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The Zahorski theorem is valid in Gevrey classes
by

Jean Schmets (Litge) and Manuel Valdivia (Valencia)

Abstract. Let {2, F, G} be a partition of R" such that (2 is open, F' is F and of
the first category, and G is G5. We prove that, for every v € ]1, 00|, there is an element
of the Gevrey class I'y which is analytic on {2, has F' as its set of defect points and has G
as its set of divergence points.

1. Introduction. Let f be a real C.-function on R™. The set where f
is analytic is of course an open subset of R"; denote it by {2;. It is clear
that x belongs to {2 if and only if the radius of convergence p¢(x) of the
Taylor series of f at x is strictly positive and this series represents f on
some neighbourhood of x.

As the set Ty of x € R™ such that gf(x) > 0 is easily seen to be an
F,-set, the set Fy =T} \ {2 is also F,, and its elements x are characterized
by the fact that p¢(x) > 0 and that the Taylor series of f at x represents
f on no neighbourhood of z. By use of a lemma of R. P. Boas ([1], p. 234),
one easily sees that F'y is also a first category set (cf. [3] or [4]).

Finally, one may consider the set Gy = R™ \ Ty, a Gs-set given by
or(x) = 0.

It is clear that {£2¢,G¢, F¢} is a partition of R™.

The Zahorski theorem (cf. [6]) asserts conversely that for every partition
{2, F,G} of [0,1], where {2 is an open subset of [0, 1], F' is a first category
F,-subset of [0,1] and G is a G-subset of [0, 1], there is a real Co-function
fon [0,1] such that 2 = 2, F = Fy and G = Gy. In [3], H. Salzmann and
K. Zeller have provided a shorter proof of the Zahorski theorem and in [4],
J. Siciak has extended this result to R™.
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The purpose of this paper is to prove that, for every v € ]1,00], the
Zahorski theorem has a solution f belonging to the Gevrey class I7,.

Let us recall that, for an open subset 2 of R™ and for v € |1, 00/, the
Gevrey class I',(§2) is the set of f € Coo(2) for which there are constants
a,b > 0 such that

ID*flle < abl(jal)”, Vo € N
If 2 = R"™, we simply write I, instead of I’,(R").
It is known that
(a) a function f € Cy(§2) belongs to I',(§2) if and only if there are
constants ¢, d > 0 such that
IDflle < cd Va1, Vo e Nj.

(b) the Denjoy—Carleman—Mandelbrojt result (cf. [2]) states that, for
every closed ball b of R™ and every v € |1, 0], there is a nonzero function
f € I, with support contained in b.

In order to get an efficient way to state the results, for a real C,-function
f on R™, let us call the elements of £2; (resp. Fy; Gy) the analytic points
(resp. the defect points; the divergence points) of f.

The purpose of this article is to prove the following result.

THEOREM 1.1. For every partition {2, F,G} of R™, where {2 (resp. F};
G) is an open set (resp. a first category F,-set; a Gs-set) and every vy €
|1, 00, there is an element of I’y having §2 (resp. F'; G) as its set of analytic
points (resp. defect points; divergence points).

Remark. It is a direct matter to check that the Zahorski theorem ex-
tends to the case when R"™ is replaced by an open or a closed subset of R".

2. An auxiliary result. We begin with the following easy result, where,
as usual, D,.(£2) denotes the space of C,-functions on the open subset (2 of
R"™ which have a compact support contained in (2.

PROPOSITION 2.1. Let §2 be a nonvoid open subset of R™. For every
f€Cx(£2), g € Doo(£2) and X > 0, it is well known that

h(z) = 7" 2am | f)g(y)e ™ dy
i0)

belongs to Coo (R™). If moreover ay,as,bi,by >0 and ¢ > 1 are such that
IDflle < arbl™!(jal)¢ and [Dglo < b (Ja])¢, Vo €N,
then
|IDYR|[gn < arag(by + bo)l®(Ja]!)S, Vo € N2,
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Proof. As g has a compact support contained in {2, up to extension by
0 on R™\ 2, we may suppose that the product fg is a D -function on R"
with compact support contained in (2. So in the definition of h(x), we may
consider that we integrate on R"™. Therefore integrating by parts |«| times
gives

