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Abstract. Let X and Y be compacta and let f : X — Y be a k-dimensional map. In
[5] Pasynkov stated that if Y is finite-dimensional then there exists a map g : X — 1* such
that dim(f x g) = 0. The problem that we deal with in this note is whether or not the
restriction on the dimension of Y in the Pasynkov theorem can be omitted. This problem
is still open.

Without assuming that Y is finite-dimensional Sternfeld [6] proved that there exists a
map g : X — I¥ such that dim(f x g) = 1. We improve this result of Sternfeld showing that
there exists a map g : X — 1*+1 such that dim(f X g) = 0. The last result is generalized
to maps f with weakly infinite-dimensional fibers.

Our proofs are based on so-called Bing maps. A compactum is said to be a Bing com-
pactum if its compact connected subsets are all hereditarily indecomposable, and a map is
said to be a Bing map if all its fibers are Bing compacta. Bing maps on finite-dimensional
compacta were constructed by Brown [2]. We construct Bing maps for arbitrary compacta.
Namely, we prove that for a compactum X the set of all Bing maps from X to [ is a dense
Gs-subset of C(X,T).

1. Introduction. All spaces are assumed to be separable metrizable.
I = [0,1]. By a map we mean a continuous function. In [5] Pasynkov stated:

THEOREM 1.1. Let f : X — Y be a k-dimensional map of compacta.
Then there exists a map g : X — IF such that f x g : X — Y x IF is
0-dimensional. m

This theorem is equivalent to

THEOREM 1.2 (Torunczyk [7]). Let f, X and Y be as in Theorem 1.1.
Then there exists a o-compact subset A of X such that dim A < k — 1 and
dim f{x\a <0. m

Now we will prove the equivalence of these theorems. Let f: X — Y be

a map of compacta. The following statements are equivalent:
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(i) There exists a o-compact (k — 1)-dimensional subset A of X such
that dim f|x\4 < 0;
(i) For almost all maps g in C(X,I¥), dim(f x g) < 0 (where almost all
= all but a set of first category);
(iii) There exists a map g : X — I¥ such that dim(f x g) < 0.

Note that in (i)—(iii) we do not assume that Y is finite-dimensional.

(1)=(ii) (cf. [7]). Let A = |J A;, where the A; are compact and A; C A;41.
By Hurewicz’s theorem [3] almost all maps in C(X,I¥) are k-to-1 on every
A;. Let g be such a map. Since A; C A;4+1, g is also k-to-1 on A. Let y € Y
and a € T¥. Clearly (f x g)"(y,a) C (f~1(y)\ A)Ug~(a) and as g~*(a) is
finite,

dim(f x g) ™" (y,a) = dim(f ' (y) \ 4) < 0.
(ii)=-(iii) is obvious and for a proof of (iii)=(i) see [6].
In this note we study the following problem which is still open.

PROBLEM 1.3. Do Theorems 1.1 and 1.2 hold without the finite-dimen-
stonality assumption on Y7

Sternfeld [6] made a significant progress in solving Problem 1.3.

THEOREM 1.4 ([6]). Let f : X — Y be a k-dimensional map of compacta.
Then for almost all maps g : X —I* dim(f xg) < 1. m

THEOREM 1.5 ([6]). Let f : X — Y be a k-dimensional map of compacta.
Then there ezists a o-compact (k — 1)-dimensional subset A of X such that
d1mf|X\A < 1. m

Note that from the proof of the implication (i)=-(ii) it follows that The-
orem 1.4 can be derived from Theorem 1.5.

The approach of [6] does not allow one to reduce the dimension of f to 0
in Theorems 1.4 and 1.5 by removing a o-compact finite-dimensional subset
A. This case is left open in [6]. In this note we prove:

THEOREM 1.6. Let f : X — Y be a k-dimensional map of compacta.
Then there exists a map g : X — I**1 such that dim(f x g) < 0. Equiv-
alently, there exists a o-compact k-dimensional subset A of X such that
dim f|x\4 < 0.

