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Examples of sequential topological groups
under the continuum hypothesis

by

Alexander S h i b a k o v (Auburn, Ala.)

Abstract. Using CH we construct examples of sequential topological groups:

1. a pair of countable Fréchet topological groups whose product is sequential but is
not Fréchet,

2. a countable Fréchet and α1 topological group which contains no copy of the ratio-
nals.

1. Introduction. The classical methods of study of continuity involve
consideration of convergent sequences and their images. Although the conti-
nuity as it is understood in modern topology cannot be treated only in terms
of classical convergent sequences there is a field of topology and the corre-
sponding subclass of topological spaces where classical convergence plays an
important rôle. Like general topology itself the field has its origin in metric
space theory.

The first natural generalization of metrizability is first-countability. Go-
ing further in generalization one can emphasize the following property of
the closure operator in a first-countable space: x ∈ A implies existence of
a sequence in A converging to x. Spaces having this property are called
Fréchet spaces. The next step is to require only that convergent sequences
determine the topology of the space. The corresponding definition is: a space
X is sequential if for every A ⊆ X such that A 6= A there exists a sequence
in A converging to a point outside A.

Sequentiality and its behaviour in several situations were studied by a
number of authors (see [F], [No1], [No2], [NT], [AF]). In the course of their
investigation some new convergence properties were introduced and some
problems were stressed. Among those problems is the study of products of
Fréchet and, more generally, sequential spaces. It is relatively easy to de-
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stroy Fréchetness by product operation (see [vD], [GMT]) so one has to put
some restrictions on the factors to see subtle phenomena. The most popular
and useful restrictions are compactness and the property to be a topologi-
cal group. Several techniques were developed to study products with some
or all factors being compact (see [A1], [O], [M2]). It was shown that the
product of two Fréchet compact spaces may be non-Fréchet (see [Si], [BR],
[MS]). Properties αi were introduced to obtain theorems about preservation
of Fréchetness in products (see [A1], [A2]). Since then αi-properties have
found several applications in the theory of sequential spaces ([No1], [No2],
[N], [NT]). In particular, for topological groups P. Nyikos proved in [N] that a
sequential topological group is Fréchet if and only if it is α4. D. Shakhmatov
showed ([Sm]) that one can say no more about Fréchet topological groups: in
a model of ZFC obtained by adding uncountably many Cohen reals there ex-
ists a Fréchet non-α3 topological group. As αi-properties play an important
rôle in the study of the product operation and preservation of Fréchetness,
the products of Fréchet topological groups are also of interest. S. Todorčević
in [T] constructed (in ZFC) a pair of σ-compact Fréchet topological groups
whose product is non-Fréchet (even of uncountable tightness).

In Section 2 we construct using CH a pair of countable Fréchet topolog-
ical groups whose product is sequential but not Fréchet. The sequentiality
of the product imposes some restrictions on the factors. For example, at
least one group of the pair is a non-α3-space. Indeed, if both groups were
α3-spaces then so would be their product by [No1, Theorem 2.2] but being
sequential it would be Fréchet by the result of P. Nyikos cited above.

The technique by which that example was obtained is applied to the
construction of a countable Fréchet and α1 topological group containing
no copy of the rationals in the conclusion of Section 2. Being necessarily a
non-first-countable space, it cannot be obtained without extra set-theoretic
assumptions (see [DS]). In fact, slight modification of the technique permits
obtaining a topological field with such properties.

The topology of each group is constructed by induction. At each step a
pair of topologies is considered and the finer topology is coarsened by adding
a new convergent sequence from the usual topology of Q while the coarser
one is refined so that the resulting new pair of topologies remains comparable
and stays between the usual topology of Q and the discrete topology. The
construction is arranged so that the processes of coarsening and refining
come together in a single topology. The properties of the topology thus
constructed are obtained by considering an appropriate pair of topologies
involved in the inductive procedure which “approximate” the topology from
above and below.

Let us recall the terminology used in the study of sequential spaces. A
family S = {Si | i ∈ ω} of sequences converging to a common point x ∈ X
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is called a sheaf , the point x is called the vertex of the sheaf (see [A1]). A
space X is called an α1-space (or X ∈ 〈1〉 in the notation of [A1]) if for every
sheaf there is a sequence S converging to its vertex such that Si \S is finite
for all i ∈ ω. X is called an α4-space if for every sheaf there is a sequence
converging to its vertex which meets infinitely many sequences of the sheaf.
A quotient image of a topological sum of countably many compact spaces is
called a kω-space. A product of two kω-spaces is itself a kω-space (see [M2]).