Dh(z) =7~ "/A" | D*(fg)(y)e " dy,

Rn
hence
peaa)] < w2 | 3 (5) 07Dt atule e dy
R™ <o
< Z <g)a1azb|15|bza—5(W“)C(a _5“)(

BLla

< ajaz (b + b2)|a‘(|a|!)c‘ =

3. Special compact covers of open subsets of R". In the following
results, we are going to use systematically the following construction and
notations. Let {2 be a nonvoid open subset of R™. Then we set

P =R"\2)U{z € R": |z| >my/n}, VmeN,

and denote by u the first positive integer m for which there is at least one
cube @ of the type

[[i27a;,27(a; +1)] witha € Z"

j=1
contained in {2 and such that d(Q, $2,,) > 27™/n. Let Q1,1,...,Q1,p, be
these cubes (of course, we have p; € N) and set

p1
Hy = U Q1,n-
h=1

Now we proceed by recursion. If the sets Hy, ..., H, are obtained, we let
Qry1,15--+>Qry1,p,., denote all the cubes of the type
n
[[i27" "a;, 27 "(a; +1)] witha € Z"
j=1
contained in {2, disjoint from the interior of H; U ... U H, and such that
d(Q, 2,4+,) > 27#7"y/n. Then we set

Pr+1

Hr+1 - U Qr+1,h-

h=1
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At this point let us remark that

d(Hy, Hpy2) >27#7",  VreNlN
Finally, we set

K.=H,U...UH,., VrelN

It is clear that {K, : 7 € N} is a compact cover of {2 such that K, C K7,
for every r € N.

4. The auxiliary functions v,.. With this construction in mind and
the notations therein, we now prove the following result.

PROPOSITION 4.1. Let 2 be a nonvoid open subset of R™ and ¢ € |1, 00].
Then there are integers c,d € N and functions v,_o € Cs(R™) for r €
{3,4,5,...} such that

(a) Supp(vr—2) - Kr—l—l \ K;),g,
(b) v—o(B") C [0, 1],

(c) vr—2(H,) = {1},
(@) D0, _gllzn < e(22d)l(Jall), Vo € N,

for every integer r > 2.

Proof. Let ¢ be an element of C (R) for which there are {,d > 0 such
that

o(t) >0 if [t| < n~V/227r1,
o(t) =0 if [t| > n~Y227r"4

oIz < 1d*(s)°, Vs €No, {p(t)dt=1.
R

The existence of such a ¢ is provided by the Denjoy—Carleman—Mandelbrojt
theorem (cf. [2]). Then we define

v(x) =p(r1)...0(x,), VreR™
Clearly 1) belongs to Cuo (R™), has compact support equal to [—n~1/227#=4,
n~1/22=1r=4" and satisfies

ID*Y [z < 1*d*N(Jal), Vo eNg, | v(r)de=1.
]R'n,
Now for every integer r € N, we set
L, ={zeR":d(z, H,) <27+ "1,
() = 20727 (27722), Vo e R",
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and note that v,. belongs to C (R™) and has a compact support of diameter
27#=r=1 Then we set

Ur_o(x) = r x x1,.(2) = S Ue(y)xe, (r —y)dy, VreR™
Rn
It is well known or easy to check that the function v,_s belongs to Co, (R™)
and has the properties (a)—(c) as well as

ID%vy 2l < | (D] da < £(supp(¥r))[Dr [l < e(27~2d)! I (|a]t)
Rn

for every a € NI if we set ¢ = ["(n~'/227#73)" a constant which does not
depend on 7 > 2 nor on o € Nj. m

5. Approximation in Gevrey classes and consequences. In the
proof of Theorem 5.2, we shall make use of the following property which
results immediately from the proof of Lemma 5 of [5].

