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Embedding partially ordered sets into ωω

by

Ilijas F a r a h (Toronto, Ont.)

Abstract. We investigate some natural questions about the class of posets which
can be embedded into 〈ωω,≤∗〉. Our main tool is a simple ccc forcing notion HE which
generically embeds a given poset E into 〈ωω,≤∗〉 and does this in a “minimal” way (see
Theorems 9.1, 10.1, 6.1 and 9.2).

We describe a simple ccc forcing notion HE which embeds a given poset
E into 〈ωω,≤∗〉 (see Definition 0.1 and Definition 4.1). It has the property
that HE0 is a regular subordering of HE whenever E0 is a subordering of E.
If P is a forcing notion, then “P adds a κ-chain to ωω” means “In a forcing
extension by P there is a κ-chain in ωω”, so in particular this phrase applies
even if there is already a κ-chain in ωω. We prove the following results about
HE (the symbol ωω stands for the poset 〈ωω,≤∗〉, while C stands for a poset
for adding a single Cohen real):

Theorem 9.1 (Main Theorem). If κ > ω1 is a regular cardinal then HE
adds a κ-chain to ωω iff one of the following happens:

(†1) E has a κ- or a κ∗-chain, or
(†2) C adds a κ-chain to ωω.

In the case when E is an antichain of size κ the poset HE reduces to
a poset for adding κ many Cohen reals, so Theorem 9.1 implies Kunen’s
theorem ([16]) that after adding any number of Cohen reals in ωω there are
no well-ordered chains of size larger than the ground-model continuum. In
the following two theorems κ and λ are uncountable regular cardinals; for
undefined notions see Definition 6.1 (ġ is a name for the generic embedding
of HE into ωω).

Theorem 6.1. (a) A ġ-image of a limit 〈aξ, b〉ξ<κ in E is a limit in ωω.
(b) A ġ-image of a 〈κ, ω〉-gap 〈aξ, bi〉ξ<κ,i<ω in E is a gap in ωω.
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(c) A ġ-image of a gap 〈aξ, bη〉ξ<κ,η<λ in E is a gap in ωω.
(d) A ġ-image of an unbounded chain 〈aξ〉ξ<κ is an unbounded chain

in ωω.

A partial converse of the previous theorem is given in

Theorem 9.2. If κ > c and HE adds a 〈κ, λ〉-gap to ωω, then there is
such a gap in E or in E∗.

The following theorem is an attempt at describing which dense linearly
ordered sets embed into ωω after forcing withHE . Note that looking at those
linearly ordered sets which are suborderings of 〈2κ, <Lex〉 (the symbol <Lex

stands for the lexicographical ordering) for some κ is not a loss of generality.
Moreover, the theorem below has interesting applications (see Propositions
1.4 and 1.5).

Theorem 10.1. If HE forces that 〈2ω1 , <Lex〉V embeds into 〈ωω,≤∗〉,
then either a Cohen real forces this or 〈2ω1 , <Lex〉V embeds into E.

The “Cohen real” alternative in Theorems 9.1 and 10.1 can be avoided
if we start from a model of CH (which is the situation where these theorems
are most often used), but in general the following question is open:

Question. Does forcing with C add an ω2-chain to ωω iff there is an
ω2-chain in ωω?

We start by presenting applications of Theorems 9.1 and 10.1 in §§1–3.
In §1 we answer some questions of Dordal and Scheepers and prove some
other related statements. In §2 we use a poset obtained by Todorčević to
answer a question of Galvin, proving that the poset ω(ωω) is not necessarily
embeddable into ωω. In §3 we use a poset obtained by Galvin to describe
a forcing extension of the universe in which an ultrapower ωω/U is not
embeddable into ωω for every nonprincipal ultrafilter U on ω. In §4 we
define HE , describe the quotient HE/HE0 for E0 ⊆ E, and prove various
properties of these posets. In §5 we prepare for the proofs of the above
theorems. §6 is an investigation of gaps and limits in ωω in an extension by
HE . Chapters 7 and 8 include some prerequisites for the proofs of Theorems
9.1 and 10.1 which are independent of the rest of the paper and interesting
in their own right: in the former we give a strengthening of an old result
of Kurepa that every uncountable well-founded poset with finite levels has
an uncountable chain, while in the latter we investigate the Banach–Mazur
game of length ω1. In §9 we state and prove a ZFC, “local”, version of the
∆-system lemma for countable sets (Lemma 9.1) which is, in the absence of
CH, used in the proofs of Theorems 9.1 and 10.1. In §11 we show that ωω
in an extension by a single Cohen real is reflected in a certain ground-model
ordering Cω/N . In particular, by Theorem 11.1, the question above can be
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reformulated as (N is the ideal of nowhere dense subsets of a Cohen poset
C; see Definition 11.1):

Question. Does the existence of an ω2-chain in the poset Cω/N imply
the existence of an ω2-chain in ωω?

Our notation is standard, and undefined notions can be found in [18]. If
φ is a statement of a forcing language, then the phrase “φ is true with prob-
ability one” is an abbreviation for “every condition of the poset forces φ”.

0. Introduction. Let 〈E,<E〉 be a partially ordered set. For a ∈ E and
X ⊆ E let

X(≤E a) = {x ∈ X : x ≤E a};
X(≥E a),X(<E a) etc. have similar definitions. A subsetX of E is countably
bounded iff there is a countable A ⊆ E such that X =

⋃
a∈AX(≤E a).

A subset X of E is countably bounded from below iff there is a countable
A ⊆ E such that X =

⋃
a∈AX(≥E a). If every a ∈ A is <E-incomparable

with every b ∈ B then we say that A and B are <E-incomparable. If a, b are
elements of a poset E then the interval of E with endpoints a and b is the
set

(a, b)E = {c ∈ E : a <E c <E b or b <E c <E a}.
In particular, (a, b)E = (b, a)E always, and (a, b)E is empty if a and b are
incomparable. A mapping f : 〈E0, <0〉 → 〈E1, <1〉 is an embedding iff we
have a <0 b iff f(a) <1 f(b) for all a, b ∈ E0, as opposed to a strictly
increasing mapping which is one such that a <0 b implies f(a) <1 f(b) for
all a, b ∈ E0. Of course, in the case when E0 is linearly ordered these two
notions coincide.

Definition 0.1. For f, g ∈ ωω we define:

(1) f ≤∗ g iff {n : f(n) ≤ g(n)} is cofinite.
(2) f �∗ g iff f ≤∗ g and not f ≥∗ g.
(3) f <∗ g iff {n : f(n) < g(n)} is cofinite.
(4) f ≺ g iff limn→∞(g(n)− f(n)) =∞.
(5) f ≤n g iff f(m) ≤ g(m) for all m ≥ n.

Our forcing notion HE generically embeds E into 〈ωω,≤∗〉. Similar for-
cings were used in [13], [27], [20], [4], but the poset E was usually embedded
into the structure 〈ωω,≺〉. We choose the ordering ≤∗ because it is not clear
how we can get the desirable property from Theorem 4.1 with other partial
orderings on ωω. We first prove that the ordering we have chosen is good
enough for our purposes.

Proposition 0.1. There is an embedding from 〈ωω,≤∗〉 into 〈ωω,<∗〉.
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P r o o f. Without loss of generality we consider only the subordering con-
sisting of strictly increasing functions. Fix an infinite matrix of positive in-
tegers amn (m,n ∈ ω) such that

amn >

m∑

i=0

n−1∑

j=0

aij .

for all m,n. For each =∗-equivalence class pick a representative, and for
f ∈ ωω let Ψ(f) =∗ f be the chosen representative. Let f 7→ f̂ be defined
by

f̂(n) =
n∑

i=0

Ψ(f)(i)∑

j=0

aij

for n ∈ ω. Then it is easy to check that for strictly increasing f and g we
have f ≤∗ g iff f̂ <∗ ĝ.

Corollary. A linearly ordered set is embeddable into 〈ωω,<∗〉 iff it is
embeddable into 〈ωω,≤∗〉 iff it is embeddable into 〈ωω,≺〉.

P r o o f. If a linearly ordered set L is embeddable into E0 and there
is a strictly increasing mapping from E0 into E1, then L is embeddable
into E1; so it suffices to define some increasing mappings. Obviously the
identity is a strictly increasing mapping from 〈ωω,≺〉 into 〈ωω,<∗〉, as well
as from 〈ωω,<∗〉 into 〈ωω,≤∗〉. Finally, the mapping f 7→ f̂ defined by
f̂(n) = n+ f(n) is strictly increasing from 〈ωω,<∗〉 into 〈ωω,≺〉.

So our saying that e.g. “there is an ω2-chain in ωω” without specifying
an ordering is justified (as long as it is assumed that the ordering is one of
the “mod finite” orderings).

1. Applications of the main theorem

Proposition 1.1. There is a forcing extension of V in which there are
no ω2-chains in ωω, but there is a poset which adds such a chain without
adding new ω1-sequences of ordinals.

P r o o f. Start from a model of CH in which there is an ω2-Suslin tree T .
Go to a forcing extension by HT : by Theorem 9.1 there are no ω2-chains in
ωω, T remains a Suslin tree (because HE has precaliber ℵ2; see Lemma 4.1)
and therefore further forcing with T does not add ω1-sequences of ordinals
while it adds an ω2-branch to itself, and the image of this branch is an
ω2-chain in ωω.

The following answers a question of Dordal [7, Remark 9.5, p. 269] and
Scheepers [26, #81]. It is solved independently by Cummings, Scheepers and
Shelah in [5].
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Proposition 1.2. The existence of an ωω-chain in ωω does not imply
the existence of an ωω+1-chain in ωω.

P r o o f. We can either start from a model of CH and force with Hωω ,
or we can start from a model with an ωω+1-Suslin tree T and force with
HT . The latter model has the property that there are no ωω+1-chains but
a forcing notion (namely T ) adds one without adding new sequences of
ordinals of length ωω.

Scheepers noticed that ωω+1 embeds into 〈ωωω,≤∗〉, and therefore in
both models constructed in Proposition 1.2 the poset ω(ωω) (see §2) is not
embeddable into ωω. So this answers an unpublished question of Galvin
which was also asked in [26, #81]. In the above models the continuum is
rather large, and in §2 we will prove that this can happen even when the
continuum is equal to ℵ2 (obviously this is the best possible because CH
implies that all posets of size c embed into 〈ωω,≤∗〉).

Consider a cardinal invariant of the continuum equal to the supremum
of all cardinals κ such that there is a κ-chain in ωω. A natural question
arises—is this supremum always attained, i.e. can “supremum” be replaced
by “maximum” in the above definition? It is easy to show (e.g. by using
lemmas from [25]) that if κ is singular and there are λ-chains in ωω for all
λ < κ, then there is a κ-chain in ωω as well. Therefore in a model in which
the answer to our question is negative this supremum must be a weakly
inaccessible cardinal, so the use of an inaccessible cardinal to get a model
where sup 6= max in our next proposition is justified.

Proposition 1.3. If κ is an inaccessible cardinal then there is a cardinal-
preserving forcing extension of V in which there is a λ-chain in ωω for all
λ < κ but there is no κ-chain in ωω.

P r o o f. Let E be any poset with no κ-chains and with λ-chains for all
λ < κ and force with HE .

Proposition 1.4. There is a forcing extension of the universe in which
there is a linearly ordered set 〈L,<L〉 and a partition L = L0 ∪̇L1 such that
L is not embeddable into ωω, while both L0 and L1 are.

P r o o f. Start from a model of CH, let L be 〈2ω1 , <Lex〉 and let L0 ∪̇ L1

be its Bernstein decomposition (i.e. a decomposition such that L does not
embed into L0 or into L1). Let E be 〈L0, <Lex〉+ 〈L1, <Lex〉. Then by The-
orem 10.1 the forcing extension by HE is as required.

In some models of Set Theory (e.g. when CH holds; also see [20]) linearly
ordered sets which embed into ωω are exactly those of size at most c, so the
statement of Proposition 1.4 fails in such models.
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Scheepers observed that under Martin’s Axiom, (a) every ordinal of car-
dinality at most c embeds into ωω, and (b) every linearly ordered set of size
strictly less than c embeds into ωω. He asked whether one of these state-
ments implies the other. In the next proposition we show that (a) does not
imply (b).

Proposition 1.5. It is not provable in ZFC that if ω3 embeds into ωω
then all linearly ordered sets of size ℵ2 embed into ωω.

P r o o f. Start from a model of GCH and let E = 〈2ω1 , <Lex〉V , so E
is of size ℵ2. After adding one Cohen real CH remains true, so E is not
embeddable into ωω in this extension. Therefore after we force with Hω3 (or
any other Hκ), by Theorem 10.1 the poset E is not embeddable
into ωω.

R e m a r k. Our first proof of Proposition 1.5 was to add ℵ2 many Cohen
subsets of ω1, say 〈cξ : ξ < ω2〉, and then to force with Hω3 ; in this model
the set 〈cξ : ξ < ω2〉 with the lexicographical ordering is not isomorphic to
any 〈X,≺〉, where X is a set of reals and ≺ is a Borel ordering.

The following extends a result of Brendle–LaBerge, who in [3, Theorems
2.7 and 2.8] proved a special case when I as below is taken to be the family
of all subsets of κ of size smaller than κ. The forcing extensions given in [3]
are similar to ones obtained by HE .

Proposition 1.6. If I is a proper σ-ideal on the cardinal κ which in-
cludes all countable subsets of κ, then there is a forcing extension of V in
which there are no (c+)V chains in ωω and there is a set {xξ : ξ < κ} in ωω
such that {xξ : ξ ∈ A} is bounded in ωω iff A ∈ I.

P r o o f. Let E = κ ∪ I with the ordering ξ < A iff ξ ∈ κ, A ∈ I and
ξ ∈ A. A forcing extension by HE satisfies the requirements by Theorem 9.1
and Lemma 6.1.

2. A problem of Galvin. On the set ω(ωω) of all sequences ~f = 〈fn〉
of elements of ωω we define the ordering of eventual dominance, ≤∗, by:

~f ≤∗ ~g iff fn ≤∗ gn for all large enough n.

[Observe that the symbol “≤∗” in the above line denotes two different order-
ings on two different sets. The second ≤∗ can be replaced by either <∗ or ≺
(see Definition 1.1), but by Proposition 1.1 a linearly ordered set is embed-
dable into ω(ωω) with the ordering that we defined iff it is embeddable into
ω(ωω) with any of these orderings.] We will denote the poset 〈ω(ωω),≤∗〉 by
ω(ωω).
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Theorem 2.1. There is a forcing extension of the universe such that

(1) There is an ω2-chain in ω(ωω).
(2) There are no ω2-chains in ωω.
(3) ω(ωω) is not embeddable into ωω.
(4) Adding a dominating real adds an ω2-chain to ωω.

Our model will be a forcing extension by HE , where E is supplied by
the following result of Todorčević.

Theorem 2.2 ([28]). (¤ω1) There is a sequence <n (n < ω) of tree
orderings on ω2 such that for all n,

(T1) <n ⊆ <n+1 ⊆ ∈,
(T2) ∈ =

⋃
n<ω <

n, and
(T3) no Tn = 〈ω2, <

n〉 has an ω2-branch.