THEOREM 1.7. Let f : X — Y be a weakly infinite-dimensional map of
compacta. Then there exists a o-compact weakly infinite-dimensional subset
A of X such that f|x\a is 0-dimensional.

The last theorem generalizes the analogous result of [6]. There the di-
mension of f|x\ 4 is reduced to 1.

Our approach is based on some auxiliary maps which we will call Bing
maps. A compactum is said to be a Bing space if each of its subcontinua
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is hereditarily indecomposable. We will say that a map is a Bing map if
its fibers are Bing spaces. Bing maps on finite-dimensional compacta were
constructed by Brown [2]. We construct Bing maps on arbitrary compacta.
Namely, we prove:

THEOREM 1.8. Let X be a compactum. Almost all maps in C(X,I) are
Bing maps.

See [4] for another application of Bing maps.

In the next section we will also use:

THEOREM 1.9 (Bing [1]). Any two disjoint closed subsets of a compactum
can be separated by a Bing compactum. m

THEOREM 1.10 (Bing [1]). In an n-dimensional (strongly infinite-dimen-
sional) Bing compactum X there ezists a point x€X such that every non-
trivial continuum containing x is n-dimensional (strongly infinite-dimen-
sional). m

2. Proofs

Proof of Theorem 1.8. Let @ = {(z1,22,...) : x; € I} be the
Hilbert cube and let
D = {(Fo, F1,Vp,V1) : F;,V; C Q, F; are closed and disjoint,
V; are disjoint neighborhoods of F;}.
Following [1] we say that A C @ is D-crooked for D = (Fy, F1,Vp, V1) € D
if there is a neighborhood G of A in @ such that for every v : I — G with

¥(0) € Fy and ¥(1) € Fy there exist 0 < typ < t; < 1 such that ¥ (ty) € V4
and ¥(t1) € Vp. Clearly

(i) if A is D-crooked then there exists a neighborhood A C G which is
also D-crooked.

Actually, in [1] it is proved that:

(ii) a compactum A C Q is a Bing space if and only if A is D-crooked
for every D € D, and

(iii) there exists a sequence Dy, Do, ... € D such that for every com-
pactum A C Q, A is a Bing space if and only if A is D;-crooked for every D;.

We say that a map g : X C Q — I is D-crooked if its fibers are D-
crooked.
Let X C @ be compact and let D € D.

(iv) The set of all D-crooked maps from X to 1 is open in C(X,1I).

Let g : X — I be D-crooked. By (i) for every y € I there is a neighbor-
hood U, such that g~'(U,) is also D-crooked. Let ¢ > 0 be so small that
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every subset of I of diameter < € is contained in some U,. One can show
that every map e-close to g is D-crooked and (iv) follows.

(v) The set of all D-crooked maps from X to 1 is dense in C(X,1I).

Let ¢ : X — I. We will approximate g by a D-crooked map. By an
arbitrary small change of ¢ we may avoid the ends of I and hence it may be
assumed that g(X) does not contain 0 and 1.

Let € > 0. Take y1 =0 <y2 < ... <y, = 1such that y;11 —y; <e. Let
0 > 0 be so small that y; + 0 < y;41 — 0 for every j. By Theorem 1.9 take
Bing compacta S; which separate between g~ ([0, y,;—4d]) and g~ ([y;+9, 1]),
j=2,...,n—1 (note that we regard the empty set as a Bing space). Modify
gon every M; = g ' ([y; —0,y; +9]), j =2,...,n— 1, so that the image of
M; is contained in [y; — 6, y; + 6] and the fibers of y; — 4§, y; and y; + J are
g Y(y; —9), S; and g~ (y; + ) respectively.

So without loss of generality we may assume that A; = g~*(y;,) are Bing
spaces for all j = 1,...,n. Let A = [JA;. Then A is a Bing space. Let
D = (Fy, F1,Vp, V). Take disjoint closed neighborhoods F/ of F; such that
F! C V; and define D" = (F{}, F{,Vy,V4) and V/ = int F]. By (ii), A is
D’-crooked and by (i) we can take a D’-crooked neighborhood B of A in Q.