Put ω(n) = {k | k > n} ⊆ ω. A set σ ⊆ ω2 will be called thin (resp.
small) if for every n ∈ ω the set σ ∩ {n} × ω is finite (resp. σ ∩ ω(n)× ω is
thin for some n ∈ ω). Let σ be a small set and n = min{k | σ ∩ ω(k)× ω is
thin}. Then σ ∩ ω(n)× ω = ess(σ) will be called the essential part of σ.

Consider the set S = ω2 ∪ ω ∪ {ω}. Define a topology on S as follows.
Every point of ω2 is isolated, a typical neighborhood of n is {n}∪ ({n}×ω\
finitely many points), U 3 {ω} is open if (U∩{n}×ω)∪{n} is a neighborhood
of n for every n ∈ U and ω \U is finite. The resulting space is called Arens’
space S2. Another canonical space Sω is obtained from countably many
convergent sequences by identifying their limit points.

Let Q be the set of rationals. Let K = {Kα}α∈A be an arbitrary family
of subsets of Q. Suppose ~a ∈ Qn and ~K ∈ Kn where n ∈ ω \ {0}. Set
〈~a, ~K〉 = 〈(a1, . . . , an), (Kα1 , . . . ,Kαn)〉 = a1 · Kα1 + . . . + an · Kαn ⊆ Q,
where ai ∈ Q. Define Q∞ =

⋃
n∈ω Qn and Q0 = {0}. If K ⊆ Q and

~a ∈ Qn we set ~a〈K〉 = a1 · K + . . . + an · K. If ~a ∈ Q0 then ~a〈K〉 = 0.
Let Q = {bi | i ∈ ω} with bi 6= bj for i 6= j, Q(i) = {bj | j ≤ i} and
Qk =

⋃
i,j≤k(Q(i))j . If a ∈ Q \ {0} let nQ(a) = n provided a = bn, and

nQ(0) =∞ > k for any k ∈ ω. All spaces are assumed to be Hausdorff.
The following simple lemma was proved in [Sh, Lemma 1.1].

Lemma 1.1. A countable nondiscrete sequential topological group con-
tains a closed copy of S2 provided the group is a kω-space.

2. Examples. Lemmas 2.1–2.6 were proved in [Sh, Lemmas 2.1–2.6].

Lemma 2.1. Let K = {Kn}n∈ω be an arbitrary family of subsets of Q.
Then there exists a countable family C(K) ⊇ K such that :

(1) {a} ∈ C(K) for all a ∈ Q,
(2) if ~a ∈ Qn and ~K ∈ C(K)n then 〈~a, ~K〉 ∈ C(K),
(3) if K1 ∈ C(K), . . . ,Kn ∈ C(K) then

⋃
i≤nK

i ∈ C(K),
(4) if K ⊆ K′ and K′ has properties (1)–(3) then C(K) ⊆ K′.

Lemma 2.2. If K = {Kn}n∈ω is a family of compact subsets of Q then
so is C(K).

Lemma 2.3. Let K = {Kn}n∈ω be an arbitrary family of compact subsets
of Q. Introduce a new topology on Q by declaring U ⊆ Q to be open if and
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only if U ∩ F is relatively open for every F ∈ C(K). Denote Q with this
topology as G(K). Then:

(5) if ~a ∈ Qn then the mapping p : G(K)n → G(K), p(~b) = 〈~a,~b〉, is
continuous,

(6) G(K) is a kω-space.

Lemma 2.4. If K =
⋃
β<αKβ and Kβ ⊆ Kβ′ for β ≤ β′ then C(K) =⋃

β<α C(Kβ).

Lemma 2.5. For every family K = {Ki}i∈ω of compact subsets of Q and
every family U = {Ui}i∈ω of open subsets of G(K) one can fix a topology
τ(U ,K) on Q such that :

(a) the mapping p : Qn → Q where p(~a) = 〈~b,~a〉, ~b ∈ Qn, is continuous
in τ(U ,K),

(b) τ(U ,K) is a Hausdorff group topology with a countable base,
(c) Ui ∈ τ(U ,K) for all i ∈ ω,
(d) τ(U ,K) is stronger than the usual topology of Q and weaker than the

topology of G(K), and
(e) if U ⊇ τ0(U ′,K′) then τ(U ,K) is stronger than τ(U ′,K′) where K

and K′ are countable families of compact subsets of Q and τ0(U ,K) is a
fixed countable base at 0 ∈ Q in τ(U ,K).

Lemma 2.6. C(K ∪ {K}) = {⋃i≤k(~ai〈K〉 + Ki) | ~ai ∈ Q∞, Ki ∈
C(K), k ∈ ω}.