Let T denote the disjoint sum of Tn, i.e. T = 〈ω2 × ω,<T 〉 and <T is
defined by

〈ξ,m〉 <T 〈η, n〉 iff n = m and ξ <n η.

P r o o f o f T h e o r e m 2.1. The model is obtained by forcing with HT
over a model of CH and ¤ω1 .

(1) It is enough to provide a sequence Dξ = {xξi : i < ω} (ξ < ω2) of
subsets of T such that for all ξ < η and some n we have xξi <T xηi for
all i ≥ n. Let Dξ = {〈ξ, n〉 : n < ω}; obviously this family satisfies the
requirements.

To prove (2), just notice that T does not have ω2-chains and apply
Theorem 9.1.

(3) follows immediately from (1) and (2).

Claim. If d is a dominating real , then in V [d] there is a strictly increas-
ing mapping from (ω(ωω))V into ωω.

P r o o f. Map ~f = 〈fn : n < ω〉 to g defined by g(n) = fn(d(n)). To
see that this mapping is strictly increasing, note that if ~f and ~g are in the
ground model, then the function ∆fg : ω → ω defined by letting ∆fg(n)
be the least i such that fn(j) ≥ gn(j) for all j ≥ i, is dominated by d.
This shows that our embedding is increasing, and it is strictly increasing by
genericity.

(4) follows immediately from the above claim.

Corollary. It is not provable in ZFC that there is a strictly increasing
mapping from ω(ωω) into ωω.

As an application of the above, we mention an unpublished work of
Galvin ([11]). Until the end of this section we will adopt Galvin’s original
terminology and say that “E0 is embeddable into E1” iff there is a mapping
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f : E0 → E1 such that a <E0 b implies f(a) <E1 f(b), i.e. if there is a strictly
increasing map from E0 into E1 in our terminology. For an indecomposable
ordinal α let P(α) be the poset of all f : α → ω, ordered by (otp denotes
the order type of a set)

f ≺ g iff otp({ξ < α : f(ξ) ≥ g(ξ)}) < α.

Galvin observed that P(α) is embeddable into P(β) whenever there is a
function g : α → β such that otp(A) = β implies otp(g−1(A)) = α, for
all A ⊆ β. So in particular (note that P(ω) here denotes our 〈ωω,<∗〉 and
P(ω2) is 〈ω(ωω), <∗〉):

(1) P(ω) is embeddable into P(α) for all α.
(2) P(ω2) is embeddable into P(α) for all α ≥ ω2.

Galvin asked a general question when P(α) is embeddable into P(β), in
particular:

(Q1) Is it provable that P(ω2) is embeddable into P(ω)?
(Q2) Is it provable that P(ω3) is embeddable into P(ωω)?

[“Provable” means “provable in ZFC”; observe that both questions have a
positive answer if CH is assumed.] We can reformulate our above Corollary
to answer (Q1), namely

Corollary. It is not provable in ZFC that P(ω2) is embeddable into
P(ω).

R e m a r k. The tree orderings ≤n obtained in [28] have another inter-
esting property:

(T4) the set of ≤n-predecessors of α is a closed subset of α + 1 for all
α < ω2.

(Note that this implies that Tn is not Aronszajn.) This easily implies that
the natural σ-closed poset Pn which specializes Tn has ℵ2-cc. So Theo-
rem 2.2 has another curious consequence: under the assumptions of CH and
¤ω1 there is a sequence Pn (n < ω2) of σ-closed, ℵ2-cc posets such that every
finite product of Pn is ℵ2-cc, but

∏
n<ω Pn is not. The fact that

∏
n<ω Pn

is not ℵ2-cc follows from another fact proved in [28]: if the orderings ≤n
satisfy (T1)–(T4), then one of the trees Tn is nonspecial.

3. Ultrapowers of ωω. Now we construct a model of ZFC in which
there are no ω2-chains in 〈ωω,≺〉, but for every nonprincipal ultrafilter U
on ω there is an ω2-chain in 〈ωω/U , <U 〉. This scenario is originally used
by Solovay in the context of automatic continuity in Banach algebras (see
[27]). In fact, in the model of Theorem 3.1 all homomorphisms of Banach
algebras are continuous. This is so because the existence of a discontinu-
ous homomorphism implies that there is a strictly increasing mapping from
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〈ωω,≤U 〉 into 〈ωω,<∗〉 for some nonprincipal ultrafilter U on ω (see [6]). If
U is a nonprincipal ultrafilter on ω then a poset PU is defined as follows:
A typical condition in PU is 〈s,A〉, where s is a finite subset of ω, A ∈ U ,
and max s < minA. The ordering is defined by letting 〈s,A〉 ≤ 〈t, B〉 iff t
is an initial segment of s, A ⊆ B, and t \ s ⊆ B. This poset is σ-centered
and it generically adds a subset of ω (called a Prikry real) which is almost
included in all elements of U (see [22]).

Theorem 3.1. (CH ) Let κ be a regular cardinal larger than ℵ1. Then
there is a poset E such that in a forcing extension of the universe by HE ,
for every nonprincipal ultrafilter U on ω:

(1) There are κ-chains in 〈ωω/U , <U 〉.
(2) There are no ω2-chains in 〈ωω,≤∗〉.
(3) 〈ωω/U , <U 〉 is not embeddable into 〈ωω,≤∗〉.
(4) Adding a U-Prikry real adds a κ-chain to 〈ωω,≤∗〉.
The poset E is provided by the following special case of an old unpub-

lished result of Galvin, which is included here with his kind permission.

Theorem 3.2 ([10]). If κ is a regular cardinal , then there is a poset
〈G,<〉 of size κ with no infinite chains but if E is a linear ordering such
that there is a strictly increasing Φ : G → E , then E has a κ- or a κ∗-
chain.

P r o o f. Let G be κ× κ∗ with the strict Cartesian ordering <sc, i.e.

〈α, β〉 <sc 〈γ, δ〉 iff α < γ and β > δ.

Obviously, every chain in κ× κ∗ is finite. Suppose that 〈E , <〉 is a linearly
ordered set with no κ- or κ∗-chains and that Φ : κ× κ∗ → E is strictly
increasing.

C a s e 1: There is a β < κ such that for all α < κ the set {γ < κ :
Φ(γ, β) ≤ Φ(α, β)} is of size strictly less than κ. Then we can pick αξ
(ξ < κ) such that Φ(αξ, β) is an increasing κ-chain.

C a s e 2: For all β < κ there is αβ < κ such that {γ < κ : Φ(γ, β) ≤
Φ(αβ , β)} is of size κ. We claim that the chain Φ(αβ , β) (β < κ) is strictly
decreasing. Suppose the contrary, that Φ(αβ , β) ≥ Φ(αγ , γ) and β < γ. By
the choice of αγ we can pick ξ > αβ such that Φ(αβ , β) ≥ Φ(ξ, γ), but
〈αβ , β〉 <sc 〈ξ, γ〉—a contradiction.

So there is a κ- or a κ∗-chain in E .

P r o o f o f T h e o r e m 3.1. E is κ× κ∗ ordered by <sc.
(1) By Proposition 0.1, κ× κ∗ is embeddable into 〈ωω,<∗〉, and f 7→ f/U

is a strictly increasing mapping from 〈ωω,<∗〉 into 〈ωω/U , <U 〉. So there are
κ-chains in 〈ωω/U , <U 〉 by Theorem 3.2.
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(2) follows immediately from Theorem 3.2 and Theorem 4.1.
(3) is a consequence of (1) and (2).

Claim. If x is a U-Prikry generic real , then in V [x] there is a Borel
strictly increasing mapping from 〈ωω/U , <U 〉 into 〈ωω,≤∗〉.

P r o o f. [The ultrafilter U restricted to the set x coincides with the
Fréchet filter on x.] Working in the extension, it is enough to define a Borel
mapping Φ : ωω → ωω such that the Φ-image of [f ]U is included in [Φ(f)]=∗
for all f and f <U g implies that Φ(f) ≤∗ Φ(g). Let ex be the enumer-
ation function of x (i.e. ex(n) is the nth element of the set x), and let
Φ(f)(n) = f(ex(n)). This mapping obviously works.

(4) follows immediately from the above claim.

Stress in Theorem 3.1 is on the fact that (1), (3) and (4) are true for all
nonprincipal ultrafilters on ω; namely, it is easy to construct an ultrafilter
U such that there is a c-chain (or a copy of any given linearly ordered set of
size at most c) in 〈ωω/U , <U 〉. [Let <0 be the ordering on c which we want to
embed into ωω/U . Start from a family fξ (ξ < c) in ωω which is independent ,
i.e. Aξη = {n : fξ(n) < fη(n)} is an independent family of subsets of ω and
fξ(n) = fη(n) for at most finitely many n, for all ξ 6= η. Then every ultrafilter
U extending the filter base F = {Aξη : ξ <0 η} ∪ {ω \Aξη : η <0 ξ} works.]
Our next example shows that there can be nonprincipal ultrafilters U such
that in 〈ωω/U , <U 〉 there are no ω2-chains and the continuum is large.

Proposition 3.1. If we start from a model of CH and add any number
of side-by-side Sacks reals with countable supports, then for many ultrafilters
U there are no ω2-chains in 〈ωω/U , <U 〉.

P r o o f. For the undefined notions see [2] or [29, §6.C]. Let Sκ denote
the poset for adding κ many side-by-side Sacks reals. It is well known that
after forcing with Sκ every ground-model selective ultrafilter still generates
a selective ultrafilter (see e.g. [29, Theorem 6.8]). Since CH implies that
there exists a selective ultrafilter, it will suffice to prove the claim for the
case when U is a ground-model selective ultrafilter. Let B = {Bα : α < ω1}
be a base for U . Let 〈ṙξ : ξ < κ〉 be a name for a sequence of generic Sacks
reals. Suppose that ḟξ (ξ < ω2) is a name for a strictly increasing chain in
ωω/U . By [2] for every ξ < κ there is a countable Aξ ⊆ κ, a perfect set
Pξ ⊆ RAξ , and a continuous function gξ : Pξ → ωω such that Pξ forces
gξ(〈ṙα : α ∈ Aξ〉) = ḟξ. We can assume that κ = ℵ2. By CH, we can assume
that Aξ’s form a ∆-system, and that there is a partial function g : Rω → ωω
such that every gξ is isomorphic to g. Fix ξ < η < ω2, and let pξη ∈ Sκ and
A ∈ B be such that

pξη ≤ Pξ, Pη and pξη ° (∀n ∈ Ǎ) ġξ(n) < ġη(n).
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Let Φ : Sκ → Sκ be an automorphism of Sκ (compare with paragraph before
Definition 4.2) whose extension to Sκ-names swaps ġξ and ġη. Then Φ(pξη)
forces ġη <U ġξ, a contradiction.

4. HE and its basic properties

Definition 4.1. If 〈E,<E〉 is a partially ordered set, then we define the
poset HE as follows: A typical condition p is 〈Fp, np, fp〉, where

(H1) Fp is a finite subset of E, np < ω, fp : Fp × np → ω.

We say that p extends q iff (as the notation of (H3) suggests, we will some-
times consider fp as a mapping from Fp into npω):

(H2) Fp ⊇ Fq, np ≥ nq, fp ⊇ fq,
(H3) fp(a)(i) ≤ fp(b)(i) for all a <E b in Fq and all i ∈ [nq, np).

So if ġ is a name for the mapping of E into ωω defined by a 7→ ⋃
p∈Ġ fp(a)

(Ġ is a name for the generic filter), then every condition p in HE forces that
ġ(a) ≤np ġ(b) for all a <E b ∈ Fp. By genericity ġ(a) 6=∗ ġ(b) for all
distinct a and b in ωω. Note that the generic filter Ġ is not equal to the
set {p : fp(a) ⊂ ġ(a) for all a ∈ Fp}. Instead, we have (let nab be the least
positive integer n such that g(a) ≤n g(b) if g(a) ≤∗ g(b) and 0 otherwise)

Ġ = {p : fp(a) ⊂ ġ(a) and nab ≤ np for all a, b ∈ Fp}.
The following useful fact is an immediate consequence of Definition 4.1

(see also Lemma 4.4).

Proposition 4.1. If p, q ∈ HE are such that np = nq and fp, fq agree
on Fp∩Fq, then p and q are compatible, with 〈Fp∪Fq, np, fp∪fq〉 extending
both.

The assumption np = nq is not necessary if e.g. Fp and Fq are disjoint,
but in general it is (see Proposition 4.2). We will often write °E instead of
°HE when this does not lead to confusion. By the above (plus a standard
∆-system argument) we have:

Lemma 4.1. HE is ccc (moreover , it has precaliber κ for every un-
countable regular κ) and ġ is forced to be an embedding of 〈E,<E〉 into
〈ωω,≤∗〉.

If E0 is a subordering of E and p is in HE , then let p¹E0 be the condition
p′ such that Fp′ = Fp ∩E0, np′ = np, and fp′ = fp¹Fp′ ×np; so in particular
p¹∅ is the maximal condition in HE . Recall that P is a regular subordering
of Q (denoted P l Q) iff for every condition q of Q there is a qP ∈ P (a
projection of q to P) such that p is compatible with qP iff q is, for all p ∈ P.
[In the terminology of [18], P is completely embedded into Q.]
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Theorem 4.1. If E0 is any subordering of E, then HE0 l HE. In par-
ticular , the projection mapping is q 7→ q¹E0.

P r o o f. We fix q ∈ HE and p ∈ HE0 which extends q¹HE0 and prove
that q and p are compatible by finding r ≤ q, p such that Fr = Fq ∪Fp. It is
enough to consider the case when Fq \E0 is a singleton, because the general
case follows from this special one by obvious induction. So let Fq \E0 = {c}.
Let F0 = Fq ∩ E0; if F0 is empty then p and q are by default comparable,
so we can assume that F0 is nonempty, and therefore that np ≥ nq. So
by Proposition 4.1 we have to do some work only when np > nq, and this
work is in defining fr(c)¹[nq, np). If F0(< c) is nonempty, pick ai in this
last set such that fp(ai)(i) is maximal for all i ∈ [nq, np). If F0(< c) is
empty but F0(> c) is not, then pick ai in this last set so that fp(ai)(i) is
minimal. If no element of F0 is comparable with c then pick ai’s arbitrarily.
Let fr(c)(i) = fp(ai)(i) for i ∈ [nq, np). We then claim that

r = 〈Fp ∪ Fq, np, fp ∪ fr〉
extends both p and q. To see this, we only have to check if condition (H3)
is valid between q and r. Suppose first that F0(< c) 6= ∅. Pick i ∈ [nq, np)
and d ∈ Fq ∩ E0.

If d <E c, then fr(d)(i) = fp(d)(i) ≤ fp(ai)(i) = fr(c)(i), by the choice
of ai.

If d >E c, then d >E ai, so fp(d)(i) ≥ fp(ai)(i) = fr(c)(i) (because p
extends q¹E0). The case when F0(< c) = ∅ and F0(> c) 6= ∅ is handled
similarly, and if both sets are empty then the claim is by default true. So p
and q are compatible and q¹E0 is the projection of q to HE0 .