PROPOSITION 5.1 Let r € N and g € D,.(R™). Then, for every € > 0,
there is Ao > 0 such that, for every A > Ao, the function
h(x) =720 § gly)e M0 dy
Rn
belongs to Coo (R™) (in fact, it is analytic on R™) and satisfies
IDYh — D%llgn < e if o <7. m
THEOREM 5.2. Let {2 be a nonvoid open subset of R™ and let , v be

real numbers such that 1 < ( < ~. Then, for every f € I:({2), there is
g € I',(£2) which is analytic on §2 and such that

ID°f =Dl <5 #lal <5 and s> 2,
with Ksy1 defined as in the special compact cover of (2.
Proof. Of course there are numbers a,b > 1 such that
IDflle < ab*l(jaf!)* and [ID%vr—2]lo < a(27720)l(Jaf!)¢

for every integer r > 3 and o € N{.
Now we introduce by recursion a sequence (gs)sen in Coo(R™) such that

ID%gq||lgn < 257 tasFi2lHDIelplal(o|)¢) Vo € N, Vs € N.

At this point, to get the functions g,, we just need to consider a strictly
increasing sequence (\s)sen of |0, oo[ but later on we shall make more strin-
gent restrictions on these positive numbers.

We start with

gu(@) =700 [ u) e e dy, Ve e R
Rn
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where of course v f has been extended by 0 on R™\ (2. By Proposition 2.1,
g1 belongs to Co(R™) and satisfies

ID%ga e < @816/ (jaf)¢ < 200216l (|a]1)¢

for every v € Njj. Now if ¢1,...,gs are obtained, we first remark that we
certainly have

S S
Do (r=3295)|,, <D Flle+ Y IDgslle
j=1

j=1

< ab|a\(|a|!)c +Z2j—1aj+12(j+1)\alb\al(‘a“)c
7j=1

< 2sas+12(s+1)\a|b\a|(’a“)c

for every a € N and then check by direct use of Proposition 2.1 that the
function gs41 defined by

gsy1(w) = W_n/z)\gﬂ S Vst1(y) <f(3/) - Zgj(y)>e—’\s+1lw—yl dy
R™ j=1

suits our purpose.
Of course we have

o3
j=1

< 931 4d+1o(+Dlalplal (| 1)¢
o S ]ZI a (lex!)

< 28a8+12(8+1)|a|b|a|(’a“)C

for every s € N and o € Nj.

With this majorant at our disposal, we are in a position to make a more
precise (but not yet final) choice of the numbers s (we are free to take them
larger but strictly increasing). As we have

28gsT1g(sHDlalplal(|o1)<

lim =0, VseN,

|at] — o0 (|Oé|')’Y

there is a strictly increasing sequence (Ag)sen in N such that, for every
s €N,

28gstiolsHblalplal(o|NC < (Jafl)Y  if || > A,.
Then we can also fix a strictly increasing sequence (Bs)sen in N such that

sup a(2°0)1(|a) < B,, VseN.
la<As

Next we introduce the following elements of D, (R™):

_ Jui(x)f(z), Vre s,
hl(x)_{o, Yz e R™\ £,
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and, for every integer s > 2,

_ [o@)(f(2) = X521 g5(), Vr e,
hS(m)_{o, ’ Vo e R\ £2.

Finally, by recursive use of Proposition 5.1, we may require that the numbers
As are such that, for every s € N,

D% — DY ||lrn < (2572 A41B, )7L if o < Ay,

Now we consider the series

= ng(x), Vx € §2.
s=1

We first prove that g is defined and belongs to Co(£2). Indeed, for every
s € N and every a € NjJ such that |a| < Agyq1, we get

« @ a— -
0% hsilns < 3 (5) 1070 072 (1 = )
j=1

BLla
SZ<>2MWWWMWHM%M>1
*) B<a

< Z < > 25+2+A§+1B ) 1

BLla

In...

< 2 S— 2—A5+12|OL| < 2—8—2

(at (%), we have used the fact that f — 2;21 gji = hs —gs on Heio). As
vs11(x) = 0 for every x € K11, we get

IDYhst1llk..n <2752 if s € Nand |af < Agiq,
hence

||Dags+1HKs+2 <|[[D%gs41 — D%s1lle + ||Dahs+1||Ks+2
< (2S+3+As+2Bs+2)—l + 2—8—2 < 2—5—1

for every s € N and o € Njj such that |a] < Agsy;. Now it is clear that
g € Coo(92).