We need the following technical definition. Let t : ω2 → Q be an injec-
tion. We shall call t a correct table in G(K) if the following properties hold
with St = t(ω2) and Snt = t({n} × ω):

1(t) t(n, k)→ snt as k →∞ in G(K),
2(t) snt → 0 as n→∞ in G(K),
3(t) Snt ∪{snt } ⊆ Kt

n and {snt | n ∈ ω}∪{0} ⊆ Bt where Kt
n ∈ C(K) and

Bt ∈ C(K).

Lemma 2.7. Let t and u be correct tables, U = {Un}n∈ω be a family of
open subsets of G(K), and K = {Ki}i∈ω be a family of compact subsets of
Q. Suppose that for any F ∈ C(K) the set t−1(F ) is small. Then there exists
an infinite thin subset σ = {σi | i ≥ 1} ⊆ ω2 such that :

(7) u(σi)→ 0 as i→∞ in τ(U ,K) (see Lemma 2.5),
(8) for each ~a ∈ Q∞ and F ∈ C(K) the set t−1(~a〈u(σ) ∪ {0}〉 + F ) is

small.
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P r o o f. Let C(K) = {Fi}i∈ω. Suppose that for some 0 6= a ∈ Q,
{b1, . . . , bn} ⊆ Q, k ∈ ω and ~a ∈ Q∞ the set

(9) u−1
((( ⋃

i≤k
Kt
i ∪Bt

)
−
( ⋃

i≤k
Fi + ~a〈{b1, . . . , bn}〉

))
· a−1

)

is not small. Denote the part (. . .) · a−1 as F ′. Then F ′ ∈ C(K). It easily
follows from (5) that F ′ is a compact subspace ofG(K) and thus the topology
on F ′ inherited from G(K) coincides with that inherited from Q. Thus F ′

is a metrizable compact subspace of G(K). Suppose u−1(F ′) is not small.
Then 1(u) and 2(u) imply that 0 ∈ F ′ ∩ u(ω2). So there exists σ ⊆ ω2 such
that σ = {σi | i ≥ 1} is infinite and thin, u(σ) ⊆ F ′ and u(σi)→ 0 as i→∞
in G(K). Thus u(σi) → 0 in τ(U ,K) by (d). Now for any ~b ∈ Q∞ and any
F ∈ C(K) we have t−1(~b〈u(σ) ∪ {0}〉+F ) ⊆ t−1(~b〈F ′〉+F ) = t−1(G) where
G ∈ C(K). Thus t−1(~b〈u(σ) ∪ {0}〉 + F ) is small by the assumption of the
lemma. So σ satisfies both (7) and (8). Thus we may assume without loss
of generality that every set of the form (9) is small.

It follows easily from 1(u) and 2(u) that if U 3 0 is open in G(K) then
ω2 \ u−1(U) is small. Now choose σk, k ≥ 1, by induction so that:

(10) u(σk) 6∈
⋃

nQ(a)≤k
~a∈Qk

(( ⋃

i≤k
Kt
i ∪Bt

)

−
( ⋃

i≤k
Fi + ~a〈u({σi | i < k}) ∪ {0}〉

))
· a−1,

(11) u(σk) ∈
⋂

i≤k
U i, {U i}i∈ω = τ0(U ,K) (see Lemma 2.5),

(12) σk ∈ Snku , nk+1 > nk.

The preimage under u of the union on the right hand side of (10) is small
by the assumption so using the remark preceding (10) it is easy to choose
σk satisfying (10)–(12). Now by (11), u(σk)→ 0 as k →∞ so (7) holds.

Consider now the set R = ~a〈u(σ) ∪ {0}〉+Fn where ~a ∈ Q∞ and n ∈ ω.
We have ~a = (a1, . . . , ak) for some k ∈ ω. So ~a ∈ Qi(~a) for some i(~a) ∈ ω. The
set A = {〈~a,~b〉 | ~b ∈ {0, 1}k}\{0} is finite, so r = max{nQ(a) | a ∈ A} <∞.
Put M = max{i(~a), r, n}. Now

(13) R = a1 · (u(σ) ∪ {0}) + . . .+ ak · (u(σ) ∪ {0}) + Fn.

Define u(σi) = pi for i ≥ 1 and p0 = 0 and rewrite (13) as

R =
⋃

(i1,...,ik)∈ωk
a1 · pi1 + . . .+ ak · pik + Fn.
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We write i ∈e (i1, . . . , ik) if and only if
∑
iν=i aν 6= 0 or pi = 0. It is easy to

see that if a1 · pi1 + . . . + ak · pik = b ∈ Q then there are {pj1 , . . . , pjk} ⊆
{pi1 , . . . , pik}∪{p0} such that a1 ·pj1 +. . .+ak ·pjk = b and jm ∈e (j1, . . . , jk)
for all m ≤ k. A point (i1, . . . , ik) ∈ ωk is called essential if im ∈e (i1, . . . , ik)
for all m ≤ k. Let Ω ⊆ ωk be the set of all the essential points. It is easy to
check now, using the properties of essential points discussed above, that

R =
⋃

(i1,...,ik)∈Ω
a1 · pi1 + . . .+ ak · pik + Fn.