The following gives us an internal characterization of the comparability
relation in HE .

Proposition 4.2. (a) Conditions p and q in HE such that np ≥ nq are
incompatible iff one of the following happens:

(⊥1) fp(a)(i) 6= fq(a)(i) for some a ∈ Fp ∩ Fq and some i < np, nq,
(⊥2) for % ∈ {<,>}: fp(a)(i) % fp(b)(i) for some b %E a ∈ Fq and i ∈

[nq, np).

(b) Let F = Fp ∩ Fq. Then p and q are incompatible iff p¹F and q¹F
are.

P r o o f. (a) We will prove only the nonobvious direction, so assume that
p ⊥ q and that fp ∪ fq is a function (i.e. (⊥1) does not apply). If np = nq
then p and q are comparable by Proposition 4.1, so we can assume that
np > nq. But if (⊥2) does not apply, p and q¹Fp are comparable, so p and
q are comparable by Theorem 4.1.

(b) This follows immediately from Theorem 4.1 applied with E0 = F .
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By [18, VII.5.12] we can assume that every HE-name τ for a real (that
is, a subset of ω) is in a canonical form, called “nice name” in [18]. Namely,
we assume that for a sequence {Aτn} of antichains we have

τ = {{n} ×Aτn : n ∈ ω}.
[So p ° ň ∈ τ if p ∈ Aτn, and p ° ň 6∈ τ iff p is incompatible with all elements
of Aτn.] In particular, τ is countable. So we can define a support of a name
τ by

supp τ =
⋃
n∈ω

Aτn.

In particular, supp τ is a countable subset of E.

Corollary. (a) For every real ẋ in an extension by HE there is a
countable (i.e. Cohen) subordering of HE which adds ẋ.

(b) The real ġ(ǎ) is Cohen over V for every a ∈ E.

P r o o f. (a) By the above, Hsupp ẋ is a regular subordering of HE .
(b) H{a} is a regular subordering of HE , and the assertion follows by the

definition of H{a}.
Observe that if 〈E0, <0〉 and 〈E1, <1〉 are isomorphic, then every isomor-

phism naturally extends to an isomorphism between HE0 and HE1 and to
an isomorphism between the classes of HE0 - and HE1-names. An HE0-name
ḟ0 and an HE1-name ḟ1 are isomorphic iff there are supp ḟi ⊆ Ai ⊆ Ei
(i = 0, 1) such that the posets 〈A0, <0〉 and 〈A1, <1〉 are isomorphic and the
extension of the isomorphism sends ḟ0 to ḟ1.

We will describe the quotientHE/HE0 , after a definition which is slightly
more general than we need.

Definition 4.2. Let E = E0 ∪̇ E1 and g0 be an embedding of E0 into
〈ωω,≤∗〉. For a, b ∈ E0 let nab be the least positive integer n such that
g0(a) ≤n g0(b) if such an n exists; otherwise let nab = 0. For p ∈ HE let
F 0
p = Fp ∩ E0 and F 1

p = Fp ∩ E1. We define the poset HE(E0, g0) as the
subordering of HE consisting of all p such that:

(H4) fp¹F 0
p × np ⊂ g0, and

(H5) if a <E b are in F 0
p , then nab ≤ np.

The ordering is inherited from HE .

So HE(E0, g0) adds a generic ġ1 : (E \ E0) → ωω such that g0 ∪ ġ1 is
an embedding. For p in this poset p¹F 0

p is a side-condition and p¹F 1
p is a

working part. Note that without requiring (H5) the set of all conditions p
such that np ≥ n would not be dense in HE(E0, ġ0) for every integer n, and
that HE(E0, g0) need not be separative. [E.g. if E0 and E1 are incomparable
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then HE(E0, g0) is equivalent to HE1 , because if p, q in this poset are such
that p¹E1 = q¹E1 then for all r we have r ⊥ p iff r ⊥ q.]

Example 4.1. An analogous result to Theorem 4.1 fails in the case of
HE(E0, g0), namely there can be X ⊆ E such that HX(E0∩X, g0¹X) is not
a regular subordering of HE(E0, g0). E.g. if a <E b are such that a ∈ E0 \X
and b ∈ E1 ∩ X, then a condition q such that a, b ∈ Fq does not have a
projection to HX(E0∩X, g0¹X). This is because q forces that nab is at most
nq, while HX(E0 ∩ X, g0¹X) by genericity forces that ġ(b) and g0(a) are
≤∗-incomparable.

The fact that the ordering on HE(E0, g0) is inherited from HE does not
imply that the compatibility relation is inherited from HE as well; compare
the following proposition with Proposition 4.2(a).

Proposition 4.3. Assume that E = E0∪̇E1 and that p, q are condi-
tions in HE(E0, g0) such that np ≥ nq. Then p and q are incompatible in
HE(E0, g0) iff one of the following happens for % ∈ {<,>} (let F = Fp∩Fq,
F i = F ∩ Ei for i = 0, 1):

(⊥′1) p and q are incompatible in HE , or
(⊥′2) there are a ∈ F 1 and b ∈ F 0

q such that b %E a but fp(a)(i) % g0(b)(i))
for some i ∈ [nq, np), or

(⊥′3) for some bp ∈ F 0
p , bq ∈ F 0

q and a ∈ F 1 such that a ∈ (bp, bq)E we
have nbpbq > np.

So in particular if Fp ∩ Fq ⊆ E0 then p and q are incomparable in
HE(E0, g0) iff they are incomparable in HE.

P r o o f. (⇐) If (⊥′2) happens, then q forces that nab ≤ nq but p forces
that nab is at least i+1 for i as in (⊥′2). So if r ≤ p, q then r forces both—a
contradiction. If (⊥′3) happens, then p forces that nbpa ≤ np, q forces that
nbqa ≤ nq, so if p, q were compatible then this would imply that nbpbq is at
most np = max{np, nq}—a contradiction.

(⇒) Suppose that p and q satisfy the negations of (⊥′1), (⊥′2) and (⊥′3).
Without loss of generality Fq \ Fp is a singleton {c}. If c ∈ E1, then we can
prove that p and q are compatible exactly as in the proof of Theorem 4.1. So
suppose that c ∈ E0. Let nr = max{np, nbc : b ∈ F 0

p }. Let n be an integer
greater than g0(b)(i) and fp(b)(i) for all b ∈ Fp ∪ {c} and all i < nr. Define
fr(a)(i) for a ∈ F 1

p and i ∈ [np, nr) by (letting max ∅ = 0 and min ∅ = n)

(†) fr(a)(i) =
{

max{g0(b)(i) : b ∈ Fp(<E a)} if c 6<E a,
min{g0(b)(i) : b ∈ Fp(>E a)} if c <E a.

By the choice of nr, the condition r is in HE(E0, g0). We claim that r ≤ p, q.
To check that r ≤ p, it is enough to check that (H3) is true for a, b ∈ Fp.
This checking splits into cases; pick i ∈ [np, nr).
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C a s e 1. If b ∈ E0 then (H3) follows immediately from (H5), whether
a ∈ E0 or not.

C a s e 2. If a <E b ∈ F 1
p , then we consider subcases.

C a s e 2.1. If c <E a, then in defining fr(a)(i) and fr(b)(i) the first line
of (†) applies, but a <E b implies F 0

p (<E a) ⊆ F 0
p (<E b) and the maximum

of a bigger set is bigger, so fr(a)(i) ≤ fr(b)(i).
C a s e 2.2. If c 6<E b, then in defining fr(a)(i) and fr(b)(i) the second

line of (†) applies, and the argument is similar to that of Case 2.1, bearing
in mind that if Fp(>E b) = then fr(b)(i) = n and n is chosen to be large
enough.

C a s e 3. If a <E c <E b, then fr(a)(i) = fr(a′)(i) ≤ fr(b′)(i) = fr(b)(i)
for some a′ <E a and b′ >E b.

So we have proved that r extends p. Now we will assume that r does not
extend q, namely that (H3) fails for a ∈ Fp ∩ Fq, c and i ∈ [nq, nr).

C a s e 4. If a <E c and fr(a)(i) > g0(c)(i), then if i < np this is (⊥′2).
If i ≥ np then there is a′ <E a such that g0(a′)(i) > g0(c)(i), so this is (⊥′3).

C a s e 5. If a >E c, then the discussion is the same as in Case 4.

So if r does not extend q then one of conditions (⊥′1)–(⊥′3) applies, and
the proposition is thus proved.

An embedding Φ : P → Q is dense iff Φ′′P is a dense subset of Q.

Theorem 4.2. Let E = E0∪̇E1 and let ġ0 be an HE0-name for the
generic embedding of E0 into 〈ωω,≤∗〉. Then in a forcing extension by HE0

the posets HE/HE0 and HE(E0, ġ0) are equivalent.

P r o o f. By [18, VII.7.11] it is enough to find (working in a ground model)
a dense embedding of HE into HE0 ∗ ȞE(Ě0, ġ0). Let p 7→ 〈p¹E0, p̌〉. This
mapping is obviously an ordermorphism. The set of all 〈p, q〉 such that q is
“decided” (i.e. it is an element of HE(E0, ġ0) instead of an HE0-name) is
dense in the iteration. So we will start from such 〈p, q〉 and find p in HE
such that 〈p¹E0, p〉 extends 〈p, q〉 in the iteration. We claim that p and q
are compatible in HE : since p forces that q is in HE(E0, ġ0), fp̄ ∪ fq̄ must
be a function, and we must also have F 0

q̄ ⊆ Fp̄ and nq̄ ≤ np̄. [If one of
these fails then fr ∪ fq̄ is not a function for some r ≤ p in HE0 .] So (H5)
for q implies that (⊥2) of Proposition 4.2 fails, so p and q are compatible
in HE . Pick p ∈ HE which extends p and q. But p ∈ HE implies that
p¹E0 ° p̌ ∈ HE(Ě0, ġ0), and therefore p¹E0 ° p̌ ≤ q̌ (in HE(Ě0, ġ0)) so
〈p¹E0, p〉 extends 〈p, q〉.

If E0 and E1 are incomparable then in HE(E0, g0) side-conditions from
E0 are void so this poset is equivalent to HE1 . Therefore the following prop-
erties of HE are immediate consequences of the above statements:
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(H6) If E = E0∪̇E1 and E0 and E1 are incomparable, then HE is iso-
morphic to HE0 ×HE1 .

(H7) If E =
⋃
i∈I Ei and Ei’s are pairwise incomparable, then HE is

isomorphic to a finite support product of {HEi}.
The following two lemmas will be crucial in the proof of Theorem 9.1.

Lemma 4.2. If X ⊆ E0 is such that X(<E a) is cofinal in E0(<E a) and
X(>E a) is coinitial in E0(>E a) for all a ∈ E \ E0, then in an extension
by HE0 the poset HE(X, ġ0¹X) is a dense subordering of HE(E0, ġ0).

P r o o f. Let E′ = E1 ∪ X. Note that the set D of all p ∈ HE(E0, g0)
such that a % b implies that a % c % b for some c ∈ F 0

p ∩X for % ∈ {≤E ,≥E},
a ∈ F 0

p and b ∈ F 1
p is dense in HE(E0, g0).

Claim. Conditions p and q are compatible iff p and q¹E′ are compatible
for all q ∈ D and p ∈ HE′(X, ġ0¹X).

P r o o f. We prove only the nontrivial direction, (⇐). Suppose that p
and q are incompatible. Then by Proposition 4.3 one of (⊥′1)–(⊥′3) is true.
If (⊥′1) applies, then it applies for some a ∈ F 1

q = F 1
q¹E′ , so p and q¹E′

are incompatible. If (⊥′2) fails for a ∈ F 1
q ∩ F 1

p and b ∈ F 0
q , then there is

c ∈ F 0
q ∩X such that (⊥′2) fails for a and c; similarly if (⊥′3) fails, and so

the claim is verified.

So HE′(X, ġ0¹X) is a dense subordering of HE(E0, ġ0).

Lemma 4.3. If E = E0 ∪̇ E1 ∪̇ E2 and

(∗) a % b implies that a % c % b for some c ∈ E0

for all a ∈ E1, b ∈ E2 and % ∈ {<E , >E}, then HE is equivalent to

HE0 ∗ (HE1(E0, ġ0)×HE2(E0, ġ0)).

P r o o f. By Theorem 4.2, HE is equivalent to HE0 ∗ HE1(E0, ġ0) ∗
HE2(E0∪E1, ġ0∪ġ1). By (∗) and Lemma 4.2, the posetsHE2(E0∪E1, ġ0∪ġ1)
and HE2(E0, ġ0) are equivalent; but the definition of the latter does not de-
pend on the generic object forHE1(E0, ġ0), so we are in the product situation
and the lemma is proved.

In the following statement, cf (ci) stands for the cofinality (respectively,
coinitiality) of a partially ordered set E, namely the smallest size of a set
D ⊆ E which is cofinal (resp. coinitial) in E.

Proposition 4.4. If E =
⋃
ξ<κEξ is a disjoint union, then we can write

HE as a finite support ccc iteration 〈Pξ, Q̇ξ〉ξ<κ such that (ġ is an HQ-name
for the generic embedding of Q into 〈ωω,≤∗〉):

(1) °ξ“ġ¹Ěξ is a Q̇ξ-name”,
(2) °ξ |Q̇ξ| ≤ |Ěξ|+ |

⋃
η<ξ Ěη|, or more precisely
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(3) Pξ forces that Q̇ξ is of size |Eξ| +
∑
a∈Eξ, η<ξ(cf(Eη(<E a)) +

ci(Eη(>E a))).

P r o o f. Let E+
ξ =

⋃
α<ξ Eα, let Pα = HE+

α
, and let ġξ be the Pξ-name

for the generic embedding of E+
ξ into ωω and let Q̇ξ = HE+

ξ+1
(E+

ξ , ġξ). Then

the conclusion follows immediately from the previous discussion.

The following lemma will be used in §6 when proving that gaps in E get
mapped into gaps in ωω by ġ.

Lemma 4.4. If E = E0 ∪̇ E1, E1 is at most countable and for all c ∈ E1

at most one of the sets E0(<E c), E0(>E c) is nonempty , then HE0 forces
that the poset HE(E0, ġ0) is σ-centered.

[Note that some assumption in this lemma is necessary, because if HE0

generically adds an 〈ω1, ω1〉-gap to ωω and HE(E0, g0) fills it, then the ccc-
ness of the latter poset is not absolute, so it cannot be σ-centered.]

P r o o f. In an extension by HE0 , from Proposition 4.2 it follows that
p and q in HE(E0, ġ0) such that p¹E1 = q¹E1 are compatible. There are
at most countably many distinct p¹E1 for p ∈ HE(E0, ġ0), so this poset is
σ-centered.

R e m a r k. Lemma 4.4 remains true when the assumption that E1 is
countable is replaced by the weaker |E1| ≤ |E0|ℵ0 + c, i.e. that E1 is of
size at most continuum in the extension by HE0 . The proof of this claim is
completely analogous to the familiar proof of the fact that the iteration of
σ-centered posets of length at most c is σ-centered. However, we do not need
this extension and find the present formulation of Lemma 4.4 esthetically
more pleasing.

