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Deformations of bimodule problems

by

Christof G e i ß (México, D.F.)

Abstract. We prove that deformations of tame Krull–Schmidt bimodule problems
with trivial differential are again tame. Here we understand deformations via the structure
constants of the projective realizations which may be considered as elements of a suitable
variety. We also present some applications to the representation theory of vector space
categories which are a special case of the above bimodule problems.

1. Introduction. Let k be an algebraically closed field. Consider the
variety algV (k) of associative unitary k-algebra structures on a vector space
V together with the operation of GlV (k) by transport of structure. In
this context we say that an algebra Λ1 is a deformation of the algebra
Λ0 if the corresponding structures λ1, λ0 are elements of algV (k) and λ0

lies in the closure of the GlV (k)-orbit of λ1. In [11] it was shown, us-
ing Drozd’s tame-wild theorem, that deformations of tame algebras are
tame.

Similar results may be expected for other classes of problems where
Drozd’s theorem is valid. In this paper we address the case of bimodule
problems with trivial differential (in the sense of [4]); here we interpret defor-
mations via the structure constants of the respective projective realizations.
Note that the bimodule problems include as special cases the representa-
tion theory of finite-dimensional algebras ([4, 2.2]), subspace problems (4.1)
and prinjective modules ([16, 1]). We also discuss some examples concerning
subspace problems.

We understand that W. W. Crawley-Boevey has obtained similar results.
P. Dräxler draw my attention to examples as in 4.3.
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2. Bimodule problems

2.1. Let us recall some basic definitions from [4] and [18]. A category is
called a k-category if all morphism spaces are k-modules and the composition
is k-bilinear; a functor between k-categories is called a k-functor if it is
k-linear. As a general convention we will compose morphisms in k-categories
from left to right.

A k-category is a Krull–Schmidt category if it has finite direct sums,
split idempotents and the morphism spaces are all finite-dimensional. If
K is a k-category, a K left- (resp. right-) module is a contravariant (resp.
covariant) k-functor K → k-mod, and accordingly, a K-bimodule is a k-
functor Kop × K → k-mod. If M is a K-bimodule, we write conveniently
amb := mM(a, b) ∈ K(X ′, Y ′) for m ∈ M(X,Y ), a ∈ K(X ′, X), and
b ∈ K(Y, Y ′).

Definition. A Krull–Schmidt bimodule problem is a pair (K,M), where
K is a Krull-Schmidt k-category and M a K-bimodule. The category
Mat(K,M) has as objects the pairs (X,m) with X ∈ ObjK, m ∈M(X,X)
and Mat(K,M)((X,m), (X ′,m′)) := {f ∈ K(X,X ′) | mf = fm′}.

Since in the following we will consider only bimodule problems which are
Krull–Schmidt, we sometimes drop the words “Krull–Schmidt” for brevity.

R e m a r k. The categories Mat(K,M) are Krull–Schmidt categories, be-
ing a special case of the categories considered in [4, 2].

2.2. Let (K,M) be a bimodule problem where K has only a finite number
of isoclasses of indecomposable objects. It is of finite type if Mat(K,M)
admits only a finite number of isoclasses of indecomposable objects. Recall
from [4] that the bimodule problem (K,M) may be formulated quite directly
as normal free triangular linear bocs, and thus if (K,M) is not of finite type
then it is either tame or wild by the theorem of Drozd.

For convenience let us trace back the definitions of tame and wild for
bocses from [2] through the constructions in [4]. In order to formulate the
result, we need however some setup—essentially we adapt the corresponding
notions from [8]. Let X ∈ ObjK, b := (b1, . . . , bn) some k-base of M(X,X)
and ϕ := (ϕ1, . . . , ϕn) a sequence of elements of some k-algebra R. Then we
call the triple (X,b,ϕ) an R-frame for (K,M). Such an R-frame induces a
functor

FX,b,ϕ : mod-R→ Mat(K,M), N 7→
(
X ⊗N |k, η

( n∑

i=1

bi ⊗N(ϕi)
))
.

Here X⊗W represents the functor Homk(W,K(X, ?)) (hence X⊗kn ∼= Xn,
see [8, 2.1]); since we deal only with finite-dimensional vector spaces there
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is a natural isomorphism η : M(X,Y )⊗Homk(V,W )→M(X ⊗ V, Y ⊗W ).
Finally, N(ϕi)∈Endk(N |k) is induced by the module multiplication n 7→nϕi.