Set

L =
⋃

(i1,...,ik)∈Ω\{i|i≤M}k
a1 · pi1 + . . .+ ak · pik + Fn

Obviously

~a〈u(σ) ∪ {0}〉+ Fn = R = (~a〈u({σi | i ≤M}) ∪ {0}〉+ Fn) ∪ L.
Let us prove that Smt ∩ L is finite for m > M . Suppose there is m > M

such that Smt ∩ L is infinite. So we have

(14) a1 · pi(1,l) + . . .+ ak · pi(k,l) + f l = t(m,nl)

where nl+1 > nl, f l ∈ Fn and (i(1, l), . . . , i(k, l)) ∈ Ω \ {i | i ≤ M}k.
Suppose that there are s, l ∈ ω such that i(s, l) > m > M . Without loss
of generality assume that i(s, l) = max{i(s′, l) | s′ ≤ k}. Then substituting
every occurrence of pi(s,l) in (14) by p0 = 0, leaving the occurrences of other
pi(ν,l) untouched and thus obtaining pj(ν,l) we have
( ∑

i(ν,l)=i(s,l)

aν

)
· pi(s,l) = t(m,nl)− (f l + a1 · pj(1,l) + . . .+ ak · pj(k,l))

where j(ν, l) < i(s, l) if ν ≤ k and
∑
i(ν,l)=i(s,l) aν = a 6= 0 because

(i(1, l), . . . , i(k, l)) ∈ Ω; moreover, a ∈ A and thus nQ(a) ≤ r ≤ M <
m < i(s, l). It follows that

pi(s,l) ∈
( ⋃

i≤i(s,l)
Kt
i −

( ⋃

i≤i(s,l)
Fi + ~a〈u({σi | i < i(s, l)})〉

))
· a−1

where nQ(a) < i(s, l) and ~a ∈ QM ⊆ Qi(s,l), which contradicts (10).
Therefore

a1 · pi(1,l) + . . .+ ak · pi(k,l) + f l = t(m,nl)

where nl+1 > nl, i(s, l) ≤ m and (i(1, l), . . . , i(k, l)) ∈ Ω \ {i | i ≤M}k. The
set ⋃

l∈ω
a1 · pi(1,l) + . . .+ ak · pi(k,l) ⊆ ~a〈u({σi | i ≤ m}) ∪ {0}〉
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is finite and thus the set

F =
⋃

l∈ω
〈~a, (pi(1,l), . . . , pi(k,l))〉+ Fn

is compact in G(K). But F ∩ Smt is infinite and thus by 1(t) and 3(t) there
is a point

a1 · pi(1,l) + . . .+ ak · pi(k,l) + f = smt = bt ∈ Bt, f ∈ Fn.
Let j = max{i(j′, l) | j′ ≤ k}. Note that since (i(1, l), . . . , i(k, l)) 6∈ {i |
i ≤ M}k, it follows that j > M . Analogously to the consideration of the
previous case we have

( ∑

i(ν,l)=j

aν

)
· pj = bt − (f + a1 · pj1 + . . .+ ak · pjk)

and

pj ∈
(
Bt −

(⋃

i≤j
Fi + ~a〈u({σi | i < j})〉

))
· a−1

where a =
∑
i(ν,l)=j aν , nQ(a) < j and ~a ∈ Qj , which contradicts (10). Thus

Smt ∩ L is finite for m > M , which implies that t−1(L) is small.
Now N = ~a〈u({σi | i ≤M}) ∪ {0}〉 + Fn ∈ C(K) and thus t−1(N) is

small. Then R = N ∪ L and t−1(N ∪ L) is small. Thus (8) also holds. The
lemma is proved.

Let us consider an example of a group G(S). Define S1 = {1 | n ∈ N}
∪ {0} and S = {S1}. Consider the topological group G(S). It is obviously
nondiscrete and is a kω-space by (6). Then it contains a closed copy of S2

by Lemma 1.1. So we can fix an injection t : ω2 → Q such that:

(f) t(n, k)→ snt as k →∞ in G(S),
(g) snt → 0 as n→∞ in G(S),
(h) 0 6∈ St = t(ω2) and 0 6= snt 6= skt 6∈ St if n 6= k,
(i) if Snt = t({n}×ω) then Snt ∪{snt } ⊆ Kt

n and {snt | n ∈ ω}∪ {0} ⊆ Bt
where Kt

n, B
t ∈ C(S),

(j) t(ω2) ∪ {sit | i ∈ ω} ∪ {0} is a closed subset of G(S) homeomorphic
to S2.