We finish this section with two lemmas which are not being used else-
where in this text, but which shed some light on the posetHE . For conditions
p, q in a poset P the meet of p and q is the condition p ∧ q which extends
both p and q and is minimal with this property, namely every r ∈ P which
extends both p and q extends p∧ q as well. Of course, meets always exist in
the regular open algebra of P, but not necessarily in P.

Lemma 4.5. If E is not an antichain, then there are compatible p and q
in HE such that the meet p ∧ q does not exist in HE.

P r o o f. Pick a <E b in E and let p = 〈{a}, 0, ∅〉 and q = 〈{b}, 0, ∅〉. Then
p and q are compatible and r ≤ p, q iff a, b ∈ Fr. Also r ° ġ(ǎ) ≤ň ġ(b̌)
for r ≤ p, q and n = nr. But obviously we can pick r′ ≤ p, q so that
fr′(a)(nr) > fr′(b)(nr), so r′ and r are incompatible.

Lemma 4.6. (a) If E = E0 ∪̇E1 and E1 is infinite, then HE(E0, ġ0) adds
a Cohen real over V HE0 .
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In an extension by HE ,

(b) MA<|E| (countable) is true, and
(c) if E is uncountable then the bounding number b is equal to ω1.

P r o o f. (a) Work in V HE0 : For a 1-1 sequence ~a = {an} in E1 define the
HE(E0, ġ0)-name for a real ṙ~a by

ṙ~a(ň) = ġ(ǎn)(0̌) for all n < ω.

It is easily checked that ṙ~a is Cohen over the intermediate extension.
(b) Since all countable posets are equivalent to C, it is enough to prove

that in an extension by HE for every κ < |E| and a family {Dξ} (ξ < κ)
of dense open subsets of R there is a real in

⋂
ξ<κDξ. Each Dξ is coded

by a single real rξ which is added by HAξ for some countable Aξ ⊆ E. Let
E0 =

⋃
ξ<κAξ. Then E1 \E0 is infinite and all Dξ’s are in the intermediate

extension by HE0 , so an application of (a) finishes the proof.
(c) Pick disjoint countable sequences ~aξ (ξ < ω1) in E and let ḟξ be

an HE-name for a function such that ḟξ ≥∗ r~aη for all η < ξ < ω1 and
ḟη ≤∗ ḟξ for all η < ξ. Let ḣ be an HE-name for some element of ωω; then
supp ḣ is disjoint from some ~aξ, and ḣ 6≤ r~aξ by (a), so the sequence {ḟξ} is
unbounded.

5. Five lemmas. This chapter contains a couple of similarly looking
lemmas (cf. also [3, Lemma 2.5]). Here P0 and P1 always stand for posets,
and P0 × P1-names with superscript i = 0, 1 are assumed to be Pi-names
(i.e. ḟ i is a Pi-name for i = 0, 1).

Lemma 5.1. If P = P0 × P1 forces that ḟ0 ≤∗ ḟ1 then there are a
P0 × P1-condition p and a ground-model function f such that p ° ḟ0 ≤∗
f̌ ≤∗ ḟ1.

P r o o f. Pick p = 〈p0, p1〉 in P which decides an integer n such that
ḟ0 ≤n ḟ1. For every integer m let km be the minimal integer such that
rm °P1 ḟ1(m) = km for some rm ≤ p1. Then obviously p ° f̌ ≤n ḟ1.
Suppose that q °P0×P1 ḟ0(m̌) = ľ, for some q ≤ p and l < km. Then
q = 〈q0, q1〉, and 〈q0, rm〉 ° ḟ0(m̌) = ľ ∧ ḟ1(m̌) = ǩm, so m ≤ n and
p ° ḟ0 ≤n f̌ .

R e m a r k. The conclusion of the above lemma cannot be strengthened to
° ḟ0 ≤∗ f̌ ≤∗ ḟ1, namely going below a condition p to decide this statement
is necessary, as the following example shows. Let P1 be the poset for adding
a Cohen real and let P0 be any nontrivial ccc poset. ḟ0 is a name for the
constant function, such that for every n ∈ ω there is pn ∈ P0 forcing that ḟ0

is identically equal to n. If ċ is a P0-name for a Cohen real (in ωω), then ḟ1

is defined by ḟ1(n) =
∑
i≤n ċ(i). Since ḟ1 is nondecreasing and unbounded,
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the assumptions of Lemma 5.1 are fulfilled, but no ground-model function
f is between ḟ0 and ḟ1 with probability one.

The following is a version of Lemma 5.1 specific for HE .

Lemma 5.2. Let ḟ0 and ḟ1 be HE-names such that :

(1) ° ḟ0 ≤∗ ḟ1,
(2) A,A0, A1 are pairwise disjoint countable subsets of E such that
(3) supp ḟi ⊆ A ∪Ai, for i = 0, 1.

Then there are a finite F ⊆ A1, an HA∪F -name ḣ for an element of ωω and
a condition q in HE so that q ° ḟ0 ≤∗ ḣ ≤∗ ḟ1.

P r o o f. Pick a condition q ∈ HE and n ∈ ω so that

q °E ḟ0 ≤n̄ ḟ1.

Let F = Fq ∩ A1, go to an extension by HA∪F below q¹A ∪ F , and let
ġ denote the generic embedding of A ∪ F into ωω. It is enough to prove
that in this intermediate extension there is a function h such that in the
rest of HE (namely, in HE(A ∪ F, ġ0)) the condition q forces that ḟ0 ≤n̄ h
≤n̄ ḟ2. For m ∈ ω let km be the minimal integer such that for some rm in
HA∪A1(A ∪ F, ġ0) we have

rm °A∪A1 ḟ1(m̌) = ǩm.

Let h(m) = km. Check that h works: obviously q ° ḣ ≤n̄ ḟ1, so it remains
to prove that q ° ḟ0 ≤n̄ ḣ. Notice that q, rm and p are compatible for
every p ∈ HE(A ∪ F, ġ0) such that Fp ∩ A1 ⊆ F . [p and rm are trivially
compatible because fp and frm are compatible on Fp ∩ Frm ⊆ Fq, but we
have to find p′ ≤ p, rm which extends q. Since Fp ∩ Frm ⊇ Fq and ġ¹Fq is
already decided, every p′ extending p and rm is compatible with q.] Pick
m > n and p ∈ HE(A∪F, ġ0) below q which decides for the value of ḟ0(m),
say

p ° ǩ = ḟ0(m̌) > ḣ(m̌)
for some k ∈ ω. Notice that we can assume that p is in HA∪A0(A ∪ F, ġ0),
therefore p, q and rm are compatible. So k ≤ km, and therefore q ° ḟ0 ≤∗ ḣ
so ḣ and q are as claimed.

Lemma 5.3. If κ > min(c, |P1|) is a regular uncountable cardinal , P0×P1

is ccc and forces that ḟ0
ξ ≤∗ ḟ0

η ≤∗ ḟ1
κ for all ξ < η < κ, then q ° ḟ0

ξ ≤∗
ȟ ≤∗ ḟ1

κ for all ξ < κ, for some q ∈ P0 × P1 and some ground-model h.

P r o o f. By Lemma 5.1, for each ξ < κ there are qξ = 〈q0
ξ , q

1
ξ 〉, hξ such

that qξ ° ḟ0
ξ ≤∗ ȟξ ≤∗ ḟ1

κ .

C a s e 1. If κ > c, then there is h such that the set X of all ξ such that
hξ = h is of size κ. By ccc-ness, let q be the condition which forces that there
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are κ many qξ’s in the generic filter Ġ. Then in an extension by P0 × P1

below q, for every η there is ξ > η such that qξ is in the generic filter Ġ, so
ḟη ≤∗ ḟξ ≤∗ ≤̌∗ḟκ, and q, h are as required.

C a s e 2. If κ > |P1|, then there is q1 ∈ P1 such that the set X of all ξ
for which q1 = q1

ξ is of size κ. Let q0 ∈ P0 be a condition which forces that q0
ξ

is in a P0-generic filter for κ many ξ ∈ X. Define a function h as in the proof
of Lemma 5.1: let h(m) be the minimal km such that rm °P1 ḟ1

κ(m̌) = ǩm.
Then q ° ȟ ≤∗ ḟ1

κ and qξ ° ḟ0
ξ ≤∗ ȟ. The proof that q and h are as required

is the same as in Case 1.

R e m a r k. The assumptions of Lemma 5.3 are in some sense necessary,
because it is possible that P0 adds a λ-chain {ḟ0

ξ } and P1 adds ḟ1
λ above it,

but P0×P1 forces that no ground-model function is between all ḟ0
ξ ’s and ḟ1

κ .
We can even pick P1 to be σ-centered and assume that there are no ω2-chains
in ωω in the ground model. To see this, let our ground model be an extension
of a model of CH obtained by adding κ many Cohen reals {cξ : ξ < κ} to
ωω. Let P1 force that čξ ≤∗ ḟ1

κ , and let P0 force that ḟξ ≤∗ ḟη, čη for
all ξ < η < κ. Then by genericity there is no h in V [〈cξ : ξ < κ〉] as in
the conclusion of Lemma 5.3. There is a similar example connected to the
result of Lemma 5.5 below, where P0 × P1 is taken to be HE(E0, ġ0) for
appropriate E and E0.

The following lemma will be used in the proof of Theorem 6.1.

Lemma 5.4. Let κ be an uncountable regular cardinal. If HE-names ḟξ
(ξ ≤ κ) and A ⊆ E are such that for all ξ < η ≤ κ:

(1) °HE ḟξ ≤∗ ḟη,
(2) supp ḟξ ⊆ Aξ, and
(3) Aξ ∩Aκ ⊆ A for all ξ < κ,

then there are an HE-name ḣκ and a condition q such that supp ḣκ ⊆∗ A
and q ° ḟξ ≤∗ ḣκ ≤∗ ḟκ for all ξ < κ.

P r o o f. For each ξ < κ find qξ and nξ so that qξ ° ḟξ ≤nξ ḟκ. Then we
can assume that n = nξ for all ξ and some n, that {Fqξ} is a ∆-system with
root F and that qξ¹F = q for some fixed q in HE . Go to an extension by
HA∪F below q, let ġ0 denote the generic embedding, and define a function
ḣκ as follows: for all m ∈ ω let km be the minimal integer such that rm °
ḟκ(m̌) = ǩm for some rm ∈ HE(A ∪ F, ġ0). This defines ḣκ, an HE-name
below a condition q. Obviously q ° ḣκ ≤∗ ḟκ, and as in Lemma 5.1 we have
qξ ° ḟξ ≤n̄ ḣκ for all ξ < κ. To prove that q ° ḟξ ≤∗ ḣκ for all ξ < κ, pick
a condition p ≤ q and ξ < κ. Find η > ξ such that qη and p are compatible
(this is possible because {Fqη} is a ∆-system with root F and p¹F extends



Embedding partially ordered sets into ωω 73

qη¹F = q for all η). Then p ∧ qη forces that ḟξ ≤∗ ḟη ≤n̄ ḣκ. So the set of
all conditions which force that ḟξ ≤∗ ḣκ is dense below q.

The following lemma is used in the proof of Theorem 9.2. For the defi-
nition of pregap see Definition 6.1.

Lemma 5.5. If P0 × P1 forces that 〈ḟ0
ξ , ḟ

1
η 〉ξ<κ,η<λ is a pregap, κ, λ are

regular and uncountable, κ > |P1|, P0 × P1 is ccc, and every real in an
extension by P0 is added by its regular subordering of size less than λ, then
q ° ḟ0

ξ ≤∗ ȟ ≤∗ ḟ1
η for all ξ < κ, η < λ, for some q ∈ P0 × P1 and some

ground-model h.

P r o o f. For all ξ < κ let P0
ξ be a small regular subordering of P0 which

adds ḟ0
ξ . Apply Lemma 5.3 (actually, its dual form) to get a condition qξ =

〈q0
ξ , q

1
ξ 〉 and a ground-model hξ such that qξ ° ḟ0

ξ ≤∗ ȟξ ≤∗ ḟ1
η for all η < λ.

There is a ground-model h such that the set X of all ξ < κ such that h = hξ
is of size κ. Let q be a P0 × P1 condition which forces that there are κ
many ξ ∈ X such that qξ is in a generic filter; then q forces that h splits the
pregap.

6. ωω in an extension by HE. Since ġ(a) is Cohen generic over the
universe for all a ∈ E, the set ġ′′E is never cofinal in ωω (compare with [13]
and [4]), but it does have some unboundedness properties.

Lemma 6.1. (a) Let ḣ be an HE-name for an element of ωω with support
A and let a ∈ E \A be such that A(≥E a) is empty. Then ° ḣ 6≥∗ ġ(a).

(b) X ⊆ E is not countably bounded iff it is forced that g′′X̌ is unbounded
in ωω.

P r o o f. (a) Suppose the contrary, i.e. that some condition p forces that
ḣ ≥n ġ(ǎ); without loss of generality we have np = n. Then extend p¹A to
q ∈ HA which decides that ḣ(ň + 1) = ǩ for some integer k. Now extend p
and q to r so that fr(a)(n+ 1) = k + 1; this is possible because a 6≤E b for
all b ∈ A. It is also the desired contradiction.

(b) (⇒) If ḣ is forced to dominate ġ′′X, then by (a), supp ḣ witnesses
that X is countably bounded. (⇐) If X is countably bounded by {an}, then
let ḣ be a name such that it is forced that ġ(a) ≤∗ ḣ for all n < ω. Then ḣ
bounds ġ′′X.

Definition 6.1. A κ-limit (sometimes also called 〈κ, 1〉-gap) is an in-
dexed family 〈aξ, b〉ξ<κ such that aξ <E aη <E b for all ξ < η < κ, and
for all c ∈ E such that aξ <E c for all ξ < κ we have b ≤E c. A gap is an
indexed family 〈aξ, bη〉ξ<κ,η<λ such that:

(1) aξ <E aη <E bβ <E bα for all ξ < η < κ and all α < β < λ, and
(2) no c ∈ E is such that aξ <E c <E bα for all ξ < κ and all α < λ.
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If a family 〈aξ, bη〉ξ<κ,η<λ satisfies only condition (1), then we call it a
pregap; if (2) fails for some c, then we say that c splits a pregap. A gap
〈aξ, bη〉ξ<κ,η<λ is tight iff there is no c ∈ E such that one of the following
happens:

(3) aξ <E c for all ξ but bη 6<E c for all η,
(4) bξ >E c for all η but aξ 6>E c for all ξ.

We always assume that κ and λ are uncountable regular cardinals; this
assumption is, in our context of investigating 〈κ, λ〉-gaps, not a loss of gen-
erality.

Lemma 6.2. Suppose that supph = A, that a, b ∈ E are such that the
posets 〈A ∪ {a}, <E〉 and 〈A ∪ {b}, <E〉 are isomorphic, and that an iso-
morphism fixes all elements of A and sends a to b. Then °E ḣ ≤∗ ġ(ǎ) iff
°E ḣ ≤∗ ġ(b̌).