We establish next that g satisfies the inequalities announced in the state-
ment of the theorem—in fact, we are going to prove more. Consider an inte-
ger s > 2 and a multi-index o € Njj such that |a| < As—this is certainly the
case if |a| < s. For every zo € 2\ K41, there is a first integer p > 2 such
that zg € K,4p. According to the last established inequality, we of course
have

ID%Gsir(z0)| <27°7", Vre{p—1,pp+1,...}.
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As vs1p_o(Hsyp) = {1}, we also get

s+p—2
D*f(xo) =D* Y gj(fUO)‘ = [D%hstp—2(x0) — D*gstp—2(x0)| <2777,
j=1
Thus
s+p—2 0o
[D* (o) = Dg(w0)| < [D*f(20) =D* Y gj(ao)| + D D gesr(ao)
j=1 r=p—1
> 1
< 9—s~P Z 9—s—T < 2—s—p_|_2—s—p+2 <=,
s
r=p—1
and hence

1
ID*f —D%llo\k.., <~ ifs>2and|a] <A,
s

At this step, if we proceed as in the proof of Lemma 6 of [5], we see that
it is possible to select successively the numbers A in such a way that g is
an analytic function on 2. (This is our last refinement on the choice of As.)

We still have to prove that g € I',(2).

Set

sup [|ID%gl[ks/(|a|))” = a1
la| <A

and consider o € N and z € (2.
On the one hand, if |a| < Ay and

(i) if z9 € K3, we trivially have
ID%g(z0)| < D9k, < ar([al]!)?,
(ii) if o € 2\ K3, we get
[D%g(z0)| < [D*f(x0)] + [D*f(x0) — D¥g(x0)]
< ablol(jaf))¢ + % < 2abl°l(Ja1)".
Hence there are constants ag, by > 0 such that
ID%glle < azbs(Jalt)  if |a] < Ay,

On the other hand, if || > Ay, we first let s be the integer such that
As < |a) < Agqq (of course s > 2) and then consider the following two
possibilities:

(i) if zp € 2\ K42, then we have at once
[D%g(o)| < [Df(0)| + [D*f(20) — D*g(0)]

1
< abl®l(ja|N¢ + g 2abl°! (Ja|!)7,
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(ii) if g € Ksy2, we have |D%gsyr(x0)| < 27577 for every r € N, hence

o0 oo
> D%air(mo)| <Y 27T =277,
r=1 r=1

But we also have

S
‘Dﬁzgg’(xo)‘ < 25¢°H12HDIBIBIAI(| B|1)¢
j=1
for every # € Nj and s € N, hence
S
D3 gi(@0)| < (lalt)”
j=1
since |a| > Ag. Therefore
S o0
D g(x0)] < [D*3 05w0)| + 3 IDgurr(0)] <27 + (Jalt)” < 2([al1)".
j=1 r=1

Consequently, there are constants asz, b3 > 0 such that
ID%gllo < asb(Ja))?  if |a] > Ay w

COROLLARY 5.3. For every open and nonvoid subset 2 of R™ and v €
|1, 00, there is a function g € Iy, which is

(a) analytic on 2,

(b) identically 0 on no connected component of (2,

(c) flat on R™\ 2 (i.e. identically O together with all its derivatives on
R™\ 02).

Proof. If 2 is connected, we choose ( € |1,7[ and f € I(£2) with
compact support contained in K§ \ K3 and such that || f|| > 1/2. Then
Theorem 5.2 provides g € I, (§2) which is analytic on {2 and such that

1 .
ID*f =Dl <5 iflal <2
(which implies that g is not identically 0 on 2) as well as
(7 (e} « 1 .
ID*gllovi.., = D% =D fllavk.., < < iffof <sands>3.