Then properties (f)–(g) and (i) imply 1(t)–3(t) so t is a correct table
in G(S). Property (j) implies that t−1(F ) is small for all F ∈ C(S). In all
further considerations t denotes the injection discussed above.

Assume CH. Let {Oα}α<ω1 be all subsets of Q, and {Zα}α<ω1 be all
subsets of Q2. We assume for convenience that O0 = ∅, Z0 = ∅ and Z1 =
{(t(n, k), t(n, k)) | n, k ∈ ω}∪{(snt , snt ) | n ∈ ω}∪{(0, 0)}. Let ω1\0 = Λ0∪Λ1

and Λ0 ∩Λ1 = ∅, with Λν uncountable (ν ∈ {0, 1} here and further on). Let
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{uα}α<ω1 be the family of all the injections uα : ω2 → Q such that every
u ∈ {uα}α<ω1 repeats ω1 times in {uα}α∈Λ0 as well as in {uα}α∈Λ1 .

Lemma 2.8 (CH). For every α < ω1 there exist :

• countable families Kνα of compact subsets of Q,
• countable families Uνα of subsets of Q,
• compact subsets Kν

α of Q,

such that :

(15) Kνα =
⋃
β<αKνβ ∪ {Kν

α}, S1 ∈ Kνα,
(16) if α ∈ Λν and uα is a correct table in G(Kνβ) for some β < α

then Kν
α ⊆ Suα ∪ {0} and u−1

α (Kν
α) is infinite and thin; otherwise

Kν
α = S1,

(17) Kν
α is a nontrivial convergent sequence with limit point 0 in G(Kνα),

(18) if Uν ∈ Uνβ and β ≤ α then Uν is open in G(Kνα),
(19) Uνα ⊇

⋃
β<α τ0(Uνβ ,Kνβ),

(20) for every β ≤ α the topology of G(Kνα) is stronger than τ(Uνβ ,Kνβ),
(21) if Oα is open in G(Kνα) then Oα ∈ Uνα,
(22) Zα is either not closed in G(K0

α)×G(K1
α) or closed in τ(U0

α,K0
α)×

τ(U1
α,K1

α),
(23) for every F ν ∈ C(Kνβ) with β ≤ α the following hold :

(a) t−1(F ν) is small ,
(b) ess(t−1(F ν)) ∩ ess(t−1(F 1−ν)) is finite,
(c) t(ess(t−1(F ν))) is closed and discrete in τ(U1−ν

α ,K1−ν
α ).

P r o o f. Put K0
0 = K1

0 = {S1}, K0
0 = K1

0 = S1 and U0
0 = U1

0 = {∅}. Then
(15)–(23) are easy to check. Suppose the families Kνα, Uνα and the sets Kν

α

are already constructed so that they satisfy the conditions (15)–(23) for all
α < κ. Put

(24) Uν(1) =
⋃
α<κ

τ0(Uνα,Kνα) ∪
⋃
α<κ

Uνα, Kν(1) =
⋃
α<κ

Kνα.

Suppose that Zα is closed in G(K0
(1))×G(K1

(1)). Since Q is countable there
exist countable families {Lνi }i∈ω such that for every i ∈ ω, Lνi is open in
G(Kν(1)), and for any (a, b) ∈ Q2 \ Zα there are i, j ∈ ω such that (a, b) ∈
L0
i × L1

j ⊆ Q2 \ Zα. Put

(25) Uν(2) = Uν(1) ∪ {Lνi }i∈ω.
If Oκ is open in G(Kν(1)) then put

(26) Uν(3) = Uν(2) ∪ {Oκ}.
Otherwise Uν(3) = Uν(2). Consider the families {F iν}i∈ω = C(Kν(1)). By (24),
(15) and Lemma 2.4 every F iν is in C(Kνα) for some α < κ. Now consider
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the families {θνi }i∈ω where θνi = ess(t−1(F i1−ν)). This definition is correct
by induction, (23)(a) and the remark above. It now follows by induction and
(23)(c) that for any i ∈ ω the set t(θνi ) is closed and discrete in τ(Uνβ ,Kνβ) for
some β < κ. Thus by (20), t(θνi ) is closed and discrete in any G(Kνα) where
β ≤ α < κ and thus by (15) in any G(Kνα) with α < κ since (15) obviously
implies that the topology of G(Kνγ) is stronger than that of G(Kνα) for γ ≤ α.
Thus by (24), Lemma 2.4 and the definition of G(Kν(1)) every t(θνi ) is closed
and discrete in G(Kν(1)). Put W ν

a,i = (Q \ t(θνi )) ∪ {a} for a ∈ Q. Now every
W ν
a,i is open in G(Kν(1)). Put

(27) Uν(4) = Uν(3) ∪ {W ν
a,i}a∈Q,i∈ω.