P r o o f. Suppose that some p forces that ḣ ≤∗ ġ(ǎ); we can assume that
p °E ḣ ≤n ġ(ǎ). If p = p¹A ∪ {a} then p °A∪{ } ḣ ≤n ġ(ǎ) by Theorem
4.1. Let p′ be a condition isomorphic to p but with a replaced by b. Then
p′ °A∪{b} ḣ ≤n ġ(b̌).

Theorem 6.1. (a) A ġ-image of a limit 〈aξ, b〉ξ<κ in E is a limit in ωω.
(b) A ġ-image of a 〈κ, ω〉-gap 〈aξ, bi〉ξ<κ,i<ω in E is a gap in ωω.
(c) A ġ-image of a gap 〈aξ, bη〉ξ<κ,η<λ in E is a gap in ωω.
(d) A ġ-image of an unbounded chain 〈aξ〉ξ<κ is an unbounded chain

in ωω.

P r o o f. (a) All we have to prove is that if ° ḣ �∗ ġ(b̌) then there is
ξ < κ and a condition p such that p ° ḣ �∗ ġ(ǎξ) for every HE-name ḣ. So
assume the contrary, let A = supp ḣ. Since for each element c of A either
there is ξ < κ such that c 6>E aξ or c >E b, we may assume that

(∗) if a0 <E c then b <E c for all c ∈ A.
Also assume that b ∈ A and that E = A ∪ {aξ : ξ < κ} (by Theorem

4.1 we can do this). Go to an extension by HA. Let C = {n ∈ ω : ḣ(n) <
ġA(b0)(n)}. Then C is infinite. We claim that in a further extension by
HE(A, ġA), there are infinitely many n ∈ C such that ġ(a0)(n) = ġA(b0)(n).
Suppose the contrary, that some q forces that ġ(a0)(n) < ġA(b0)(n) for all
n ∈ C \m for some m. We can assume that b ∈ Fq. For all c in Fp ∩ A the
condition (∗) is true, so we can pick n ≥ m,nq in C and find p ≤ q such
that fp(a0)(n) = ġ(b)(n); this is a contradiction and it finishes the proof
of (a).

(b) Assume ḣ is such that ° ġ(ǎξ) ≤∗ ḣ for all ξ < κ. Apply Lemma 5.4
(with A = ∅) and get q, ḣ′ such that q ° ġ(ǎξ) ≤∗ ḣ′ ≤∗ ḣ for all ξ < κ and
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B = supp ḣ′ is finite. We can assume that a0 <E c implies aξ <E c for all
ξ < κ and all c ∈ B. Go to an extension by HB and pick m < ω such that
bm̄ 6∈ Fq ∪B and

(∗∗) c <E bm̄ implies c 6>E a0 for all c ∈ B.
Let B0 = {c ∈ B : c >E a0} and let ḣ0 be defined by ḣ0(m) =

min{ġ(c)(m) : c ∈ B0}. Suppose that ḣ′ 6≥∗ ḣ0, let C = {n : ḣ′(n) < ḣ0(n)}.
Claim. Condition q forces that if ḣ splits the pregap then ḣ0 splits the

pregap.

P r o o f. We will prove that q ° ġ(ǎξ) ≤∗ ḣ0 ≤∗ ḣ′. Suppose that this
fails. The left hand “≤∗” is obvious, so p ° ḣ0 6≤∗ ḣ′ for some p ≤ q in HB .
Let C = {n ∈ ω : ḣ′(ň) < ḣ0(ň)}. We claim that there are infinitely many
m ∈ C such that ġ(ǎ0)(m̌) = ḣ0(m̌). Suppose the contrary, so there is a
condition r ≤ p in HE(B, ġB) and n such that

r ° (∀m > ň)(m ∈ Ċ → ġ(ǎ0)(m̌) < ḣ0(m̌)).

By Theorem 4.1 we can assume that Fr = supp ḣ0∪supp ḣ′∪{a0} = B∪{a0}.
We can assume that np > n and np ∈ Ċ. Define a condition r1 ∈ HE(B, ġB)
by r1 = 〈Fp, np + 1, fr ∪ f〉, where f : Fp × {np} is defined by

f(a)(np) =
{

minc∈B(>Ea) ġB(c)(np) if B(>E a) 6= ∅,
minc∈B0 ġ0(c)(np) if B(>E a) = ∅.

Then r1 ≤ r (because a <E b implies B(>E a) ⊇ B(>E b)), and r1 °
ġ0(ǎ0) = ḣ0(ň)—a contradiction. So the set C1 = {m ∈ C : ġ(ǎ0)(m) =
ḣ0(m)} is forced to be infinite, but ġ(a0)(m) > ḣ′(m) for all m ∈ C1, and
therefore ḣ′ does not fill the gap, contrary to our assumptions.

But by Lemma 6.1(a) we have ḣ0 �∗ ġ(bm̄), so ḣ0 does not fill the pregap,
and this proves our claim.

(c) We will first prove the following special case of the theorem:

Lemma 6.3. If the gap 〈aξ, bη〉ξ<κ,η<λ in E is tight , then its ġ-image is
a (tight) gap in ωω.

P r o o f. Suppose the contrary, that some HE-name ḣ is forced to fill
the pregap. Let A = supp ḣ; since no c ∈ A satisfies (3) or (4) above, by
going to end-segments of κ and λ we can assume that each c ∈ A is either (i)
incomparable to all aξ, bη, or (ii) below a0, or (iii) above b0. Then Lemma 6.2
can be applied to ḣ, aξ and bη for all ξ, η, and therefore ° ḣ ≥∗ ġ(ǎξ) implies
° ḣ ≥∗ ġ(b̌η) for all ξ, η so ḣ cannot fill this gap or even make it nontight.

Back to the general case. Let E0 be the set of all c ∈ E such that:

(5) if c >E aξ for all ξ, then c >E bη for some η, and
(6) if c <E bη for all η, then c <E aξ for some ξ.
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Then our gap is tight in E0, because we are removing all c’s which can make
it nontight. Let E1 = E \ E0.

Claim. For all c ∈ E1 at most one of the sets E0(<E c) and E0(>E c)
is nonempty.

P r o o f. If c ∈ E1 fails to satisfy (5) (resp. (6)), so do all elements of
E(>E c) (resp. of E(<E c)).

So, by Lemma 4.5, the poset HE(E0, ġ0) is σ-centered.

Lemma 6.4. If 〈aξ, bη〉ξ<κ,η<λ is a gap, then it remains a gap in every
forcing extension by a σ-centered poset.

P r o o f. By [17, Theorem 4], to every pregap we can associate a poset
P which is σ-centered iff the pregap is split; so our lemma reduces to “If P
is not σ-centered, then it remains so after forcing with a σ-centered poset”,
which is obvious.

Thus further forcing with HE(E0, ġ0) will not fill the gap, so the proof
is finished.

(d) This follows immediately from Lemma 6.1(b).

So we can embed a partially ordered set E into ωω while preserving
much of its “nonsaturatedness structure”. In Theorem 9.2 we will prove a
partial converse of the above results. The statement “HE forces that there
is a 〈κ, λ〉-gap (κ-limit) in ωω iff there is a 〈κ, λ〉-gap (κ-limit) in E” is false,
because of the following classical result of Hausdorff and Rothberger which
applies to any of the orderings ≤∗, <∗, or ≺:

Theorem 6.2 ([12], [23]). For every κ there is an unbounded κ-chain in
ωω iff there is a 〈κ, ω〉-gap in ωω.

So by Lemma 4.6, if E is uncountable then there is an 〈ω1, ω〉-gap in
〈ωω,≤∗〉 in an extension by HE , and similarly if E has a κ-chain then in an
extension by HE there is always a κ-limit or a 〈κ, λ〉-gap for some λ. For
infinite cardinals κ and λ (not necessarily uncountable) the statement “there
is a 〈κ, λ∗〉-gap in ωω” is not ambiguous, i.e. its truth does not depend on
the choice of an ordering; the same is true for unbounded κ-chains.

Proposition 6.1. (a) ([12], [23]) There is a κ-limit in 〈ωω,≺〉 iff there
is a 〈κ, ω〉-gap in 〈ωω,≺〉.

(b) There are no κ-limits in 〈ωω,<∗〉.
(c) There is a κ-limit in 〈ωω,≤∗〉 iff there is an unbounded chain of

length κ in 〈[ω]ω,⊆∗〉.
(d) The existence of a κ-limit in 〈ωω,≤∗〉 does not imply the existence

of a 〈κ, ω〉-gap in ωω, and vice versa.

P r o o f. (a), (b) See e.g. [24].
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(c) (⇒) Let 〈aξ, b〉ξ<κ be a κ-limit, and define subsets of ω by

cξ = {n : aξ(n) = b(n)}.
Obviously {cξ} is a ⊆∗-increasing sequence in [ω]ω, and we claim that its
limit is ω: if d is a coinfinite subset of ω such that cξ ⊆∗ d for all ξ, then
b′ ∈ ωω defined by

b′(n) =
{
b(n) if n ∈ d,
b(n)− 1 if n 6∈ d,

witnesses that 〈aξ, b〉 is not a κ-limit. (⇐) Consider the characteristic func-
tions of sets.

(d) By (c), our claim is equivalent to “The existence of an unbounded
κ-chain in [ω]ω does not imply the existence of an unbounded κ-chain in ωω,
and vice versa”, and this is a well-known fact (see [7]).

The last lemma of this section (in connection with Proposition 6.1(d))
shows that HE sometimes creates “unnecessary” limits in 〈ωω,≤∗〉.

Lemma 6.5. If there is an unbounded κ-chain in E, then in a forcing
extension by HE there is a κ-limit in 〈ωω,≤∗〉.

P r o o f. By Proposition 6.1, this reduces to proving that in an extension
there is an unbounded κ-chain in [ω]ω. Let 〈aξ〉ξ<κ be an unbounded κ-chain
in E and define names ċξ for subsets of ω by

ċξ = {n : ġ(aξ)(n) 6= 0}.
The proof that 〈ċξ〉ξ<κ is forced to be an unbounded κ-chain in [ω]ω is
similar to the proof of Lemma 6.1.

7. Posets with minimal patterns. This chapter is a preparation for
the proofs of Theorems 9.1 and 10.1. For definition of (a, b)E see §0.

Theorem 7.1. Let 〈E,<E〉 be a poset , 〈I,<I〉 a linearly ordered set ,
and {Dξ} (ξ ∈ I) a family of disjoint finite subsets of E such that for all
ξ < ζ < η we have

(I) (a, b)E ∩Dζ 6= ∅ whenever a ∈ Dξ and b ∈ Dη are <E-comparable.

Then either (i) there is a chain of type I or I∗ in E, or (ii) there are ξ 6= η
in I such that a and b are <E-incomparable for all a ∈ Dξ and b ∈ Dη.

Corollary (Kurepa, [19]). Every uncountable well-founded poset E hav-
ing finite levels must have an uncountable chain.

P r o o f. Let {Dξ} (ξ < ω1) be a decomposition of E into levels. Then
{Dξ} satisfy (I) and every a ∈ Dξ is comparable with some b ∈ Dη, for all
η < ξ. The conditions of Theorem 7.1 are satisfied and there is an ω1-chain
in E.
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P r o o f o f T h e o r e m 7.1. Suppose that (ii) fails. We claim that for
every k-tuple α0 <I α1 <I . . . <I αk−1 in I there are distinct yj ∈ Dαj

(j < k) such that either y0 C y1 C . . . C yk−1 (a chain is increasing) or
y0 B y1 B . . . B yk−1 (a chain is decreasing). To construct it, pick y0 ∈ Dα0

and yk−1 ∈ Dαk−1 such that y0 <E yk−1 or y0 >E yk−1 (possible because
(ii) fails). Then we can proceed to pick the rest of the chain by using (I).

So for every finite F ⊆ I we fix a chain CF = {yFξ : ξ ∈ F} such that
yFξ ∈ Dξ for all ξ ∈ F and the chain is either strictly increasing or strictly
decreasing. For such an F let AF be the family of all finite subsets of I
which include F , and let U be a uniform ultrafilter on [I]<ω extending the
filter base {AF }. Then for all ξ ∈ I there is yξ ∈ Dξ such that the set

{F : ξ ∈ F & yFξ = yξ}
is in U ; we claim that {yξ} is the desired chain. Assume without loss of
generality that for U many F the chain {yFξ } is increasing. We have to
prove that all yα are distinct and that yα C yβ whenever α < β. But the
set of all F ∈ [I]<ω such that α, β ∈ F , yFα = yα, yFβ = yβ and the chain
{yFξ } is increasing is in U and therefore nonempty, so yα C yβ and they are
distinct.

R e m a r k. Some assumption like (I) is necessary in Theorem 7.1. To
see this let ≺ be a linear ordering on ω2 with no ω2- or ω∗2-chains (e.g. a
subordering of 〈2ω1 , <Lex〉 of appropriate size), and let E0 = 〈ω2, <0〉 and
E1 = 〈ω2, <1〉 be defined by

α <0 β iff α < β and α ≺ β,
α <1 β iff α < β and α � β.

Let E be the disjoint sum of E0 and E1 (say, E0 × {0} ∪ E1 × {1}) and
let Dξ = {〈ξ, 0〉, 〈ξ, 1〉} for ξ < ω2. Then Dξ and Dη have “vertical and
upwards” connections for all ξ and η but there are no ω2-chains in E.

In order to make Theorem 7.1 useful in proving our main result we need
some definitions. Fix a positive integer n and a poset 〈E,<〉. If D = {xDi :
i < n} and F = {xFi : i < n} are two n-tuples of elements in E then let
the <-pattern τDF be the isomorphism type of the poset 〈D∪F,≤〉, i.e. the
partial ordering 4τDF on the set 2 × n such that 〈i, k〉 4 〈j, l〉 iff xDk ≤ xFl
for k, l < n and i, j < 2. The sets D and F are connected iff there are
comparable a ∈ D and b ∈ F .

We sometimes identify patterns with their graphs and say that a pattern
σ0 is included in a pattern σ1, denoting this fact by σ0 ⊆ σ1. If we consider
more than one ordering on the underlying set, then we denote the pattern
τDF corresponding to the ordering C by τC

DF . A composition of two patterns
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σ0 and σ1 is the pattern σ0 ◦ σ1 determined by defining ≺σ0◦σ1 as follows:

〈0, k〉 ≺σ0◦σ1 〈1, l〉 iff 〈0, k〉 ≺σ0 〈1,m〉 and

〈0,m〉 ≺σ1 〈1, l〉 for some m < n, and

〈i, k〉 ≺σ0◦σ1 〈i, l〉 iff 〈i, k〉 ≺σ0 〈i, l〉 for some i = 0, 1.

In other words, if σ0 = τC
01 and σ1 = τC

12 then σ0◦σ1 is the pattern τ<02, where
“<” is the transitive closure of “C” restricted to D0 ∪D1 and D1 ∪D2.

We avoid nested indexes so if we have a fixed family Dξ = {xξi : i < n}
(ξ < δ) of finite subsets of a poset 〈E,<〉 then the pattern τDξDη is denoted
by τξη instead. Note that in general for every such family and all α < β < γ:

(P1) ταγ ⊇ ταβ ◦ τβγ .
(P2) An ordering C on

⋃
ξ<δDξ is uniquely determined by its patterns.

