sq

k) ∩
⋃
X(sJk) ⊆?

⋃
X(sf ),

⋂

i∈A′′%

⋂

l∈N ′′
i

εilXγi
l
⊆?
⋃
X(sp

l ) and I(a′′) ⊆?
⋃
X(sIl )”.

(3) q ° “J(b′)∩
⋂

j∈B′%

⋂

k∈M ′
j

εjkXξj
k
∩
⋃
X(sp

l )∩
⋃
X(sIl ) ⊆? ω \

⋃
X(sf ),



144 M. Grzech

⋂

i∈B′′%

⋂

k∈M ′′
j

εjkXξj
k
⊆?
⋃
X(sq

k) and J(b′′) ⊆?
⋃
X(sJk)”.

For δ such that Xδ = Xi
a(i) or Xδ = Xj

b(j) we define

Ψ%(δ) =

{
1 if εia(i) = 1 (resp. εjb(j) = 1),

0 if εia(i) = −1 (resp. εjb(j) = −1).

We proceed with the construction in the following way:
We replace {Xγi

l
: i ≤ n, l ≤ ni} and {Xξj

k
: j ≤ m, k ≤ mj} with

{Xi
a(i) : i ∈ dom(a)} and {Xj

b(j) : j ∈ dom(b)} and repeat that until each

vδ is empty for each Xδ = Xi
ak(i) and Xδ = Xj

bk(j), where ak and bk are the
sequences obtained in the (k − 1)th iteration of the construction. Thus

p ° “X(sαmin) ∩ I(a0) ∩ . . . ∩ I(ak) 6=? ∅”,
q ° “X(tβmin) ∩ J(b0) ∩ . . . ∩ J(bk) 6=? ∅”

and there are no sl with dom(sl) ⊆ supp(p) ∩ supp(q) such that

p ° “X(sαmin) ∩ I(a0) ∩ . . . ∩ I(ak) ⊆?
⋃
X(sl)”,

q ° “X(tβmin) ∩ J(b0) ∩ . . . ∩ J(bk) ⊆? ω \
⋃
X(sl)”.

Let

Γ = {γ : Xγ = Xi
aj(i), j ≤ k or γ = γil , i ∈ A%, l ≤ ni},

Ξ = {ξ : Xξ = Xj
bi(j)

, i ≤ k or ξ = ξjl , j ∈ B%, l ≤ mj}.
We defined Ψ%(β) for β ∈ Γ ∪Ξ. It remains to define Ψ%(β) for β 6∈ Γ ∪Ξ.
Assume that % is the lth element of ∆ and let c = l(p) + l. Denote by Pξ

the formula “c ∈ Xξ”, and by Ps the conjunction
∧
ξ∈dom(s) s(ξ)Pξ, where

s(ξ)Pξ =
{

Pξ if s(ξ) = 1,
¬Pξ if s(ξ) = −1.

Consider the following scheme: If ξ ∈ (supp(p) ∪ supp(q)) ∩ (Q1 ∪Q2) = Ω
then Rξ is the formula

∨

s∈up
ξ
∪uq

ξ

Ps ∧
∨

t∈wp
ξ
∪wq

ξ

Pt

(we assume that Rξ is false if up
ξ ∪ uq

ξ or wp
ξ ∪ wq

ξ is empty), and Kξ is the
formula ( ∨

s∈up
ξ
∪uq

ξ

Ps ⇒ Pξ

)
∧
( ∨

t∈wp
ξ
∪wq

ξ

Pt ⇒ (¬Pξ)
)
.
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We want to find an assignment such that

(?)
∧

ξ∈Ω
¬Rξ ∧

∧

ξ∈Ω
Kξ is true

and

(??) Pξ is true if Ψ%(β) = 1, and Pξ is false if Ψ%(β) = 0 for β ∈ Γ ∪Ξ.
(Since p and q are compatible there exists an assignment such that (?) is
true, but (??) need not be satisfied.)

Suppose to the contrary that for all assignments which satisfy (??) the
sentence ∨

ξ∈Ω
Rξ ∨

∨

ξ∈Ω

( ∨

s∈up
ξ
∪uq

ξ

Ps ∧ ¬Pξ

)
∨
( ∨

t∈wp
ξ
∪wq

ξ

Pt ∨Pξ

)

is true. (Note that this sentence is an alternative of sentences Pv when q °
“X(v) =? ∅”.) Thus there are ξ1, . . . , ξl ∈ Ω and ζ1, . . . , ζd ∈ Γ ∪ Ξ such
that ∨

ε∈Θ
ε(1)Pξ1 ∧ . . . ∧ ε(l)Pξl ∧Pζi1(ε) ∧ . . . ∧Pζid(ε)(ε)

is equivalent to
∨

ξ∈Ω′
Rξ ∨

∨

ξ∈Ω′′

( ∨

s∈up
ξ
∪uq

ξ

Ps ∧ ¬Pξ

)
∨
( ∨

t∈wp
ξ
∪wq

ξ

Pt ∨Pξ

)

(Ω′, Ω′′ ⊆ Ω and Θ = {ε : ε : l + 1→ {−1, 1}}).
Since p ¹ α and q ¹ α are compatible, {ζ1, . . . , ζd} 6= ∅. It is easy to see

that there are ζ1, . . . , ζi ∈ Γ and ζi+1, . . . , ζd ∈ Ξ. We divide the set of
ξj ’s into three disjoint sets: ξ1, . . . , ξl1 ∈ supp(p) \ supp(q), ξl1+1, . . . , ξl2 ∈
supp(p)∩supp(q), ξl2+1, . . . , ξl ∈ supp(q)\supp(p). Thus each ε = (ε1, ε2, ε3)
and dom(εi) is equal to {1, . . . , l1}, {l1 + 1, . . . , l2} or {l2 + 1, . . . , l} respec-
tively. Denote by I(aε) (resp. J(bε)) the intersection