It follows by induction, (24)–(27)(d), (18)–(20) and the construction of Uν(4)
that every Uν ∈ Uν(4) is open in G(Kν(1)). So we can consider the topology
τ(Uν(4),Kν(1)).

Assume without loss of generality that κ ∈ Λ0 and uκ is a correct table
in G(K0

α) for some α < κ. Then obviously uκ is a correct table in G(K0
(1)).

By induction, (23)(a), (15) and Lemma 2.4, t−1(F 0) is small for each F 0 ∈
C(Kν(1)). Then by Lemma 2.7 choose an infinite and thin σ = {σi | i ≥ 1} ⊆
ω2 such that

(28) uκ(σi)→ 0 as i→∞ in τ(U0
(4),K0

(1))

and

(29) for all ~a ∈ Q∞ and F 0 ∈ C(K0
(1)) the set t−1(~a〈uκ(σ) ∪ {0}〉+ F 0)

is small.

Put K0
κ = uκ(σ)∪{0} and K1

κ = S1. Then by (d) and (28), Kν
κ is a compact

subset of Q. Now put Kνκ =
⋃
α<κKνα ∪ {Kν

κ}. Then (15) holds.
Let Uν ∈ Uν(4). Let us show that Uν is open in G(Kνκ). It is enough to

prove that Uν ∩F ν is relatively open (in the usual topology of Q) for every
F ν ∈ C(Kνκ). By Lemma 2.6, (24) and Lemma 2.4 every F ν is of the form

(30) F ν =
⋃

i≤k
~ai〈Kν

κ〉+ Fi

where ~ai ∈ Q∞, Fi ∈ C(Kνα) for some α < κ, and k ∈ ω. Now Kν
κ is compact

in τ(Uν(4),Kν(1)) and by (a) every ~ai〈Kν
κ〉 is compact in τ(Uν(4),Kν(1)). Thus

F ν is compact in τ(Uν(4),Kν(1)) and thus has the topology induced from Q
by (d). But Uν ∈ τ(Uν(4),Kν(1)) by (c) so Uν ∩ F ν is relatively open.

Now let us show that every set of the form

(31) t(ess(t−1(F 0))), F 0 ∈ C(K0
κ),

is closed and discrete in G(K1
κ). Note that ess(t−1(F 0)) exists due to (29),

Lemma 2.6 and the construction of K0
κ. First we have C(K1

κ) = C(K1
(1)).
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So if F 1 ∈ C(K1
κ) then F 1 ∈ C(K1

α) for some α < κ and thus F 1 = Fn1
and ess(t−1(Fn1 )) = θ0

n. Then for any point a ∈ Q there is a neighborhood
a ∈ (Q \ t(θ0

n)) ∪ {a} = W 0
a,n ∈ U0

(4) open in G(K0
κ) by what we have

proved above. Thus t(θ0
n) is closed and discrete in G(K0

κ). So F 0 ∩ t(θ0
n) is

finite. Then t(ess(t−1(F 0))) ∩ t(ess(t−1(F 1))) is finite for all F 1 ∈ C(K1
κ).

So t(ess(t−1(F 0)))∩F 1 is finite for all F 1 ∈ C(K1
κ). Thus t(ess(t−1(F 0))) is

closed and discrete in G(K1
κ).

Consider the family {Va,i}a∈Q,i∈ω where Va,i = (Q\t(ess(t−1(Hi))))∪{a}
and {Hi}i∈ω = C(K0

κ). By what we have proved above every Va,i is open in
G(K1

κ). Put

(32) U0
κ = U0

(4), U1
κ = U1

(4) ∪ {Va,i}a∈Q,i∈ω.
Let Uν ∈ Uνα with α ≤ κ. If α < κ we have already proved that Uν is open
in G(Kνκ). If α = κ then if Uν ∈ Uν(4) we have proved before that Uν is open
in G(Kνκ). Now it follows from (32) that (18) holds. Then (20) is obvious
because if β < κ then by (24) and (e), τ(Uνκ ,Kνκ) is stronger than τ(Uνβ ,Kνβ)
and the topology of G(Kνκ) is stronger than τ(Uνκ ,Kνκ) by (d). If Oκ is open
in G(Kνκ) then it is open in G(Kν(1)) and thus Oκ ∈ Uν(3) ⊆ Uνκ by (26)–(27).
So (21) holds.

