
FUNDAMENTA
MATHEMATICAE

151 (1996)

On a discrete version of the antipodal theorem

by

Krzysztof O l e s z k i e w i c z (Warszawa)

Abstract. The classical theorem of Borsuk and Ulam [2] says that for any continuous
mapping f : Sk → Rk there exists a point x ∈ Sk such that f(−x) = f(x). In this note a
discrete version of the antipodal theorem is proved in which Sk is replaced by the set of
vertices of a high-dimensional cube equipped with Hamming’s metric. In place of equality
we obtain some optimal estimates of infx ‖f(x) − f(−x)‖ which were previously known
(as far as the author knows) only for f linear (cf. [1]).

We introduce standard notation: k and n will denote positive integers,
Ckn = {x ∈ [−1, 1]n : #{i : |xi| = 1} ≥ n − k} will stand for the
k-dimensional skeleton of the cube C = [−1, 1]n equipped with the stan-
dard CW-structure. Let Cn = C0

n = {−1, 1}n. We consider Hamming’s
metric d on Cn defined as d(x, y) = #{i : xi 6= yi}. (Xk, ‖ · ‖) will stand
for a normed k-dimensional linear space. By Sk (resp. Bk+1) we denote the
unit Euclidean sphere (resp. ball) with centre at zero in Rk+1.

This is the main result of the paper:

Theorem 1. Let f : Cn → Xk satisfy the following two conditions:
f(−x) = −f(x) and ‖f(x)− f(y)‖ ≤ d(x, y) for any x, y ∈ Cn. Then

(i) there exists x ∈ Cn such that ‖f(x)‖ ≤ 1
2 min(k, n),

(ii) if the norm is Euclidean then there exists x ∈ Cn such that

‖f(x)‖ ≤ 1
2

√
min(k, n).

The examples of Xk = lk1 and Xk = lk2 with

f(x1, . . . , xn) = 1
2 (x1, . . . , xmin(k,n), 0, 0, . . . , 0)

indicate that the constants cannot be improved.
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Corollary 1. Let g : (Cn, d)→ (Xk, ‖ · ‖) be such that

‖g(x)− g(y)‖ ≤ d(x, y)

for any x, y ∈ Cn. Then there exists z ∈ Cn such that ‖g(z) − g(−z)‖ ≤
min(k, n).

This antipodal version follows from Theorem 1 when we set f(x) =
(g(x) − g(−x))/2. In fact, one can easily see that Theorem 1(i) and Corol-
lary 1 are equivalent. Therefore we will be interested only in the “anti-
symmetric” case.

Theorem 1(i) is trivial if n ≤ k. If n < k then (i) easily follows from (ii),
because for any k-dimensional linear normed space (Xk, ‖ · ‖) there exists a
Euclidean norm | · | such that |v| ≤ ‖v‖ ≤

√
k|v| for any v ∈ Xk. Therefore

the proof will be devoted to the Euclidean case.
We will need two lemmas.

Lemma 1. If k < n then there exists a continuous mapping hk : Sk → Ckn
such that hk(−x) = −hk(x) for any x ∈ Sk.

P r o o f. As the homotopy group πi depends on the (i + 1)-dimensional
skeleton of the CW-complex only, we know that πi(Ckn) = πi(C) = 0 for
any i < k. We inductively construct continuous mappings hi : Si → Ckn for
i = 0, 1, . . . , k such that hi(−x) = −hi(x) for any x ∈ Si. We choose the
function h0 arbitrarily, just to keep anti-symmetry (S0 = {−1, 1}). Assume
hi−1 is well defined, continuous and anti-symmetric. Since πi−1(Ckn) = 0,
there exists a continuous function Hi : Bi → Ckn such that Hi(x) = hi−1(x)
for any x ∈ Si−1 = ∂Bi. Let Gi : Bi → Ckn be defined as Gi(x) = −Hi(−x).
For x ∈ Si we put hi(x1, . . . , xi+1) = Hi(x1, . . . , xi) if xi+1 ≥ 0 and
hi(x1, . . . , xi+1) = Gi(x1, . . . , xi) if xi+1 ≤ 0. This completes our induction
as hk satisfies the desired conditions.