We say that the family {Dξ} (ξ ∈ I) has minimal C-patterns iff τC
αγ =

τC
αβ ◦ τC

βγ for all α <I β <I γ in I. So we can reformulate Theorem 7.1:

Theorem 7.1∗. If {Dξ} is a disjoint family of sets of size n with minimal
patterns and all Dξ, Dη are connected , then there is an I- or an I∗-chain
in
⋃
ξ∈I Dξ.

Let us mention a corollary to the proof of Theorem 7.1:

Proposition 7.1. If {Dξ} is a disjoint family of sets of size n with
minimal patterns, then for all ξ <I η, either Dξ and Dη are not connected
or there is a [ξ, η]I- or a [ξ, η]∗-chain C in

⋃
ξ∈I Dξ such that C ∩ Dζ is

nonempty for all ζ ∈ [ξ, η]I .

The next lemma gives sufficient conditions for the existence of an order-
ing with a given set of patterns.

Lemma 7.1. If σαβ (α < β < κ) is a family of patterns such that σαβ ◦
σβγ = σαγ for all α < β < γ then there is a unique ordering C on

⋃
ξ<κDξ

such that τC
αβ = σαβ for all α < β < κ.

P r o o f. We define the relation C in the only possible way, all we have
to do is to check that it is transitive; so we pick a ∈ Dα, b ∈ Dβ , and
c ∈ Dγ such that a C b C c and prove that a C c. Essentially the only
two interesting cases are: (i) If α < β < γ, then a C c by minimality of
patterns. (ii) If α < γ < β, then by minimality we can pick d ∈ Dγ such
that a C d C b; but then a C c because σαγ is a pattern.

A pattern σ occurs in {Dξ} iff it is equal to some ταβ of this sequence.

Lemma 7.2. Let κ be an infinite cardinal. Then every κ-sequence {Dξ}
has a subsequence {Dαξ} of the same length such that for every pattern
σ that occurs in {Dαξ} there is an infinite increasing ω-sequence {αn} of
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ordinals less than κ such that ταiαj = σ for all i < j, and α0 can be picked
to be arbitrarily large.

P r o o f. If a pattern σ does not satisfy the requirements, pick α0 < κ
and k < ω which witness this and define a partition

[κ]2 = K0 ∪̇K1

by putting {ξ, η} in K0 iff τξη 6= σ. Without loss of generality assume that
α = 0. Then there are no infinite K1-homogeneous sets, so by the partition
relation κ→ (κ, ω)2 (see [9, §11]) there is a subfamily of {Dξ} of the size κ
in which σ does not occur. We need to repeat this only finitely many times
to eliminate all patterns which do not occur often enough.

The following lemma plays a crucial role in proving Theorems 9.1, 9.2
and 10.1.

Lemma 7.3. If 〈E,<〉 is a partially ordered set , 〈I,<I〉 is a linearly
ordered set and Dξ (ξ ∈ I) is a family of disjoint finite subsets of E, then
there is an ordering C on E with the following properties:

(B1) C is coarser than <, i.e. a C b implies a < b.
(B2) Every τC

αβ is a composition of finitely many τ<ξη, i.e.
(B′2) For all α < β < κ there is an integer n and ordinals α = α0 <

α1 < . . . < αn = β such that τC
αβ = τ<αα1

◦ τ<α1α2
◦ . . . ◦ τ<αn−1β

.

(B3) Dξ (ξ < κ) has minimal C-patterns.
(B4) The orderings C and < coincide on every Dξ.

P r o o f. For a subset F = {αi : i = 0, . . . , n} of I such that α0 <I α1 <I
. . . <I αn let

τ(F ) = τ<Eα0α1
◦ τ<Eα1α2

◦ . . . ◦ τ<Eαn−1αn .

Then by (P1) and the induction one can prove that

(∗) F ⊆ G implies τ(F ) ⊇ (G).

For α <I β in I let Fαβ be the set α = α0 <I α1 <I . . . <I αn = β in
I such that the pattern τ(F ) is minimal (with respect to inclusion) among
such patterns and let τC

αβ = τ(Fαβ).

Claim. Patterns in the family τC
αβ (α <I β ∈ I) are minimal.

P r o o f. Fix α <I β <I γ. Then τ(Fαβ) ⊆ τ(Fαγ ∩ (α, β)I), τ(Fβγ) ⊆
τ(Fαγ ∩ (β, γ)I), so τ(Fαβ) ◦ τ(Fβγ) ⊆ τ(Fαγ ∪ {β}) ⊆ τ(Fαγ), and by the
choice of Fαγ we have equality.

Therefore the assertion of Lemma 7.3 follows from Lemma 7.1.

8. Banach–Mazur game of length ω1. Results from this chapter will
be used in the proof of Theorem 10.1. We consider 2ω1 as a topological space
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with the natural Gδ-topology, where the basic open sets are [s] = {x ∈ 2ω1 :
s ⊂ x} for s ∈ 2<ω1 . We will often interchange subsets of ω1 with their
characteristic functions. The poset for adding a Cohen subset of ω1, Cω1 , is
2<ω1 ordered by ⊇.

Definition 8.1 (Banach–Mazur game of length ω1). Let X be a subset
of 2ω1 . The game BM(X) for two players, I and II, in ω1 moves is defined as
follows: I and II alternately play elements sI

0 ⊂ sII
0 ⊂ sI

1 ⊂ sII
1 ⊂ . . . ⊂ sI

ξ ⊂
sII
ξ ⊂ . . . of 2<ω1 , so that in his ξth move player ∗ plays s∗ξ which extends

the chain of all previously played elements of 2<ω1 (∗ = I, II). I wins a game
iff
⋂
ξ<ω1

[sI
ξ] is included in X or if II is the first player to disobey the rules;

otherwise II wins.

A partial play is a sequence sI
0 ⊂ sII

0 ⊂ . . . ⊂ sI
η ⊂ sII

η ⊂ . . . ⊂ sI
ξ,

ξ < ω1. (So we consider only partial plays in which II is about to move.) A
strategy for the second player is a mapping σ from all partial plays into 2<ω1

such that σ(p) extends the chain p. Player II obeys the strategy σ in a play
〈sI
ξ, s

II
ξ 〉ξ<ω1 iff sII

ξ = σ(pξ) for all ξ, where pξ is a partial play ending with
the ξth move of I. A strategy σ is a winning strategy for II in BM(X) iff II
wins every game in which he obeys σ. Banach proved the following theorem
for the Banach–Mazur game of length ω (see [21]).

Theorem 8.1. II has a winning strategy for X ⊆ 2ω1 iff X is meager.

P r o o f. If X is meager, then there is an ω1-sequence Fξ of nowhere dense
subsets of 2ω1 whose union covers X, and it is obvious that II can avoid Fξ
in the ξth move; this describes the strategy. The nontrivial direction follows
from this

Claim. Let σ be a strategy. The set of all outcomes of a Banach–Mazur
game in which II uses σ includes a dense Gℵ1 subset of 2ω1 .

P r o o f. The set DII
0 of all t ∈ 2<ω1 such that t = sII

0 in some valid play
(i.e. a play in which both I and II obey the rules) in which II obeys σ is
dense in 2<ω1 (because I can enter into any basic [s] in his first move). Pick
a maximal antichain (in the ⊇ ordering) A0 which is included in DII

0 . Let
DII

1 be the set of all s ∈ 2<ω1 such that s = sII
1 in some valid partial play in

which sII
0 is in A0. This set is dense in 2<ω1 so let A1 be a maximal antichain

included in DII
1 . By continuing in this way, we define an ω1-sequence {Aξ}

(ξ < ω1) of maximal antichains such that Aξ refines Aη for all η < ξ (i.e.
for each s ∈ Aξ there is (a unique) t ∈ Aη such that t ⊂ s). At the successor
stages we do the same as above. At the limit stage δ let DII

δ be the set
of all t ∈ 2<ω1 such that t = sII

δ in some valid play in which II obeys σ
and in which sII

ξ ∈ Aξ for all ξ < δ. We claim that DII
δ is dense in 2<ω1 :

Let A′δ be the set of all t ∈ 2<ω1 such that t¹αξ ∈ Aξ for some increasing
δ-sequence of ordinals {αξ} converging to |t|. Then A′ξ is dense and each
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element of it corresponds to the first δ moves of a valid play in which II
obeys σ, and I is the first one to play after this stage of the game. So I
can, by his playing, assure that the set DII

δ is dense as claimed. Let Aδ be
a maximal antichain inside DII

δ , so Aδ refines A′δ and all Aξ for ξ < δ. This
describes the construction of an ω1-sequence of antichains {Aξ}. Note that

(∗) if s ∈ Aη, t ∈ Aξ and s ⊂ t, then a partial play witnessing that s ∈ Aη
is an initial segment of a partial play witnessing t ∈ Aξ.

Let Uξ be the family of all x ∈ 2ω1 such that x¹α ∈ Aξ for some countable
ordinal α. Then each Uξ is a dense open subset of 2ω1 , G =

⋂
ξ<ω1

Uξ is a
dense Gℵ1 subset of 2ω1 and each element of G is the result of some game
in which II obeys σ; the latter statement follows from (∗).

This proves the theorem.

Fix a large enough θ, say θ = (2ℵ1)+, and a well-ordering <w of Hθ which
gives rise to Skolem functions. All models that we consider are elementary
submodels of Hθ closed under <w, unless otherwise specified. A sequence
{Mξ} of countable elementary submodels of Hθ is a continuous ε-chain if
for all α < ω1:

(1) Mα ≺Mα+1,
(2) 〈Mξ : ξ < α〉 ∈Mα+1, and
(3)

⋃
ξ<αMξ = Mα for α limit.

An elementary submodel M of Hθ is approachable iff M =
⋃
ξ<ω1

Mξ, where
{Mξ} is an ε-chain of countable elementary submodels of Hθ. For a function
f : [Hθ]<ω → Hθ let Cf be the family of all A ∈ [Hθ]ℵ1 such that f ′′[A]<ω ⊆
A and ω1 ⊆ A. A family C ⊆ [Hθ]ℵ1 is closed unbounded (club) iff it is equal
to Cf for some f . [This is not the standard definition, but by a result of
Kueker [15] every “standard” club includes some Cf .] A family S ⊆ [Hθ]ℵ1 is
stationary iff it intersects all sets closed unbounded in [Hθ]ℵ1 . Let A denote
the family of all approachable elementary submodels of Hθ. The next lemma
shows that A is a rather large stationary subset of [Hθ]ℵ1 .

Lemma 8.1. The union of a ⊆-chain of approachable models of length ω1

is approachable.

P r o o f. We denote this chain by {Mα} and write Mα =
⋃
ξ<ω1

Mα
ξ .

Then by usual bookkeeping we can find ordinals ξα for α < ω1 so that
{Nα

ξα
} is an ε-chain whose union covers

⋃
α<ω1

Mα.

An x ∈ 2ω1 is (M, Cω1)-generic if all its proper initial segments are in
M and it is a member of all dense subsets of Cω1 coded in M . Notice that
it is not obvious that there should be an (M, Cω1)-generic subset of ω1 for
a given model M of size ℵ1 (even if we assume that ω1 is included in M to
avoid trivialities).
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Lemma 8.2. If a model M is approachable, then there is an (M, Cω1)-
generic subset x of ω1.

P r o o f. Let M =
⋃
ξ<ω1

Mξ. We assume that the sequence is continuous
and that 〈Mη〉η≤ξ is always in Mξ+1. We pick an ω1-sequence {sξ} in 2<ω1

so that:

(1) s0 ⊂ s1 ⊂ . . . ⊂ sξ ⊂ . . . ,
(2) each sξ is generic over Mξ; i.e. sξ ∈ 2δξ ,
(3) [sξ] avoids all nowhere dense subsets of 2ω1 coded in Mξ, and
(4) sξ is always a <w-minimal element of Mξ+1 which satisfies (1)–(3).

By (4),
⋃
ξ<δ sξ is in Mδ+1 for each limit δ, so we can proceed with the

construction on limit levels. Then x =
⋃
ξ<ω1

sξ is as required.

Theorem 8.2. If X ⊆ 2ω1 is nonmeager , then there is an (M, Cω1)-
generic xM ∈ X for stationary many M in A.

P r o o f. Suppose the contrary, that there is a club C in [Hθ]ℵ1 such that
there is no (M, Cω1)-generic xM for all M ∈ C ∩ A. Pick f : [Hθ]<ω → Hθ

such that C = Cf . Let Y be the set of all x ∈ 2ω1 which are (M, Cω1)-generic
for some M ∈ A ∩ S; by our assumptions X and Y are disjoint. We will
construct a winning strategy σ for II in BM(2ω1 \ Y ), which is therefore
a winning strategy for II in BM(X), thus showing that X is meager (by
Theorem 8.1). Along with playing the Banach–Mazur game, II constructs
an approachable model M =

⋃
ξ<ω1

Mξ in A ∩ C and assures that the
outcome x of the game is (M, Cω1)-generic. So II plays sII

ξ and Mξ, so that
in each stage α of the game and for all ξ < α:

(1) sII
ξ ’s are valid moves in the Banach–Mazur game,

(2) {Mξ} (ξ < α) is a continuous ε-chain,
(3) each Mξ+1 is closed under f and has sII

ξ and sIξ+1 as elements,
(4) each sII

ξ is generic over Mξ; i.e. sII
ξ ∈ 2δξ , and

(5) [sII
ξ+1] avoids all nowhere dense subsets of 2ω1 coded in Mξ. [This can

be arranged because Mξ+1 “knows” that Mξ is countable.]

If II obeys σ, then after ω1 many moves of the game he has an approach-
able model M =

⋃
ξ<ω1

Mξ and x =
⋃
ξ<ω1

sII
ξ which is (M, Cω1)-generic.

But M is closed under f and it includes ω1, so it is in C, and therefore x is
in Y . Since II wins BM(X), X is meager.

Lemma 8.3. If S is a stationary subset of A and xM is (M, Cω1)-generic
for all M ∈ S, then the set of all xM ’s is nonmeager.

P r o o f. Suppose the contrary and let F be a code for an Fℵ1-meager
subset of 2ω1 avoiding X. Let λ = (2θ)+ and let N be an approachable
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elementary submodel of Hλ which includes S, 〈xM : M ∈ S〉, F ,. . . and such
that N = N∩Hθ is in S. Then F is in N , so xN̄ avoids F—a contradiction.

9. Proof of the main theorem

Theorem 9.1. If κ > ω1 is a regular cardinal then HE adds a κ-chain
to ωω iff one of the following happens:

(†1) E has a κ- or a κ∗-chain, or
(†2) C adds a κ-chain to ωω.

Corollary. If κ > c is a regular cardinal , then HE adds a κ-chain to
ωω iff there is either a κ- or a κ∗-chain in 〈E,<E〉.