If Zκ is closed in G(K0
κ)×G(K1

κ) then it is closed in G(K0
(1))×G(K1

(1)).
Then the construction of Lνi and (25) give that Zκ is closed in τ(U0

κ,K0
κ)×

τ(U1
κ,K1

κ). Thus (22) holds. Now (16), (17) and (19) are obvious. Let now
F 1 ∈ C(K1

α) with α ≤ κ. Then in fact F 1 ∈ C(K1
β) for some β < κ. So by

induction and (23)(a), t−1(F 1) is small. If F 0 ∈ C(K0
α) with α ≤ κ then by

Lemma 2.6, Lemma 2.4 and (15),

F 0 =
⋃

i≤k
~ai〈K0

κ〉+ Fi, where Fi ∈ C(K0
(1)).

Now by (29) each t−1(~ai〈K0
κ〉+ Fi) = t−1(~ai〈uκ(σ) ∪ {0}〉+ Fi) is small so

(23)(a) holds. By the choice of {Va,i}a∈Q,i∈ω and the fact that every Va,i is
open in τ(U1

κ,K1
κ) every set of the form t(ess(t−1(F 0))) where F 0 ∈ C(K0

κ)
is closed and discrete in τ(U1

κ,K1
κ). It follows that t(ess(t−1(F 0))) ∩ F 1 is

finite for all F 1 ∈ C(K1
κ). Thus ess(t−1(F 0)) ∩ ess(t−1(F 1)) is finite for all

F ν ∈ C(Kνκ). So (23)(b) holds. To prove (23)(c) it remains to show that for
every F 1 ∈ C(K1

κ) the set t(ess(t−1(F 1))) is closed and discrete in τ(U0
κ,K0

κ).
This can be proved using the properties of W 0

a,i.

Let us now construct a pair of countable Fréchet topological groups
whose product is sequential but is not Fréchet.

Example 2.9 (CH). Let Kν =
⋃
α<ω1

C(Kνα) where the families Kνα are
constructed in Lemma 2.8. Let τν be the topology on Q defined as follows.
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U ⊆ Q is open in τν if and only if U∩F ν is relatively open for each F ν ∈ Kν .
The following fact follows easily from (20) and the definition of G(Kνα):

Fact. For every α < ω1 the topology τν is stronger than τ(Uνα,Kνα).

Consider now an arbitrary O ∈ τν . Then O = Oα for some α < ω1

and Oα is open in the topology of G(Kνα), which is stronger than τν . Thus
by (21) and (c), Oα is open in τ(Uνα,Kνα). It follows from the Fact and
the above considerations that τν is a common refinement for the family
{τ(Uνα,Kνα) | α < ω1}. So τν is a group topology.

Let Z ⊆ (Q, τ0)× (Q, τ1) be an arbitrary subset. Then Z = Zα for some
α < ω1. Let Z be a nonclosed subset of G(K0

α)×G(K1
α). Then since G(Kνα)

has a kω-topology it follows that G(K0
α) × G(K1

α) is sequential and thus
there is a sequence in Z converging to a point outside Z in the topology of
G(K0

α) × G(K1
α) and thus in the weaker topology τ0 × τ1. If Z is closed in

G(K0
α)×G(K1

α) then Z is closed in τ(U0
α,K0

α)× τ(U1
α,K1

α) by (22) and thus
Z is closed in the stronger topology τ0 × τ1. So τ0 × τ1 is sequential.

Suppose τν is not Fréchet. Then there exists an injection u : ω2 → Q
such that u(n, k) → snu as k → ∞ in (Q, τν) and snu → 0 as n → ∞
in (Q, τν) and there is no sequence in u(ω2) converging to 0 in (Q, τν).
Using the definition of τν we may assume without loss of generality that
u({n}×ω)∪ {snu} ⊆ Ku

n , {snu | n ∈ ω} ∪ {0} ⊆ Bu where Ku
n ∈ C(Kναn) and

Bu ∈ C(Kνα). Let γ = sup({αn | n ∈ ω}∪{α}). Obviously u is a correct table
in G(Kνγ+1). By the choice of uα there exists β ∈ Λν with β > γ + 1 such
that u = uβ . Now by (16) and (17), Kν

β ⊆ Su∪{0} and Kν
β is homeomorphic

to a nontrivial convergent sequence with limit point 0 in G(Kνβ). So Kν
β is

a convergent sequence in the weaker topology τν . A contradiction. So τν is
Fréchet.