Definition. The bimodule problem (K,M) is wild if for some X ∈
ObjK there exists a k〈x, y〉-frame (X,b,ϕ) such that the induced func-
tor FX,b,ϕ : mod-k〈x, y〉 → Mat(K,M) preserves indecomposability and
respects isoclasses.

(K,M) is tame if for every X ∈ ObjK there exists a finite number of
k[t]-frames (X,b(j),ϕ(j)) such that for every indecomposable object (X,m)
in Mat(K,M) we have (X,m) ∼= F(X,b(j),ϕ(j))(k[t]/(t − λ)) for some j and
some λ ∈ k.

R e m a r k. If (K,M) corresponds to a wild subspace problem (see 4.1),
we can find by the results of [8] for some X a k〈x, y〉-frame (b=(b1, . . . , bn),
ϕ = (1, x, y, 0, . . . , 0)) such that the induced functor preserves indecompos-
ability and respects isoclasses.

2.3. Let Λ be a finite-dimensional associative k-algebra and M a finite-
dimensional Λ-Λ-bimodule. Consider P(Λ), the category of finitely generated
projective Λ-left modules, and the functor

M : P(Λ)op × P(Λ)→ k-mod, (P1, P2) 7→ HomΛ(P1,M⊗ΛP2).

Then (P(Λ),M) is a Krull–Schmidt bimodule problem, where P(Λ) has a
finite number of isoclasses of indecomposable objects.

R e m a r k. Every bimodule problem (K,M) where K has only a fi-
nite number of isoclasses of indecomposable objects is of the above form.
Indeed, let {X1, . . . , Xn} represent the indecomposable objects of K and
set ΛK :=

⊕n
i,j=1K(Xi, Xj), which becomes a k-algebra with the obvi-

ous matrix multiplication; further, set M :=
⊕n

i,j=1M(Xi, Xj) with the
corresponding ΛK-ΛK-bimodule structure. Now it is not hard to see that
Mat(K,M) and Mat(P(ΛK),M) are equivalent categories. We call the above
construction the projective realization of (K,M) (compare [18, 2.5], [19, Sec.
17.9]).

2.4. For given vector spaces V,W consider the affine variety algbWV (k)
which consists of the pairs (λ, µ) ∈ Homk(V ⊗V, V )×Homk(V ⊗W ⊗V,W ),
where λ defines an associative unitary k-algebra structure Λ on V , and µ
defines a Λ-bimodule structure M on W (compare [7], [11]). On algbWV (k)
operates the algebraic group GlV,W (k) := GlV (k)×GlW (k) by transport of
structure, i.e.

(λ, µ)g,h(v1⊗v2, vl⊗w⊗vr) = ((v1g
−1⊗v2g

−1)λg, (vlg−1⊗wh−1⊗vrg−1)µg).

Definition. The bimodule problem (K1,M1) is a deformation of the
problem (K0,M0) if for the respective projective realizations (P(Λi),M i)
the pairs (Λi,Mi) have the same underlying vector spaces (V,W ), and if for
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the corresponding structures (λi, µi) ∈ algbWV (k) (always i ∈ {0, 1}) we find
(λ0, µ0) in the closure of the GlV,W (k)-orbit of (λ1, µ1).

Theorem. Deformations of tame bimodule problems are tame.

The proof will be given in 3.6.

3. Varieties

3.1. Let (K,M) be a bimodule problem and X ∈ ObjK. Set matXK,M (k)
:= M(X,X); it will be considered as an affine space in the sense of alge-
braic geometry. On matXK,M (k) operates the algebraic group AutX(k) :=
{f ∈ K(X,X) | f is invertible} by conjugation: mf := f−1mf . Thus the
orbits of AutX(k) on matXK,M (k) correspond bijectively to the isoclasses of
representations of (K,M) of the form (X ′,m) with X ′ ∼= X.

Next we consider the variety

ematXK,M (k) := {(m, f) ∈M(X,X)×K(X,X) | mf = fm}.
R e m a r k. In general ematXK,M (k) is not irreducible, but it is connected.

Indeed, consider the action of the multiplicative group Gl1(k) on ematXK,M (k)
by scalar multiplication. Then we find that (0, 0) lies in the closure of any
orbit and consequently (0, 0) lies in every irreducible component.

3.2. If X ∈ ObjK, we write #(X) for the number of direct summands
of X.

Proposition. Let (K,M) be a bimodule problem, let X1, . . . , Xn rep-
resent the isoclasses of indecomposable objects of K and X0 :=

⊕n
i=1Xi.