⋂
ζi(ε)∈Γ Xζi(ε) (resp.⋂

ζi(ε)∈Ξ Xζi(ε)). There are two possibilities:

1. I(aε1,ε2,ε3) ∩⋂i∈dom(ε1ε2)(ε1ε2)(i)Xξi =? ∅.
2. There is %ε ∈ supp(p) ∩ supp(q) such that

p ° “I(aε1,ε2,ε3) ∩
⋂

i∈dom(ε1ε2)

(ε1ε2)(i)Xξi ⊆? X%ε ∩
⋂

i∈dom(ε2)

ε2(i)Xξi”

and

q ° “J(bε1,ε2,ε3) ∩
⋂

i∈dom(ε3)

ε3(i)Xξi ⊆? ω \
(
X%ε ∩

⋂

i∈dom(ε2)

ε2(i)Xξi

)
”.

Thus
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p ° “X(sαmin) ∩ I(a0) ∩ . . . ∩ I(ak) ⊆? I
( ⋃

ε∈Θ
aε1,ε2,ε3

)

⊆?
⋃
ε1

⋃
ε2

⋃
ε3

(
X%ε ∩

⋂

i∈dom(ε2)

ε2(i)Xξi

)
”

and
q ° “X(sβmin) ∩ J(b0) ∩ . . . ∩ J(bk) ⊆? J

( ⋃

ε∈Θ
bε1,ε2,ε3

)

⊆? ω \
(⋃
ε1

⋃
ε2

⋃
ε3

(
X%ε ∩

⋂

i∈dom(ε2)

ε2(i)Xξi

))
”,

a contradiction.
Thus there is an assignment satisfying (??) such that (?) is true. We

define

Ψ%(ξ) =
{

1 if Pξ is true,
0 if Pξ is false.

It is easy to prove (by induction) that there is r ∈ P′α satisfying the
following conditions:

(†) l(r) = l(p) + card∆.
(††) If ξ ∈ Ω and r ¹ ξ ° “r(ξ) = (ur

ξ, x
r
ξ, w

r
ξ)” then xr

ξ ¹ l(p) = xp
ξ and

xξ(l(p) + i) = Ψ%i(ξ), where %i is the ith element of ∆.

The proof (except for the case β ∈ E) is identical to the proof of
Lemma 4.5 of [5] (Ch. 9).

Assume that β ∈ E and β is the ith element of ∆. Let r1 ≤ p¹β, q¹β be
an element of P′β satisfying (†) and (††). Thus

r1 ° “X(sαβ
i
) ∩X(tββ

j
) =? ∅”,

where
p¹β ° “p(β) = {(αβ1 , sαβ1 , tαβ1 ), . . . , (αβnβ , sαβnβ

, tαβnβ
)}”,

q¹β ° “q(β) = {(ξβ1 , sξβ1 , tξβ1 ), . . . , (ξβmβ , sξβmβ
, tξβmβ

)}”.

If αβi 6∈ Aβ or ξβj 6∈ Bβ then

r1 ° “X(sαβ
i
) ∩X(tξβ

j
) 6= ∅”.

If αβi ∈ Aβ and ξβj ∈ Bβ then

r1 ° “l(p) + i ∈ X(sαβ
i
) ∩X(tξβ

j
)”.

Thus r1 ° “τ = p(β) ∪ q(β) ∈ Eβ” and r = r1 ? τ is the required element.

Lemma 6. Assume inductively that :

(1)α Pα has the c.c.c.
(2)α If L is a gap in B(ϕ) and ϕ ∈ Dα then Pα ° “Q(L) has the c.c.c.”
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(3)α If ζ < α and Lζ = (Sζ ,Uζ) is a gap in the domain or range of
(Tαζ )εk such that Pα ° “Q(L) has the c.c.c.” and for all X(s) ∈ Sζ and
X(t) ∈ Uζ there are

⋃n
i=1X(si) ∈ Sζ and

⋃m
j=1X(tj) ∈ Uζ such that

X(s) =
n⋃

i=1

X(si) ∧X(t) =
m⋃

j=1

X(tj)

∧ Ind
( n⋃

i=1

X(si)
)
< Ind

(
(Tαζ )εk

( n⋃

i=1

X(si)
))

∧ Ind
( m⋃

j=1

X(tj)
)
< Ind

(
(Tαζ )εk

( m⋃

j=1

X(tj)
))

then Pα ° “Q((Tαζ )εk(L)) has the c.c.c.”

Then Pα+1 has the c.c.c. and the conditions (2)α+1–(3)α+1 hold.

P r o o f. Let P = {pξ : ξ ∈ ω1} ⊆ Pα+1. Then, by Lemma 3, for each
pξ there is p′ξ ≤ pξ with p′ξ ∈ P?α+1. Applying the ∆-system lemma we find
a set P ′∆ ⊆ {p′ξ : ξ ∈ ω1} of cardinality ω1 consisting of conditions whose
supports have a common root. By Lemma 2 deleting (at most) countably
many conditions we can divide P ′∆ into ω sets Pn∆ on which the assumptions
of Lemma 5 are satisfied. Thus there are no uncountable antichains in Pα+1.
Conditions (2)α+1–(3)α+1 are proved in a similar way.
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