It is then well known that extending g by 0 on R™ \ {2 provides a solution.
If 2 has a finite number of connected components—say 21,...,$2,,—
then, for every k € {1,...,m}, there is g, € Iy which is analytic on (2, not
identically 0 on §2; and flat on R™\ 2. It is then clear that g = >_;* | gx is
a solution.
As (2 always has countably many connected components, to conclude,
we just have to settle the case when {2, : m € N} is the set of connected
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components of {2. For this purpose, fix { € ]1,~v[. By the first part of the
proof, for every m € N, there is g,, € I which is analytic on (2,,, not
identically 0 on (2,,, flat on R™ \ §2,,, and such that

.
”DagmH(Zm\Km,SjL1 < 5 if \a\ < sand s> 2,

where of course K, , is the rth element of the special cover of §2,,. So, for
every m € N, there are constants a,,, b,, > 1 such that

DG ||rn < ambl@!(|a|D)S, Vo € N,
hence there is an integer k,,, > m such that
ambyp (o) < () if o] = ki

Then we set

em=( sup ambl(a|N¢)™r and g = Z 27" G-
la|<km —
It is clear that g is a function defined on R™ which is analytic on {2, identi-
cally 0 on no connected component of {2 and identically 0 on R™\ 2. Now we
prove that g belongs to Co(R™) and is flat on R™\ §2. Let x € R™\ {2. For ev-
ery integer k > 3, there is r > 0 such that the ballb = {y e R" : |[x —y| < r}
is disjoint from the compact sets K1 jy1, ..., Ki k1. For every a € Njj such
that |a| < k, this leads to
oo

sup Z 2imcm|Dagm|
€D m—1

27" e
< sup{ sup TC, sup 2_mcm||D°‘gmH1Rn} < sup{1/k, 2_k},
m<k m>k

hence g belongs to Co(R™) and is flat on R™ \ 2. We still have to prove
that g € I’y. This is immediate: for every o € Njj, we have

ID%glrn = su%Q‘mcmllDagmllu«n < Su%sup{f’"ﬂ‘m(lal!)”} < (laft)?
me me

by consideration of the cases |a| < ky,, and || > ky,. m

COROLLARY 5.4. For every v € ]1,00[ and nondegenerate compact in-
tervals I, J of R such that J C I°, there are f € Coo(R) and ¢ > 0 such
that

(a) f has no divergence point,

(b) f(R) C [0,1],

(c) FR\T) ={0}, f(I°) C]0,1] and f(J) = {1},
(d) [[f® | < ck*, vk € N.
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Proof. Let I = [a1,b1] and J = [ag, ba]. We choose ¢ € |1,v[ and apply
Corollary 5.3 with {2 = a1, as]: there is a nonzero g € I+ which is analytic
on ]a, az| and such that supp(g) = [a1, a2]. Now we choose k > 0 such that
g1 = kg? satisfies {r 91(z) dr =1 and define the function f; on R by

filz)= | a)dt, VeeR

It is clear that fi belongs to I¢, is analytic on ]ay, as[ and satisfies

fil=oo,a1]) = {0}, fi(la1,a2[) €]0,1] and  fi([az,00]) = {1}.
So it is clear that f; has no divergence point.

Similarly there is fa € I'- which is analytic on ]bg, b1 [, has no divergence
point and satisfies

fa(]=00,b2]) = {0}, fo(lb2,b1]) €0, 1] and  fa([br, o0f) = {1},
Finally, we set
f(f]?) =f (:E)fg(bl + by — .T), Vo € R.

Of course f belongs to I and satisfies (a)—(c). Let us establish that f also
satisfies (d). As f € I, there are a,b > 0 such that

|F g < ab®kS*,  VE € Ny.
Since

. abFkek
k:li»H;o Kh

there is kg € N such that ab*k¢* < k7* for every k > ko; therefore there is
¢ > 0 such that

9

If®|g < k™, VkeN. m

PROPOSITION 5.5. Let v € |1, 00], let p € N and let I, J be nondegenerate
compact intervals of R such that J C I°. Then there is mg € N such that,
for every integer m > myg, there is a function u € C(R) satisfying the
following conditions:

(a) u has no divergence point,

b) supp(u) C I,

c) |luP|r <27™, Vk €{0,1,...,m},
d) [|u® | < 2FK7F) VE € N,

e) for every x € J, one has either

’u(pm) (z)] > 5=y Y (p—=1)m

(
(
(
(

or

()] 2 5 (P

y(p—1)(m+1/p)
p+1 > '
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Proof. Corollary 5.4 provides a function f € Co(R) and a constant
¢ > 0 such that f has no divergence point and satisfies

fR) C[0,¢],  fRNT) =A{0},  f(J)={1}
as well as
17 ¥ ||g < k¥,  VkeN.
For any m € N, we can introduce
a=m", b= (22"em?™)" !,
u(z) = bf(x)sin(azx), VzeR.