Then the following are equivalent :

(a) (K,M) is tame.
(b) dim ematXK,M (k) ≤ dim AutX(k) + #(X) for all X ∈ ObjK.

(c) dim ematX
m
0
K,M (k) ≤ n2 dim AutX0(k) + nm for all m ∈ N.

P r o o f. (a)⇒(b) is Lemma 2 below; (b)⇒(c) is trivial. (c)⇒(a) follows
from Drozd’s theorem and Lemma 1 below by trivial estimations.

Corollary. Let Λ be a d-dimensional k-algebra and M a Λ-Λ-bimodule.
Then the bimodule problem (P(Λ),M) is tame if and only if

dim ematΛ
m

P(Λ),M̄ (k) ≤ dm2 + dm for all m ∈ N.
P r o o f. Observe that every finitely generated indecomposable projective

Λ-module is a direct summand of ΛΛ ∈ P(Λ). Moreover, we trivially have
#(Λ) ≤ d. Now, Lemma 2 implies “⇒”, while the other direction follows
from Drozd’s theorem and Lemma 1 by simple estimations.



Deformations of bimodule problems 259

Lemma 1. With the above notations, suppose that (K,M) is wild. Then
there exists p ∈ N such that

dim emat
Xpn0
K,M (k) ≥ dim AutX0(k)(pn)2 + n2 + 1

for all n ∈ N.

Lemma 2. With the above notations, suppose that (K,M) is tame. Then

dim ematXK,M (k) ≤ dim AutX(k) + #(X)

for all objects X in K.

3.3. P r o o f o f L e m m a 1. Consider the affine variety modnk〈x,y〉(k)
:= (Endk(kn))2 with the operation of Gld(k) by transport of structure, i.e.
(µx, µy)g = (g−1µxg, g

−1µyg); thus the Gld(k)-orbits on modnk〈x,y〉(k) corre-
spond bijectively to the isoclasses of d-dimensional k〈x, y〉-(right-)modules.
The elements of the locally closed subset Un ⊂ moddk〈x,y〉(k) are by definition
of the form






T1 0 . . . . . . . . . 0
0 T2 0 . . . . . . 0
. . . . . . . . . . . . . . . .
0 . . . 0 Tn−1 0
0 . . . . . . . 0 Tn


 ,




T1,1 . . . . . . . . . . . . . . . . . . T1,n

1 T2,2 . . . . . . . . . . . . T2,n

T3,1 1 T3,3 . . . T3,n

. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Tn,1 . . . . . Tn,n−2 1 Tn,n







with
∏
i<j(Ti − Tj) 6= 0. The points of Un correspond to pairwise non-

isomorphic k〈x, y〉-modules with trivial endomorphism ring.
Now, let (X,b,ϕ) be a k〈x, y〉-frame for (K,M) such that the induced

functor FX,b,ϕ preserves indecomposability and respects isoclasses ((K,M)
is wild!). Then FX,b,ϕ gives rise to regular maps

FnX,b,ϕ : modnk〈x,y〉(k)→ matX⊗kn
K,M (k), (µx, µy) 7→

n∑

i=1

bi ⊗ ϕi(µx, µy).

Here, for example, xyx(µx, µy) := µxµyµx. Notice that FX,b,ϕ maps differ-
ent Gln(k)-orbits to different AutX⊗kn(k)-orbits, thus the restriction to Un
is injective.

Next, take Y ∈ ObjK such that X ⊕ Y ∼= Xp
0 for some p ∈ N and

consider the composition

F̂X,b,ϕ : modnk〈x,y〉(k)
FX,b,ϕ−→ matX⊗kn

K,M (k) can.−→ mat(X⊕Y )
K,M (k)⊗ kn.

Again, the restriction to Un is injective and the constructible subset (1)
Zn := F̂X,b,ϕ(Un) ⊂ mat(X⊕Y )

K,M (k) ⊗ kn intersects any Aut(X⊕Y )n(k)-orbit

(1) See [12, p. 91] for the definition and basic properties of constructible sets; com-
pare [13] and [14] for earlier use of this concept in representation theory.
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at most in one point. Standard calculations using dimZn = dimUn = n2 +1
show finally

dim emat
Xpn0
K,M (k) = dim emat(X⊕Y )n

K,M (k) ≥ dim Aut(X⊕Y )n(k) + n2 + 1

= dim AutX0(k)(pn)2 + n2 + 1.