Definition 9.1. A family {Aξ} forms a weak ∆-system with root A iff
Aξ ∩Aη ⊆ A for all ξ 6= η. A family {Aξ} forms a weak local ∆-system with
root A iff its subfamily {Aδ+n} (n < ω) forms a weak ∆-system with root
A for all δ.

Lemma 9.1. If κ is a regular cardinal larger than ℵ1, then every family
{Bξ}ξ<κ of countable sets has a subfamily {Aξ}ξ<κ which forms a weak local
∆-system with a countable root A.

P r o o f. Let θ be a large enough cardinal, and let Mξ (ξ < ω1) be an
ε-chain of countable elementary submodels of Hθ such that the family {Bξ}
is an element of M0; let M =

⋃
ξ<ω1

Mξ. By a counting argument we can
find ξ < ω1 such that Bη ∩M = Bη ∩Mξ̄ for κ many η’s; let A = Mξ̄. We
claim that for every α < κ there is a strictly increasing ω-sequence {αn} of
ordinals above α which forms a weak ∆-system with root A. It suffices to
prove that this is true in M , so note that A ∈ M and pick α < κ in M .
Choose δ above M ∩ κ such that Bδ ∩M ⊆ A. Pick α0 > α in M such that
A ⊆ Bα0 . Suppose that we have constructed the sequence {αi} (i < n) for
some integer n. We want to prove that we can continue the construction.
We have Bδ ∩ Aαi ⊆ A for all i < n, so the family {Bαi}i<n ∪ {Bδ} is a
∆-system with root A. By elementarity there is an ordinal αn as required.
So our claim is proved, and the lemma follows immediately from it.

P r o o f o f T h e o r e m 9.1. Suppose that ḟξ (ξ < κ) is an HE-name
for a strictly increasing κ-chain in ωω. Without loss of generality we can
assume that supports of these functions form a weak local ∆-system with a
countable root. Now applying Lemma 5.2 to ḟξ and ḟξ+1 for all limit ordinals
ξ we get ḣξ, qξ (ξ < κ) such that qξ ° ḟξ ≤∗ ḣξ ≤∗ ḟξ+1. Every uncountable
family of finite sets includes a ∆-system of the same size; we can assume
that supports of ḣξ’s form a weak ∆-system with a countable root A and
finite tails Dξ. Since HE has κ as a precaliber, without loss of generality we
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can assume that the family {qξ} is centered. Pick a condition q which forces
that there are κ many qξ in Ġ.

Now apply Lemma 7.3 to the family {Dξ} and ordering <E to get a
new ordering C0. If there is a κ- or κ∗-chain in C0, then by (B1) there is
one in <E . Assume that this does not happen; so by Theorem 7.1 there are
ξ < η < κ such that Dξ and Dη are not connected. Denote the pattern τC0

ξη

by σ. By Lemma 7.2 and further refining we can assume that τC0
α,α+m = σ

for all α < κ and m < ω, and that E = A ∪⋃ξ<κDξ. Define a relation C
on E by

a C b iff




a, b ∈ A ∪Dη and a <E b for some η, or
a, b ∈ ⋃ξ<κDξ and a C0 b, or
a, b ∈ ⋃ξ<κDξ and a <E c <E b for some c ∈ A.

So we have

(C1) if a ∈ Dα and b ∈ Dα+m are C-comparable, then there is an element
of A which is C-between a and b for all α < κ and m < ω.

Claim 1. The relation C is an ordering on E.

P r o o f. Note first that a C b implies a <E b, so we only have to prove
that C is transitive. Suppose that a C b and b C c; then we have a <E c.
Now we consider several cases: (i) If a ∈ A or c ∈ A then we are done by
a C c iff a <E c. (ii) If b ∈ A, then a C c by the definition of C. (iii) Suppose
a, b, c ∈ ⋃ξ<κDξ. If there is d ∈ A such that a <E d <E b or b <E d <E c,
then a C c. If not, then we have a C0 b and b C0 c, so a C0 c. This finishes
the proof.

Note that now

(C2) The relations C and <E coincide on A∪Dη so ḣη is an H〈E,C〉-name
for all η.

Claim 2. The poset H〈E,C〉 below qα ∧ qβ forces that ḣα ≤∗ ḣβ for all
α < β < κ.

P r o o f. Pick α < β and suppose that some condition p below qα ∧ qβ
forces (in H〈E,C〉) that ḣα 6≤∗ ḣβ . Find α = α0 < α1 < . . . < αn = β as in
(B′2) of Lemma 7.3, i.e. such that τC0

αiαi+1
= τ<Eαiαi+1

. Note that this implies
that τC

αiαi+1
= τ<Eαiαi+1

. Extend p to q to decide i < n such that

(1) q °H〈E,C〉 ḣαi 6≤∗ ḣαi+1 .

But the condition q′ = q¹A ∪ Dαi ∪ Dαi+1 forces this as well (all involved
names are H〈A∪Dαi∪Dαi+1 ,C〉-names and q′ is the projection of q to this
regular subordering). Also τ<Eαiαi+1

= τC
αiαi+1

so the orderings C and <E



86 I. Farah

coincide on A ∪Dαi ∪Dαi+1 , and (1) is true when °H〈E,C〉 is replaced with
°〈A∪Dαi∪Dαi+1 ,<E〉—a contradiction.

So the condition q still forces that the sequence {ḣξ} includes a strictly
≤∗-increasing κ-chain in ωω. We go to an extension by HA below q (we can
assume that q is in HA); let ġA be the generic embedding of A into ωω.

Claim 3. The poset HA∪Dα∪Dα+m(A, ġA) is equivalent to the product of
HA∪Dα(A, ġA) and HA∪Dα+m(A, ġA) for all α < κ and all m < ω.

P r o o f. This follows immediately from (C1) and Lemma 4.3.

So by Lemma 5.1, we can find an HA-name ḣ′ξ and an HE-condition
q′ξ ≤ qξ ∧ qξ+1 for all limit ξ < κ such that

q′ξ ° ḣξ ≤∗ ḣ′ξ ≤∗ ḣξ+1.

Without loss of generality the family {q′ξ} is centered and if q′ is a condition
which forces that there are κ many q′ξ’s in the generic filter, then it also
forces that the family {ḣ′ξ} includes a κ-chain which is cofinal in {ḟξ}. So
the countable poset HA adds a κ-chain, and this finishes the proof.

In the following theorem κ and λ are uncountable regular cardinals.

Theorem 9.2. If κ > c and HE adds a 〈κ, λ〉-gap to ωω, then there is
such a gap in E or in E∗.

P r o o f. Let 〈ḟ0,ξ, ḟ1,η〉ξ<κ,η<λ be an HE-name for a gap. Working as
in the proof of Theorem 9.1, we find a countable A and finite D0,ξ, D1,η

such that supp ḟi,ξ ⊆ A ∪ Di,ξ for all i, ξ. Apply Lemma 7.3 to the family
{D0,ξ, D1,η : ξ < κ, η < λ}, where the index set I = {0} × κ ∪ {1} × λ is
ordered lexicographically, to get an ordering C0 on

⋃
〈i,ξ〉∈I Di,ξ such that

this family has minimal patterns. Let D0 =
⋃
ξ<κD0,ξ and D1 =

⋃
η<λD1,η,

define C on A ∪D0 ∪D1 and translate H〈E,<E〉-names into H〈E,C〉-names
as in the proof of Theorem 9.1. In the following considerations “connected”
means connected in the ordering C0, while E stands for the poset 〈E,C〉.

C a s e 1: For all ξ < κ and η < λ, D0,ξ and D1,η are not connected.
Then HE is equivalent to HA ∗ (HA∪D0(A, ġA)×HA∪D1(A, ġA)) by Lemma
4.3. Work in an extension by HA: Since A is countable, every real in an
extension by HA∪Di(A, ġA)) (i = 0, 1) is added by a countable subordering,
so by Lemma 5.5 (applied to Pi = HA∪Di(A, ġA) and ḟ0

ξ = ḟ0,ξ for i = 0, 1),
there is a ground-model function h which splits this gap.

C a s e 2: D0,ξ and D1,η are connected for some ξ, η (without loss assume
that ξ = η = 0). Then by Proposition 7.1 there is a κ + λ∗-chain in E or
in E∗ which intersects all Di,ξ’s. If it is a gap in the <E-ordering, then we
are done. So suppose that it is filled by some c0, and by symmetry we can
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assume that it is a κ+ λ∗-chain in E. Also, all D0,ξ’s are of the same fixed
size n0 and all D1,η’s are of the same fixed size n1. We can assume that c0
is in A. Now our argument splits into a finite binary tree. Let

D0
0,ξ = D0,ξ \D0,ξ(C c0), D0

1,η = D1,η,

D1
0,ξ = D0,ξ, D1

1,η = D1,η \D1,η(B c0).

Then |D0
0,ξ| < n0 for all ξ, and |D1

1,η| < n1 for all η.
If D0

0,ξ and D0
1,η are connected for some ξ < κ and η < λ, then there is

a κ+ λ∗-chain in E or in E∗. The obtained κ+ λ∗-chain is without loss of
generality filled by some c00 ∈ A, and we can define D0i

0,ξ, D
0i
1,η for i = 0, 1

as above. Observe that for all s ∈ 2<ω and i = 0, 1 we have

(2) |Dŝ i
0,ξ|+ |Dŝ i

0,η| < |Ds
0,ξ|+ |Ds

0,η| for all ξ, η.

Proceeding in this way, we either at some stage obtain a 〈κ, λ〉- or a 〈λ, κ〉-
gap in E, or construct a finite (by (2) above) binary subtree T of 2<ω and
cs (s ∈ T ) such that

(3) for all a ∈ D0,ξ and b ∈ D1,η either a and b are not C-connected or
some cs is between them.

[To check (3), let s be the maximal node in T such that a ∈ Ds
0,ξ and b ∈

Ds
1,η. If a and b are C-comparable, then c0s is between them.] By Lemma 4.3,
HE is equivalent toHA∗(HA∪D0(A, ġA)×HA∪D1(A, ġA)), and by Lemma 5.5
there is a condition q in H〈E,C〉 which forces that h fills the pregap, i.e.

(4) q °H〈E,C〉 ḟ0,ξ ≤∗ ȟ and q °H〈E,C〉 ȟ ≤∗ ḟ1,η for all ξ, η.

What we have to prove is that for some q′,

(5) q′ °H〈E,<E〉 ḟ0,ξ ≤∗ ȟ and q′ °H〈E,<E〉 ȟ ≤
∗ ḟ1,η for all ξ, η.

By passing to a cofinal subset of κ and λ, we can assume that Fq is included
in A′. Since the orderings <E and C coincide on each A′ ∪ D0,ξ and each
A′ ∪ D1,η, by Theorem 4.1 formulas (4) and (5) are equivalent. This is a
contradiction, so one of the κ + λ∗-chains obtained in E or E∗ during the
construction of the tree T was a gap.

10. Embedding a dense linearly ordered set by HE. By X we
denote the topological closure of a set X.

Theorem 10.1. If HE forces that 〈2ω1 , <Lex〉V embeds into 〈ωω,≤∗〉,
then either a Cohen real forces this or 〈2ω1 , <Lex〉V embeds into E.

We will prove a stronger result:

Theorem 10.2. If X is a nonmeager subset of 2ω1 such that in an ex-
tension by HE there is an embedding of 〈X,<Lex〉 into ωω then there is
s ∈ 2<ω1 such that one of the following happens:
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(†1) 〈X ∩ [s], <Lex〉 is embeddable into E or E∗, or
(†2) 〈X ∩ [s], <Lex〉 is embeddable into ωω after adding a single Cohen

real.

P r o o f o f T h e o r e m 10.1. Since 〈[s], <Lex〉 is isomorphic to
〈2ω1 , <Lex〉, the theorem follows immediately from Theorem 10.2.

Definition 10.1. If 〈L,<L〉 is a linearly ordered set then we say that
embeddings H0 : 〈L,<L〉 → 〈ωω,≤∗〉 and H1 : 〈L,<L〉 → 〈ωω,≤∗〉 cohere
iff Hi(x) ≤∗ Hj(y) for all x <L y in L and i, j ∈ {0, 1}.

Lemma 10.1. For every nonmeager subset X of 2ω1 and a family Ax
(x ∈ X) of countable sets there is a countable A such that the set of all
x ∈ X for which the set {y ∈ X : Ay ∩ Ax ⊆ A} accumulates to x is
nonmeager.

P r o o f. Let θ = (2ℵ1)+ and let S be the set of all approachable elemen-
tary submodels N of Hθ such that X ∈ N and there is an (N, Cω1)-generic
xN ∈ X. By Theorem 8.2 the set S is stationary. For N ∈ S fix a continuous
ε-chain of countable models converging to N , say N =

⋃
ξ<ω1

MN
ξ , and let

MN ≺ Hθ be an MN
ξ such that AxN ∩MN = AxN ∩ N . By the Pressing

Down Lemma there is a stationary S′ ⊆ S and a countable M ≺ Hθ such
that M = MN for all N ∈ S′. By Lemma 8.3 the set Y = {xN : N ∈ S′} is
nonmeager.

Claim. For all x ∈ Y the set {y ∈ X : Ay ∩Ax ⊆M} accumulates to x.

P r o o f. Pick x = xN in Y and a countable ordinal α. Then x¹α is in N
so by elementarity there is a y ∈ X ∩ [x¹α] in N such that Ay ∩ Ax ⊆ M .
For a fixed x this is true for all countable α, so the claim is proved.

This proves the lemma.

P r o o f o f T h e o r e m 10.2. Let ḟx (x ∈ X) be a name for the embed-
ding and Ax = supp ḟx. Then by Lemma 10.1 there is a countable set A ⊆ E
and a nonmeager X1 ⊆ X such that for each x ∈ X1 there is an ω1-sequence
{yξ} in X converging to x and such that Aξ ∩ Ax ⊆ A for all ξ < ω1. By
passing to an interval [t] of 2<ω1 , we can assume that X1 is dense in 2<ω1 .

The idea of the proof is to find an embedding x 7→ ḣx which coheres with
x 7→ ḟx and which is such that ḣx is an HA-name for all x ∈ X by applying
Lemma 5.4 for all x ∈ X. Unfortunately, the name ḣx this lemma gives
does not work with probability one. This is why we will have to go to an
extension by HE and work there. In this extension set X is not a nonmeager
set anymore, but it still retains a largeness property which is sufficient for
our needs. Now we go to an extension by HE , and let Ġ be a generic filter
in HE . In our following claim all HE-names are assumed to be elements of
a ground model.
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Claim 1. There is an embedding x 7→ ḣx of X into ωω which coheres
with x 7→ ḟx and is such that supp ḣx ⊆∗ A for all x ∈ X.

P r o o f. Fix x ∈ X1 and a sequence {yξ} which converges to x. We can
assume that this sequence is monotonic, say increasing. Note that the proof
of Lemma 5.4 (applied in the ground model) shows that the set of conditions
q such that there is a name ḣ with supp ḣ ⊆∗ A and

q ° ḟyξ ≤∗ ḣ ≤∗ ḟx for all ξ < ω1

is dense in HE ; therefore, in our extension there are qx ∈ Ġ and ḣx with
these properties. So we have an embedding x 7→ ḣx of X1 into ωω which
coheres with x 7→ ḟx, and we want to extend it to an embedding of X. Let

(D) Dx = (supp ḣx ∪ Fqx) \A for x ∈ X1.