Obviously (t(n, k), t(n, k))→ (snt , s
n
t ) as k →∞ in τ0×τ1 and (snt , s

n
t )→

(0, 0) as n → ∞ in τ0 × τ1. Suppose (t(ni, ki), t(ni, ki)) → (0, 0) as i → ∞
in τ0 × τ1. Then we may assume without loss of generality that {t(ni, ki) |
i ∈ ω} ⊆ F 0 ∈ K0 and {t(ni, ki) | i ∈ ω} ⊆ F 1 ∈ K1 for some F 0, F 1. Also,
F 0 ∈ G(K0

α) and F 1 ∈ G(K1
α) for some α < ω1. The set {(ni, ki) | i ∈ ω}

is infinite and thin. Then ess(t−1(F 0)) ∩ ess(t−1(F 1)) ⊇ {(ni, ki) | i ∈ ω},
which contradicts (23)(b). So τ0 × τ1 is not Fréchet. The argument above
also shows that the set Z1 = {(t(m,n), t(m,n)) | m,n ∈ ω} ∪ {(snt , snt ) | n ∈
ω}∪{(0, 0)} is homeomorphic to S2 in the topology induced by (Q2, τ0×τ1)
and the proof of Lemma 2.8 shows that Z1 is closed in (Q2, τ0 × τ1).

In the next example we construct two countable Fréchet topological
groups whose product is not sequential.

Example 2.10 (CH). Let τν be the topologies constructed in the pre-
vious example. Put G0 = (Q, τ0), G1 = (Q, τ1) and G0 = G0 ×Q. Then G0
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can be embedded into G0 × [0, 1] and since G0 is an α4-space by the result
of [N], it follows from [A3, Corollary 5.26] that G0 is Fréchet. The product
G0 × G1 contains a closed copy of S2 as was shown in Example 2.9. Now
S2 × Q is a closed subset of the product G0 × G1. Since S2 × Q is not a
k-space (see [M2]), neither is G0 ×G1.

Let {vα}α<ω1 be the family of all mappings vα : ω2 → Q, and {Pα}α<ω1

be the family of all compact subsets of Q.
The following lemma may be proved by an argument similar to that of

Lemma 2.8 (see [EKN] for a discussion of spaces containing a copy of the
rationals).

Lemma 2.11 (CH). For every α < ω1 there is a convergent sequence
Kα ⊆ Q, a countable family Kα of compact subsets of Q, a subset Dα of Q
and a countable family Uα of subsets of Q such that :

(33) Kα =
⋃
β<αKβ ∪ {Kα} and S1 ∈ Kα,

(34) if for all i ∈ ω, vα(i, j) → 0 as j → ∞ in some G(Kβ) with β < α
then Kα ⊆ vα(ω2) ∪ {0} and {vα(i, j) | j ∈ ω} \Kα is finite for all
i ∈ ω,

(35) if Oα is open in G(Kα) then Oα ∈ Uα,
(36) Uα ⊇

⋃
β<α τ0(Uβ ,Kβ),

(37) if U ∈ Uα then U is open in G(Kα),
(38) the topology of G(Kα) is stronger than τ(Uβ ,Kβ) for β ≤ α,
(39) if there is no finite κ ⊆ Kα such that Pα ⊆

⋃
κ then Dα is an infinite

closed and discrete subset of Pα in τ(Uα,Kα).

Let us now indicate briefly how to construct an α1 and Fréchet countable
topological group which contains no copy of the rationals. Let us recall the
definition of a well known topological invariant. For a topological space K
let K0 = K\isolated points of K, Kα+1 = Kα\isolated points of Kα and
Kα =

⋂
β<αK

β for limit α. Let sc(K) = min{α | Kα = ∅}. It is well
known that sc(K) is well defined for every countable compact space and
that if sc(K1) and sc(K2) are finite for K1,K2 ⊆ Q then sc(K1 ∪K2) and
sc(K1 +K2) are finite. So in the construction of Lemma 2.2 it can be shown
that sc(K) is finite for all K ⊆ Kα.

Example 2.12 (CH). Let K =
⋃
α<ω1

C(Kα) where Kα were constructed
in Lemma 2.11. Define a topology on Q as in Example 2.9. We obtain a
topological group G. The conditions (34), (35) and (38) easily give that G
is α1 and sequential and hence Fréchet. Now it follows from (39) that for
each compact P ⊆ G there is a finite κ ⊆ Kα for some α < ω1 such that
P ⊆ ⋃κ. This implies that sc(P ) is finite. But if G contained a copy of the
rationals it would contain a compact P such that sc(P ) = ω + 1.
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[Sm] D. Shakhmatov, αi-properties in Fréchet–Urysohn topological groups, Topol-
ogy Proc. 15 (1990), 143–183.

[Sh] A. Shibakov, A sequential group topology on rationals with intermediate se-
quential order , Proc. Amer. Math. Soc. 124 (1996), 2599–2607.
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