We claim that G = B U Vy UV is D-crooked. Let ¢ : I — G satisfy
¥(0) € Fy and (1) € Fy. Clearly there exist 0 < by < by < 1 such that
P(b;) € OV C F! and 9([bo, b1]) € B\ (V{UV3) C B. Since B is D’-crooked,
there exist by < tg < t; < by such that ¢(tp) € Vi and ¥(t;) € Vj and
therefore G is D-crooked.

Clearly T'= X \ G is D-crooked and since T' does not meet A, AUT is
also D-crooked. Set X; = g7 ([yj,y;+1]) and T; = X; NT. Then T} does
not meet A; and Aji1. So we can take maps g7 : X; — [y;,y;41] such
that ¢j~'(y;) = A; UT; and gj ' (yj41) = Ajj1. Define ¢’ : X — I by
g'(z) = gj(z) for x € X;. Then ¢’ is well-defined and e-close to g. Every
fiber of ¢’ is contained in either AU T or G. So ¢’ is D-crooked and (v)
follows.

To complete the proof of the theorem we apply the Baire theorem to
(ii))—(v). m

Proof of Theorem 1.6. By Theorem 1.8 take a Bing map ¢ : X — 1.
Define p = f x ¢ and

D,, = {D : D is a continuum contained in a fiber of p, diam D > 1/n}.
Set B, = UDeDn D and B = |JB,. Then B, is compact. Since f is k-
dimensional, dim D < k for every D € D,,.

Let us show that dim|p, < k. Indeed, for every a € I, A = ¢~1(a) is

a Bing compactum. Clearly B, NA = J{D : D € D, and D C A}. Hence
by Theorem 1.10, dim(B, N A) < k. So dim#|p, < k.
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By Theorem 1.2 and (ii) in the introduction, for every B, almost all
maps ¢ in C(X,T¥) satisfy dim(¢) x ¢)|p, = 0 and hence almost all maps
¢ satisfy dim(¢) x ¢)|p = 0. Let ¢ be such a map. It is easy to see that for
g=1vxp: X — I fxgis 0-dimensional and we are done. =

Proof of Theorem 1.7. We need the following

LEMMA 2.1. Let f : X — Y be a perfect (= closed with compact fibers)
map with dimY = 0 and let T be the union of trivial components of X.
Then dimT =0. m

Proof. Let x € T and let G be a neighborhood of z in X. Take disjoint
open sets V; and Vs such that x € V; C G and f~1(y) C V where y = f(z)
and V=V, UV,. Set U =Y \ f(X\V). Then V is open and y € U. Let H
be clopen in Y such that y € H C U. Then V' = f~1(H) is also clopen in
X and V' € V. Thus V' = V/ U V] is a disjoint decomposition of V' with
V! =V'NV; and therefore the V/ are clopen in X. Clearly x € V{ C G and
we are done. m

Returning to the proof of Theorem 1.7, let ¢, p and B,, be as in the
proof of Theorem 1.6. By the same reasoning we see that the B,, are weakly
infinite-dimensional. Clearly p is also weakly infinite-dimensional. By [6],
Lemma 1, there exists a o-compact zero-dimensional subset Z of Y x I
such that for every y € Y, U, = ({y} x I) \ Z is zero-dimensional. Define
Al =p~1(Z) and A% = J,;», Bn- Set A = A' U A? and let us show that A
is the desired set.

Obviously A is o-compact and weakly infinite-dimensional. Let y € Y.
Define V,, = p~!(U,) and let T,, = the union of trivial components of V,. By
Lemma 2.1, dim T}, = 0. Clearly T,, = V,, \ A%. Also clearly

T,=V,\A?=p ' ({U)\A> =p " ({y} x D)\ 2) \ 4°
=@ 'y xD\p H2)\ A% = (f'(y) \ AN\ A?
='W\ (ATUA?) = y) \ A

So f~1(y) \ A is zero-dimensional and we are done. =
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