For each x ∈ X \ X1 we pick a monotonic ω1-sequence {yξ} inside X1

converging to x; then by applying the ∆-system lemma to refine {Dyξ}
(ξ < ω1) we get a finite set ∆ such that Dξ ∩ Ax ⊆ ∆ for all ξ. So we
can again apply an extension of Lemma 5.4 and get qx ∈ Ġ, and ḣx with
supp ḣx ⊆∗ A for all x ∈ X as required.

Let Dx be defined as in (D) above for all x ∈ X. Recall that a poset
for adding a Cohen subset of ω1, Cω1 , is 〈2<ω1 ,⊆〉. It is σ-closed, and after
forcing with any ccc poset the intersection of countably many dense subsets
of Cω1 (as computed in the ground model) is dense (by Easton [8]). So (Cω1)V

has this property in our extension by HE . Recall that by our assumptions
[t] ∩X is nonempty for all t ∈ (Cω1)V .

Claim 2. The set of all t such that for some finite F ⊆ E,

(∗)
⋂

x∈I
Dx = F for every nonempty interval I of X ∩ [t]

is dense in (Cω1)V .

P r o o f. Let Dn = {s ∈ (Cω1)V : |⋂x∈X∩[s]Dx| ≥ n}. Suppose that
below some s ∈ (Cω1)V all Dn’s are dense; then we can pick u ∈ ⋂∞n=1Dn.
If x ∈ [u]∩X then Dx is infinite—a contradiction. Therefore the set of all s
such that [s]∩Dn is empty for some n is dense in (Cω1)V . For such an s pick
maximal m < n so that some t extending s is in Dm, and let F =

⋂
x∈[t]Dx;

such t and F satisfy (∗).
By Claim 2 there is a maximal antichain D0 ⊆ (Cω1)V and a finite Ft ⊆ E

for t ∈ D0 such that (∗) is true for all t and Ft in D0. Pick s ∈ D0 and let
Y = X ∩ [s], A′ = A ∪ Fs and D′x = Dx \ Fs. Then by (∗) we have:

(∗∗) For all x <Lex y in Y and all a ∈ D′x ∩D′y there is z ∈ (x, y)Y such
that a 6∈ Dz.
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Let E+ = A′ ∪⋃x∈Y {x} ×D′x and let H : E+ → E be

H(a) =
{
a if a ∈ E,
b if a = 〈x, b〉 for some x ∈ Y .

Define an ordering <E+ on E+ by

a �E+ b iff H(a) �E H(b).

Let D+
x = {x}×D′x. Then the posets 〈A′∪D+

x , <E+〉 and 〈A′∪D′x, <E〉 are
isomorphic, so let ḣ+

x be an H〈A′∪D+
x ,<E+ 〉-name isomorphic to ḣx. [Namely,

we obtain ḣ+
x from ḣx by replacing each occurrence of b with 〈x, b〉 for all

b ∈ D′x.] Let q+
x be the HE+-condition isomorphic to qx. Since all qx’s are

in the same generic filter, the conditions q+
x are pairwise compatible.

Claim 3. In the poset HE+(A′, ġA′) the condition q+
x ∧ q+

y forces that
ḣ+
x ≤∗ ḣ+

y .

P r o o f. The idea is similar to that in the proof of Claim 2 in Theorem 9.1,
but this time we have to construct yet another poset. By (∗∗) pick x =
x0 <Lex x1 <Lex . . . <Lex xn = y in Y so that for each a ∈ D′x we have
a 6∈ D′xi(a)

for some 0 < i(a) ≤ n. For a ∈ ⋃1≤i≤nD
′
xi \ D′x let i(a) = 0.

Then define a poset E++ by

D++
i = {a : a ∈ D′x, i(a) < i} ∪ {〈1, a〉 : a ∈ D′xi , i(a) > i} for i ≤ n, and

E++ = A′ ∪
⋃

i≤n
D++
i .

The ordering on E++ is defined similarly to that on E+: let H : E++ → E
be

H(a) =
{
a if a ∈ E,
b if a = 〈1, b〉 for some b ∈ E,

and let a �E++ b iff H(a) �E H(b). Then:

(1) the posets 〈A′ ∪D++
xi , <E++〉 and 〈A ∪D′xi , <E〉 are isomorphic for

all i ≤ n.

An isomorphism naturally extends to one betweenHA∪D′xi andHA∪D++
xi

,
as well as to an isomorphism between classes of names in these posets. Let
q+
i be the isomorphic image of qxi for i ≤ n. Then we have:

(2) 〈A∪D++
i ∪D++

i+1, <E++〉 is isomorphic to 〈A′ ∪D′xi ∪D′xi+1
, <E〉 for

all i, and the natural extension of this isomorphism sends q++
i , q++

i+1 to qxi ,
qxi+1 respectively and ḣ++

i , ḣ++
i+1 to ḣxi , ḣxi+1 respectively.

(3) 〈A′ ∪ D++
0 ∪ D++

n , <E++〉 is isomorphic to 〈A′ ∪ D+
0 ∪ D+

n , <E+〉,
and the natural extension of this isomorphism sends q++

0 , q++
n to q+

0 , q+
n

respectively and ḣ++
0 , ḣ++

n to ḣ+
0 , ḣ+

n respectively.
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So HE++ below
∧
i≤n q

++
i forces that ḣ++

i ≤+ ḣ++
i+1 for all i < n,

and hence that ḣ++
0 ≤+ ḣ++

n , therefore HE+(A′, ġA′) below the condition∧
i≤n q

+
i ¹(A+∪D+

0 ∪D+
n ) forces that ḣ+

0 ≤+ ḣ+
n . This condition is equivalent

to q+
0 ∧ q+

1 .

Now apply Lemma 7.3 to 〈⋃x∈Y D+
x , <E+〉 to get an ordering C0 on this

set. As in the proof of Theorem 9.1, define an ordering C on E+ by

a C b iff




a, b ∈ A′ ∪D+

η and a <E+ b for some η, or
a, b ∈ ⋃ξ<κD+

ξ and a C0 b, or
a, b ∈ ⋃ξ<κD+

ξ and a <E+ c <E+ b for some c ∈ A′.
The proof that this relation is an ordering is the same as in the proof of
Theorem 9.1, as well as the proof that x 7→ ḣ+

x is forced to be an embedding
of Y into ωω coherent with x 7→ ḟx.

C a s e 1: There are x 6= y in Y such that D+
x and D+

y are connected by
C. Then by Proposition 7.1 there is a chain of type [x, y]Y or [x, y]∗Y in E+

and therefore in E, so (†1) applies with any s such that [s] ⊆ [x, y]Y (recall
that Y = X ∩ [s], so [x, y]Y = [x, y]X).

C a s e 2: D+
x and D+

y are not connected by C for all x 6= y. Note that
the embedding x 7→ ḣ′x obtained by Claim 1 is such that it is added only by
HE (although the image of X consists only of reals added by HA). Claim 4
below is stronger because the name for the embedding x 7→ ḣ′′x obtained in
it is an HA′-name.

Claim 4. There are HA′-names ḣ′′x for x ∈ Y such that x 7→ ḣ′′x is an
embedding coherent with x 7→ ḣx.

P r o o f. By the assumption and Lemma 4.3 the posetHE+ can be written
as

HA′ ∗
∏

x∈Y
HD+

x
(A′, ġA′) (product is taken with finite supports).

Work in an extension by HE+ . For x ∈ Y pick ω1-sequences {yξ} and {zξ}
in Y converging to x from below (resp. above). The pregap 〈ḣ+

yξ
, ḣ+
zξ
〉ξ<ω1

is filled by ḣ+
x . By applying Lemma 5.1 as in the proof of Theorem 9.1 we

find a pregap which is cofinal in this one and which is added by HA′ . The
poset HA′∪D+

x
(A′, ġA′) is countable and it fills an 〈ω1, ω1〉-pregap, therefore

a pregap is already filled in the intermediate extension by HA′ ; let ḣ′′x be
the HA′-name for the function which fills it. Then the mapping x 7→ ḣ′′x is
as required.

So in Case 2 a countable poset embeds 〈Y,<Lex〉 into ωω, so (†2) ap-
plies.
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11. A preordering on ωω. By a Cohen poset C we mean 〈2<ω,⊇〉 and
ċ is a name for a C-generic real. Let N denote the ideal of nowhere dense
subsets of C, i.e. all sets A ⊆ C such that the complement C \A of A includes
an open dense set in C.

Definition 11.1. For f, g ∈ Cω we define:

(1) f =N g iff the set {t ∈ C : f(t) 6= g(t)} is in N .
(2) f ≤N g iff the set {t ∈ C : f(t) > g(t)} is in N .
(3) f <N g iff the set {t ∈ C : f(t) ≥ g(t)} is in N .
(4) f =N g iff f ≤N g and g ≤N f .

[Note that an analog of Proposition 0.1 is true in the case of these or-
derings.]

Theorem 11.1. A linearly ordered set 〈L,<L〉 embeds into 〈Cω,<N 〉 iff
in a forcing extension by the Cohen algebra, 〈L,<L〉 embeds into ωω.

For f ∈ Cω and r ∈ 2ω we define f¹r ∈ ωω by (f¹r)(n) = f(r¹n). So in
particular f¹ċ is a Cohen name for an element of ωω.

Lemma 11.1. f <N g iff °C (f̌¹ċ) <∗ (ǧ¹ċ).
P r o o f. Observe that t ∈ C forces that (f¹ċ) <n (g¹ċ) for some n ≤ |t|

iff f(s) < g(s) for every s ∈ [t].

Note that for fixed f the function r 7→ f¹r is continuous and that more-
over (recall that the metric on 2ω is defined by d(r, s) = 1/(∆(r, s) + 1),
where ∆(r, s) is the minimal n such that r(n) 6= s(n))

d(s, r) ≤ d(f¹r, f¹s) for all r, s ∈ ωω,

i.e. the function r 7→ f¹r is Lipschitz . It is well known that for every C-name
ẋ for a real there is a ground-model Borel function F such that F (ċ) = ẋ
with probability one (see e.g. [29, Theorem 2.3]). So Theorem 11.1 above
says, among other things, that when investigating C-names for long chains
in ωω we can restrict ourselves to those consisting of Lipschitz functions.

For a C-name for a function ḟ in ωω define f̂ ∈ Cω by

f̂(t) = min{k : some extension of t forces that f(|t|) = k}.
The following is an “inverse” of Lemma 11.1.

Lemma 11.2. (a) If °C ḟ <∗ ġ, then f̂ <N ĝ.
(b) If °C ḟ ≤∗ ġ and ḟ 6=∗ ġ then f̂ ≤N ĝ and f̂ 6=N ĝ.
(c) For f ∈ Cω and a C-name ġ, if °C (f̌¹ċ) <∗ ġ, then f <N ĝ.

P r o o f. (a) Let {ti} be the maximal antichain in C which decides m from
which the dominance happens, i.e. there is a sequence {mi} such that

ti ° ḟ <m̌i ġ
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for all i. We can assume that mi < |ti| for all i. We claim that f̂(t) < ĝ(t)
for all t ∈ U =

⋃
i<ω[ti]: suppose otherwise, pick t such that f̂(t) = k1 >

k0 = ĝ(t) and t ≤C tl̄ for some l ∈ ω. Let n = |t| and s ≤C t be such that
s ° ġ(ň) = ǩ0; find s′ ≤C s which decides ḟ(n), say s′ ° ḟ(ň) = ǩ. But
n > ml̄ and s′ ≤C tl̄, so k < k0. On the other hand, by the definition of f̂(n)
we have k1 ≤ k—a contradiction. So we have a dense open subset U of C
which witnesses that f ≤N g, as required.

(b) & (c) These proofs are essentially the same as that of (a).

P r o o f o f T h e o r e m 11.1. The theorem follows immediately from
the above.

12. Concluding remarks. If M is an elementary submodel of a large
enough Hθ and HE ∈M , then, by Theorem 4.1, M ∩HE is a regular subor-
dering ofHE , i.e.HE is semicohen (see [1]). A result of Balcar–Jech–Zapletal
([1, Theorem 3.2]) in our case easily reduces to (see also our Lemma 4.5):

Lemma 12.1. The poset HE is Cohen iff there is a club C ⊆ [E]ω such
that for all A,B ∈ C, a <E b implies that there is c ∈ A ∩ B such that
a <E c <E b for all a ∈ A \B and b ∈ B \A.

In particular, Hω2 is not Cohen, but all its suborderings of smaller size
are. [A different example of such a poset is found in [1], where it was re-
marked that (in our notation) Hc+ is not Cohen.] The following example
gives a different proof of a recent result of Koppelberg–Shelah ([14]) that
there is a regular subalgebra B of a Cohen algebra for adding ℵ2 many Co-
hen reals which is not Cohen. Let E = ω2 × {0, 1} ∪ {a}, with the ordering
defined by

〈ξ, 0〉 <E a <E 〈η, 1〉 for all ξ, η,
and let E0 = E \ {a}. Then HE0 is not Cohen by the above theorem. To
see that HE is Cohen, note that it is equivalent to an iteration of H{a} with
the poset HE({a}, ġ{a}) and by a version of Lemma 4.3 the former poset
is equivalent to a finite support product of countable posets, i.e. the poset
for adding ℵ2 many Cohen reals, Cℵ2 . So HE is C ∗ Cℵ2 , which is Cℵ2 . Our
example is different from one in [14] because in our case the quotient has
the property that a generic object is determined by a single real.
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Math. Logic 11 (1977), 77–103.
[16] K. Kunen, Inaccessibility properties of cardinals, Ph.D. thesis, Stanford University,

1968.
[17] —, 〈κ, λ∗〉-gaps under MA, preprint, 1976.
[18] —, Set Theory—An Introduction to Independence Proofs, North-Holland, 1980.
[19] G. Kurepa, L’hypothèse du continu et le problème de Souslin, Publ. Inst. Math.

Belgrade 2 (1948), 26–36.
[20] R. Laver, Linear orderings in ωω under eventual dominance, in: Logic Colloquium

’78, North-Holland, 1979, 299–302.
[21] J. C. Oxtoby, Measure and Category, Springer, 1970.
[22] K. Pr ikry, Changing measurable into accessible cardinals, Dissertationes Math.

(Rozprawy Mat.) 68 (1970).
[23] F. Rothberger, Sur les familles indénombrables de suites de nombres naturels et

les problèmes concernant la propriété C , Proc. Cambridge Philos. Soc. 37 (1941),
109–126.



Embedding partially ordered sets into ωω 95

[24] M. Scheepers, Gaps in ωω, in: Israel Math. Conf. Proc. 6, Amer. Math. Soc.,
1993, 439–561.

[25] —, Cardinals of countable cofinality and eventual domination, Order 11 (1995),
221–235.

[26] —, The Boise problem book , http://www.unipissing.ca/topology/.
[27] R. So lovay, Discontinuous homomorphisms of Banach algebras, preprint, 1976.
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