3.4. P r o o f o f L e m m a 2. As in the case of varieties of modules
(see [2], and also [6, Sect. 2], [15, 1.3]), using the fact that an object of
Mat(K,M) of the form (X,m) has at most #(X) direct summands, we find
in matXK,M (k) a constructible subset C of dimension at most #(X) such that
CAutX(k) = matXK,M (k).

On the other hand, we may stratify matXK,M (k) into the locally closed
subsets

matX,tK,M (k) := {m ∈ matXK,M (k) | dim End(K,M)(X,m) = t}.
Since dimC ≤ #(X) we get dim matX,tK,M (k) ≤ (dim AutX(k)− t) + #(X).

Next we consider the locally closed subsets

ematX,tK,M (k) := {(m, f) ∈ ematXK,M (k) | m ∈ matX,tK,M (k)}
of ematX,tK,M (k) and observe that ematX,tK,M (k) is a vector bundle of rank t

over matX,tK,M (k) and therefore

dim ematX,tK,M (k) ≤ dim AutX(k) + #(X) ∀t ∈ {1, . . . , dim AutX(k)},
while for all other t obviously ematX,tK,M (k) = ∅. This proves Lemma 2.

3.5. In this subsection we concentrate on bimodule problems of the form
(P(Λ),M).

Proposition. For given vector spaces V,W and n ∈ N the function

δn : algbWV (k)→ N, (λ, µ) 7→ dim ematΛ
n

P(Λ),M̄ (k),

is upper semicontinuous.

P r o o f. First, recall that for given (λ, µ) ∈ algbWV (k) we write (Λ,M)
for the corresponding pair of an algebra and a bimodule with underlying
vector spaces (V,W ). Now, (λ, µ) induces canonically on V n×n the algebra
structure λn corresponding to EndΛ(ΛΛ

n) and on Wn×n the EndΛ(ΛΛ
n)-

bimodule structure µn corresponding to HomΛ(Λn,M⊗ΛΛn). With this
setup we may consider the variety

algbematW,nV (k) := {((λ, µ),m, f) ∈ algbWV (k)×Wn×n × V n×n |
µn(f ⊗m⊗ id) = µn(id⊗m⊗ f)}

and the canonical projection πn : algbematW,dV (k)→ algbWV (k). By construc-
tion we may identify the fibres π−1

n (λ, µ) with ematΛ
n

P(Λ),M̄ (k).
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Now, the dimension of the fibres of πn is upper semicontinuous by Cheval-
ley’s theorem since πn admits the canonical section

σn : algbWV (k)→ algbematW,nV (k), (λ, µ) 7→ ((λ, µ), 0, 0),

which meets any component of every fibre of πn (see Remark 3.1).

3.6. P r o o f o f T h e o r e m 2.4. Let the bimodule problem (K1,M1)
be a deformation of the tame bimodule problem (K0,M0), and let (λi, µi) ∈
algbWV (k) (i = 0, 1) be the structure constants of the corresponding projec-
tive realizations. Thus we have, for all m ∈ N,

dim ematΛ
m
1
P(Λ1),M̄1

(k) ≤ dim ematΛ
m
0
P(Λ0),M̄0

(k) ≤ [V : k](m2 +m).

Here, the first inequality comes from Proposition 3.5 (see our definition of
deformations), while the second one is Corollary 3.2. On the other hand,
this chain of inequalities shows the tameness of (P(Λ1),M1) by the same
corollary, and thus the tameness of (K1,M1).

4. Examples

4.1. The main application we have in mind is the case of vector space
categories. Let us recall the definitions: If K is a Krull–Schmidt k-category
together with a functor | − | : K → k-mod, then the pair (K, | − |) is called
a vector space category. The subspace category U(K, | − |) has as objects
the triples of the form (X,V, ϕ) with X ∈ ObjK, V ∈ Obj(k-mod) and
ϕ ∈ Homk(V, |X|) with the obvious morphisms (see [17]–[19]). The category
U(K, | − |) is canonically equivalent to the representations of the bimodule
problem (K,M|−|), where K := K × k-mod and

M|−| : Kop ×K → k-mod, ((X1, V1), (X2, V2)) 7→ Homk(V1, |X2|).
The equivalence is given by

U(K, | − |)→ Mat(K,M|−|), (X,V, ϕ) 7→ ((X,V ), ϕ).

Thus we can speak of deformations of vector space categories, meaning de-
formations of the corresponding bimodule problem.