It is then clear that u is a Cyo-function on R satisfying the conditions (a)
and (b) as well as

|ullg < be=(22"m¥™)~t <27™,

Moreover, for every = € R and k € N, we have

k
h=0

k
<be) Cj) RYhgE=h < (22mm™) "L (KY 4 a)F,
h=0

hence
u) (@) < @) T 4w =27 1<k <m
as well as
[ @) < @2mm ™) 7T + ) <2k > m;

i.e. u also satisfies the conditions (c) and (d).
Now we investigate (e). Let « € J. Of course we have

u® (z) = a*bsin(kr/2 + ax), VkeN.
Now, for every m € N, we certainly have
sup{|sin(pmm /2 + az)|, |sin((pm + 1)7/2 4 azx)|} > 2712,
So on the one hand, if [sin(pmm/2 + az)| > 2712, we get
|u(pm) (z)] > 9=1/2 pmy 4—m(\/ﬁc)—lﬂﬂb'v(fo—l)m7
and on the other hand, if [sin((pm + 1)7/2 + ax)| > 27/2 then
|u(pm+1)(x)’ > 9 1/2gpmtly 4—m(\@c)—1m7((’p—1)m+l)
> 4= mH1/P) (/9¢) LY (P= D (m+1/p)

> 4—(m+1/p)(\f20)—1 <pm +1

y(p—1)(m+1/p)
p+1 ) ‘
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To conclude, it is enough to take as mg any positive integer mg such that
sup{4(v/2¢)1/™0 4(\/2¢)1/ (Mo+1/PY < 5w

6. Characterizing the sets of divergence points. In this section,
we establish the following result.

THEOREM 6.1. For every v € |1, 00[ and every Gs-subset G of R™, there
is an element of I’y having G as its set of divergence points.

Proof. We proceed in several steps.

Step 1: the numbers v; and p;j. We fix a strictly increasing sequence
(75)jen, C ]1,7] and, for every j € N, denote by p; a positive integer such
that p;(v; —vj-1) > ;-

Step 2: some auxiliary inequalities and the numbers q,.. For every r €
N, we certainly have

Dr — 1

T

Y > Vo1 > ... > > 1.

Therefore, for every j € {0,...,r — 1}, it is a straightforward matter to
check the following limits:

1
; meo2prm Yjprm
(1) mlgnoo5 2 (prm) ! mr(pr—1)m
4. 1/pra Vi prm
= Lim > —0,
m—oo \ mY¥r(Pr—1)/pPr—7;

, + 1 Yr(Pr—1)(m+1/p;)
2 l 5m+1/pr22(prm+1) 1 Y3 (pv‘m+1) p’l"
@ lim (pym-+1) et

=0,

m—00

4.54/Pr (p,. 4 1) @r=1)/pr prm+l
= lim
( (prm + 1)’77'(p'r'_1)/p7'_7]' )

1
. m pPrm pPrm _
® 5 s gL

) <51/Prnrpzr(prl)/pr>p'rm <me+ 1>prm
= lim —_— =0,

m—oe (prm)’YT(pr—l)/pr_l me
r(pr—1 +1/p,
(4)  lim 5™ FVPr ()Pt (pm 4 2)Prm prtl b=t /o)
T ' prm +1

= lim

m—0o0

5Y/Penp(py + 1)V ®r=D/pe \PrtL o g g\ Pt 0
( (prm + 1)y (Pr=1)/pr~1 ) (Prm 4 1> e
With these limits at our disposal, we find that, for every r € N, there is