Lemma 2. If k < n and F : Ckn → Xk is continuous and such that
F (−x) = −F (x) for any x ∈ Ckn then there exists z ∈ Ckn such that
F (z) = 0.

P r o o f. Let hk be defined as in Lemma 1. The function F ◦ hk : Sk →
Xk is continuous. Recall that dim Xk = k. Therefore by Borsuk–Ulam’s
Theorem

F (hk(x)) = F (hk(−x)) = F (−hk(x)) = −F (hk(x))

for some x ∈ Sk. Hence z = hk(x) satisfies the desired conditions.

The proofs above were given for the sake of completeness and because
of their simplicity, but it should be noticed that they are only special cases
of well known, far more general topological theorems (cf. [3]).
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P r o o f o f T h e o r e m 1(ii). First consider the case k < n. Let
f̂ : C → Xk be defined by the formula

f̂(x1, . . . , xn) =
∑

y∈Cn

( n∏

j=1

1 + yjxj
2

)
f(y).

One can easily see that f̂ |Cn = f and ∂2f̂/∂x2
i = 0 for i = 1, . . . , n

(i.e. the function f̂ is affine with respect to each variable). The function
F = f̂ |Ckn satisfies the conditions of Lemma 2, hence F (z) = 0 for some
z ∈ Ckn. This is the crucial point of the proof. Without loss of generality
we can assume that |zk+1|, . . . , |zn| = 1 and define G : [−1, 1]k → Xk by
G(x1, . . . , xk) = F (x1, . . . , xk, zk+1, . . . , zn). For any i ≤ n and x ∈ C by
the triangle inequality we have

‖f̂(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f̂(x1, . . . , xi−1,−1, xi+1, . . . , xn)‖
≤

∑

y∈Cn,yi=1

(∏

j 6=i

1 + yjxj
2

)
‖f(y1, . . . , yi−1, 1, yi+1, . . . , yn)

−f(y1, . . . , yi−1,−1, yi+1, . . . , yn)‖ ≤ 1,

since
∑

y∈Cn,yi=1

(∏

j 6=i

1 + yjxj
2

)
= 1

for any x ∈ C and d((y1, . . . , yi−1, 1, yi+1, . . . , yn), (y1, . . . , yi−1,−1, yi+1, . . .
. . . , yn)) = 1 for any y ∈ Cn.

Therefore for any i ≤ k and x ∈ [−1, 1]k we have

‖G(x1, . . . , xi−1, 1, xi+1, . . . , xk)−G(x1, . . . , xi−1,−1, xi+1, . . . , xk)‖ ≤ 1.

Consider independent real random variables Y1, . . . , Yk such that P (Yi = 1)
= (1+zi)/2, P (Yi = −1) = (1−zi)/2 for i ≤ k. As EYi = zi and ∂2G/∂x2

i =
0 for i ≤ k (G is affine with respect to each variable), we have

E‖G(Y1, . . . , Yk)‖2

=
1 + zk

2
E‖G(Y1, . . . , Yk−1, 1)‖2 +

1− zk
2

E‖G(Y1, . . . , Yk−1,−1)‖2

=
1 + zk

2
E‖G(Y1, . . . , Yk−1, zk)

+ (G(Y1, . . . , Yk−1, 1)−G(Y1, . . . , Yk−1, zk))‖2

+
1− zk

2
E‖G(Y1, . . . , Yk−1, zk)

+ (G(Y1, . . . , Yk−1,−1)−G(Y1, . . . , Yk−1, zk))‖2
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=
1 + zk

2
E

∥∥∥∥G(Y1, , . . . , Yk−1, zk)

+
1− zk

2
(G(Y1, . . . , Yk−1, 1)−G(Y1, . . . , Yk−1,−1))