For applications the following setup is more handy: Recall from 2.3 that
(K,M|−|) is equivalent to (P(Λ),HomΛ(−,M⊗

Λ
−) by a standard construc-

tion. Now, observe that Λ = Λ × k with K ∼= P(Λ). Moreover, M inher-
its a natural k-Λ-bimodule stucture, and we find a canonical isomorphism
U(K, | − |) ∼= U(P(Λ),M⊗Λ−), the projective realization of (K, | − |). This
prompts us to study for given vector spaces V andW the variety algmatWV (k)
which consists of the pairs (λ, µ) ∈ Homk(V ⊗ V, V ) × Homk(W ⊗ V,W ),
where λ defines an associative unitary k-algebra Λ on V , and µ defines a right
Λ-module on W with the natural action of GlV (k)×GlW (k) by transport of
structure. This gives rise to another obvious definition for deformations of
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vector space categories: (K1, | − |1) is a deformation of (K0, | − |0) if for the
corresponding projective realizations (P(Λi),Mi⊗Λi−) etc. (compare 2.3).

R e m a r k. Deformations in this latter sense are special cases of defor-
mations with respect to the first definition. Indeed, there are natural em-
beddings algmatWV (k)→ algbV ⊕ kW and GlV (k)×GlW (k)→ GlV⊕k(k)×
GlW (k) compatible with the above constructions. This directly implies our
statement.

Corollary. Deformations of tame vector space categories are tame.

4.2. Suppose for a moment that char k 6= 2, and consider the alge-
braic family of vector space categories (P(Λt), Λt⊗Λt−)t∈k, where Λt =
k[T ]/(T 2 + tT + t)× k[S]/(S2 + tS + t)× k. Thus Λt ∼= k× k× k× k× k for
t 6= 0, while Λ0 = k[T ]/(T 2)× k[S]/(S2)× k. The case t 6= 0 represents the
five-subspace problem which is well known to be wild, and by the corollary
above we conclude that also the case t = 0 represents a wild problem.

4.3. Consider the following two algebras which we define by presenting
their quivers with relations.

Γ0 :

• ω •

• •

• •

a

@@@@@ÂÂ f~~~~~~>>

c //

g

OO

d~~~~~~>>

e

@@@@@@ÃÃb~~~~~?? Γ1 :

• ω •

• •

• •

a

@@@@@ÂÂ c //

h

OO

d~~~~~~>>

e

@@@@@@ÃÃb~~~~~??

0 = af = bf = cg 0 = ach = bch

Then Γ0-mod can be described by the representations of a clannish al-
gebra [3]; in particular, Γ0 is tame. Γ1 is a deformation of Γ0 and thus it is
tame by [11]. We observe that both algebras are one-point extensions of a
hereditary algebra ∆ of type D̃5 by regular modules, i.e. Γ0 = ∆[M0] and
Γ1 = ∆[M1]. Moreover, there exists an exact sequence of ∆-modules

0→ τS →M1 → S → 0,

where M0 = τS ⊕ S, and thus M1 is a deformation of the semisimple ∆-
module M0. Now let us consider the patterns (see [17] for definitions and
conventions) for these one-point extensions:

. . .

• • • •

• • • • • • • •

• • • • • • • •

• • • •

>>>ÂÂ
>>>ÂÂ

>>>ÂÂ
>>> ÂÂ

AA���� //9999¿¿

//

??��� //<<<ÁÁ

// <<< ÁÁ

??��� //<<<ÁÁ

//

??��� //<<<ÁÁ

// <<<ÁÁ//

@@���
@@��� //>>>ÂÂ

//

@@��� //>>> ÂÂ

//

@@���
@@��� //>>> ÂÂ

//

@@��� //>>>ÂÂ
AA���

??���
??���

??���
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. . .

• • • •

• • • • • • • •

• • • • • • • •

• • • •

>>>ÂÂ
>>>ÂÂ

>>>ÂÂ
>>> ÂÂ

AA���� // //

??��� //<<<ÁÁ

// <<< ÁÁ

//

??��� //

??��� //<<<ÁÁ

// <<<ÁÁ//

@@��� //>>>ÂÂ

//

@@��� //>>> ÂÂ

//

@@��� //>>> ÂÂ

//

@@��� //>>>ÂÂ
AA���

??���
??���

??���

The corresponding vector space categories must be tame since we already
know that the Γi are tame. This is not new: indeed, these patterns appear
already in Ringel’s list of tame patterns.

If we take only finite pieces of these two patterns and consider the corre-
sponding vector space categories, say (K, | − |i), we find that (K, | − |1) is a
deformation of (K, | − |0). Here, K is the Krull–Schmidt category generated
by a finite number of indecomposable ∆-modules.
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