¢r € N such that, for every integer m > ¢, and j € {1,...,r — 1}, we have
the following auxiliary inequalities:
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(I) 4 : 22me(prm)’y‘7me < 5_mm77‘(pr_1)m,
A1) 4. 22ermAD) (p gy 4 1) (Prmetd)
< 5=(m+1/pe) (prm“
prt+1
(D) (nr)™ (p,m + 1) < 5= e e =1,

)

>'Yr(p7‘_1)(m+1/p’r)

prm 4+ 1
pr+1

Step 3: the sets Gy, Qr, P, I and J, ;. Being a Gs-subset of R", G
is equal to the intersection of a sequence (G);en of open subsets of R™ that
we may suppose decreasing.

Vr(pr—1)(m+1/p,)
(IV) (nr)prerl(me_}_Q)prerl < 5(m+1/pr)< ) .

Proceeding as in the construction of the special compact cover of an
open set, we find that each G; is the union of countably many compact
cubes @, that we may renumber as a sequence, say (Qir)ren. Then
for every [,k € N, we denote by P, the compact cube in R™ having the
same center as (), and %diam(QM) as diameter. Now we arrange N? into
a sequence ((I,, ky))ren, set

Qr=Qik and P.=PF 5,

and let I, ; and J,; for j € {1,...,n} be the compact intervals in R such
that

Qr = ﬁ Jr,j and PT = ﬁ IT,j‘
j=1 i=1

Of course this construction leads to J,; C I7; for every r € N and
jed{l,...,n}.

Step 4: the functions u,; and the numbers m,. At this point, every-
thing is set up to introduce the functions u, ; for r € Nand j € {1,...,n},
as well as the sequence (m,),en of N by the following recursion.

An application of Proposition 5.5 to v = 1 and p = p; leads to an
integer m; > ¢ and to functions uj1,...,u;,, € Co(R) such that, for
every j € {1,...,n},

(a) u1,; has no divergence point,

b) supp(u1,;) C I1 5,

©) llufy e <27, Vk € {0.1,... ma},
d) [[ui|le < 2%k7k, Yk € N,
e) for every t € Jy ;, one has either

(
(
(
(

(p1ma) t)] > 5—m1m’171 (p1—1)my

|U1,j
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or
—1)(m1+1
(p1mi1+1) —(ma+1/py) [ P11+ 1 M=) (matl/p)
Uy )] =5 1 -
7 p1+1

Now, for an integer r > 2, if the functions w; ; for t € {1,...,r — 1}
and j € {1,...,n} and the integers m;,...,m,_; are obtained, we ap-
ply Proposition 5.5 to v = 7, and p = p, and obtain an integer m, >
sup{pr—1my_1,¢,} and functions u, 1, ..., ur, € Co(R) such that, for ev-

ery j € {1,...,n},
(a) u,; has no divergence point,
b) supp(ur;) C Iy,
) ) |g < 277, WE € {0,1,...,m,},

C T7]
d) [ul||le < 27, Vk €N,

(
(
(
(e) for every t € J, ;, one has either

\uﬁfo;m’")(tﬂ > 5_m7‘mzr(p'r‘_1)m7‘
or

Pt () > 5 met 1) <Prmr+1

" pr+1

Step 5: the functions u, and w. Finally, for every r € N, we define,

>7r(PT1)(mr+1/pr)

Ur(x) = up1 (1) ... Upn(xy), VaeR"?,

and consider the series u = > °”, u,. For every k € N, we certainly have
k < my,. Therefore, for every a € N,
oo o0

Y ID%uee < Y 27 <

r=sup{l,|a|} r=sup{1,|a|}

this implies that u is a bounded C-function on R”. Moreover, for every
a € N} such that |a| > 1, we have

la -1 o0
ID%ufln < Y D% urllze + D ID urllge
r=1 r=|al
la] -1
< Z oled|glel 11 < slel|glel,
r=1

hence u € I’,.

To conclude, we prove that G is the set of divergence points of .

On the one hand, if z € R" does not belong to G, then = & G, for some
lo, hence z ¢ G for all | > ly. This implies that = belongs to an at most
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finite number of the P,’s. Therefore for r large enough we have D%u,.(z) = 0
for every a € Njj and clearly x is not a divergence point of w.

On the other hand, let us prove by contradiction that every element of
G is a divergence point of u. Suppose that z € G is not a divergence point
of u. This implies the existence of s € N such that

IDu(a)| < sPB|P1 it |5] > 1.
As x belongs to each (G, there is an integer r > 3s such that x € Q),; in
particular, z; € J, ; for every j € {1,...,n}.

Fix j € {1,...,n}. The consideration of the property (e) leads to the
following two possibilities.

Case 1: We have
(*) ’ugf;mr)(xj)‘ Z 5_m7“m;?’"(p’“_l)mr‘

Then we set a;j = p,m, and remark that

(1.1) the auxiliary inequality (III) leads to
[y ()] 2 ()™ (0 4+ 1),

(1.ii) the use of (I) in (x) leads to

Z|u(ag) :L’] |+ Z |u( 7)

t=r+1
< ZQaJaWJ + Z 2 M < 222!’”’% prmy) TP
t=r+1
17‘71 ( )
<7 2 prmr5 ez ’Yr(pr—l)mr < J .

Case 2: (%) does not hold. Then we have

)

WD ()] 3 5O/ <pm+1

'YT'(p'r'_l)(mT"‘l‘l/pr)
)

we set a; = p,m, + 1 and remark that
(2.1) the auxiliary inequality (IV) leads to
[l (@) > (nr)® (o + 1),

(2.i1) the use of (II) in (*) leads to
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T—

i @)+ Yl (@))]

t=1 Pari
= r—1
< ZQaJoﬂtch + Z 27 < 2Z2prmr+1(p M, + 1)%(prmr+1)
t=1 t=r+1 o
r—1 o ) )
<1 Qf(prmr+1)57(mr+1/pr) <Prmr+1>’y (pr—1)(myr+1/pr)
(;)2 =1 prt+1

So setting a = (o, ..., ) yields

ID%u(z)| > |Du,(z)| —Z_:ID“%(@”)! — Y Dux)

t=r+1
n
> |Du, (z ’_H (Zw(an z)| + Z |u(ag) )
t=r+1
« J 1 @
> (D% )]~ [T )= S0 ).

j=1
For every j € {1,...,n}, as a; belongs to {m,p,, m,p, + 1}, we certainly
have o; + 1 > |a|/n. Therefore

1 1 .
D u(@)| > D% (@)] = 5 [ Il (@)

1L | 1 la\! 1
> 2};[1(117“)0‘] (aj +1)% > 5(7”““)‘0‘| el 57“|0l||04||0l|

and finally, as we have chosen r > 3s, we arrive at the following contradic-
tion:

1
|IDYu(x)| > 5(33)'“'\@\'“' > s'“‘]a\la‘. n

7. Proof of Theorem 1.1. We first fix some ¢ € ]1,~[. We next apply
Theorem 6.1 to get u € Iy having G as its set of divergence points. We then
apply Theorem 5.2 to get h € I',(R™ \ G7) which is analytic on R" \ G~
and such that

1
[D%u — DAl mm\a-N\Koyr < = ifJal <sand s > 2
s

(where of course Ky is the sth compact set corresponding to the special
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compact cover of the open set R™ \ G7). So the function

on u(zr) ifzeG,
JiRE=R, v {h(az) if o € R\ G-,
belongs to I, is analytic on R™ \ G~ and has G as its set of divergence
points.

We now apply Corollary 5.3 to get g € I’y which is analytic on {2, iden-
tically 0 on no connected component of 2 and flat on R™\ (2; in particular,
g has no divergence point.

To conclude one just has to check that the function f + ¢ suits our
purpose: f+ g certainly belongs to I, is analytic on {2 (since 2 C R"\G™)
and has G as its set of divergence points. Moreover, no point x of F' can be
a divergence point (since F' and G are disjoint), nor an analytic point (this
would imply that f + ¢ is analytic on some open ball b centered at x; this
in turn implies that b and G are disjoint, so f must be analytic on b; finally,
g is analytic hence flat on b, contrary to the fact that x must belong to the
boundary of {2). m
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