∥∥∥∥
2

+
1− zk

2
E

∥∥∥∥G(Y1, . . . , Yk−1, zk)

− 1 + zk
2

(G(Y1, . . . , Yk−1, 1)−G(Y1, . . . , Yk−1,−1))
∥∥∥∥

2

= E‖G(Y1 . . . , Yk−1, zk)‖2

+
1− z2

k

4
E‖G(Y1, . . . , Yk−1, 1)−G(Y1, . . . , Yk−1,−1)‖2

≤ E‖G(Y1, . . . , Yk−1, zk)‖2 +
1
4

(by easy induction)

≤ ‖G(z1, . . . , zk)‖2 +
k

4
=
k

4
.

Hence there exists y ∈ {−1, 1}k such that ‖f(y1, . . . , yk, zk+1, . . . , zn)‖ =
‖G(y1, . . . , yk)‖ ≤

√
k/2, which proves (ii) if k < n. In the case n ≤ k

we deal with f̂(x1, . . . , xn) instead of G(x1, . . . , xk) (then Lemmas 1 and 2
are unnecessary since f̂(0) = 0 follows just from the anti-symmetry of f)
and the rest of the proof is essentially the same, so that we omit it. This
completes the proof.

Corollary 2. If (Xk, ‖·‖) = lkp for p ∈ [1, 2] then under the assumptions
of Theorem 1 there exists x ∈ Cn such that ‖f(x)‖p ≤ k1/p/2.

To see this notice that ‖v‖2 ≤ ‖v‖p ≤ k1/p‖v‖2 for any v ∈ Rk.

Corollary 3. Let P be a convex , centrally symmetric polytope in Rn
and let P0 be the set of its vertices. Let (Xk, ‖ · ‖) be a normed linear space
of finite dimension k < n. We will say that x ∼ y for x, y ∈ P0 if there
exists a k-dimensional face of P containing x and y. Then for any function
g : P0 → Xk there exists z ∈ P0 such that

‖g(z)− g(−z)‖ ≤ 2 max
x∼y; x,y∈P0

‖g(x)− g(y)‖.

We sketch a proof which is just a modification of the proof of Theorem 1.
Instead of Ckn we consider the k-dimensional skeleton of P . After obvious
changes Lemmas 1 and 2 remain valid. Then we define a continuous function
f̂ by induction: f̂ |P0 = g and f̂ is harmonic (i.e. each of its coordinates is)
inside any i-dimensional cell of P for i = 1, 2, . . . Then Corollary 3 follows
from the maximum property of harmonic functions.
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Theorem 2. Let p ∈ [1, 2]. If (Xk, ‖ · ‖) is p-smooth, i.e. there exists
K ≥ 1 such that

‖x+ y‖p + ‖x− y‖p
2

≤ ‖x‖p +K‖y‖p

for any x, y ∈ Xk, then under the assumptions of Theorem 1 there exists
z ∈ Cn such that ‖f(z)‖ ≤ (K min(k, n))1/p.

P r o o f. Assume that k < n. Precisely as in the proof of Theorem 1 we
construct a function G : [−1, 1]k → Xk and deduce that G(z1, . . . , zk) = 0
for some z ∈ [−1, 1]k. Our problem is reduced to the following lemma.

Lemma 3. Let a function G : [−1, 1]k → Xk satisfy the conditions

G(x) =
∑

y∈{−1,1}k

( k∏

j=1

1 + yjxj
2

)
G(y)

for any x ∈ {−1, 1}k and

‖G(x)−G(y)‖ ≤ #{i : xi 6= yi}
for any x, y ∈ [−1, 1]k. Let (Xk, ‖ · ‖) satisfy the conditions of Theorem 2.
Then for any z ∈ [−1, 1]k there exists x ∈ {−1, 1}k such that ‖G(x)−G(z)‖
≤ (Kk)1/p.

P r o o f. According to the properties of the function G shown in the proof
of Theorem 1 we have ‖G(x) − G(z)‖ ≤ k for each x ∈ {−1, 1}k. We will
prove that if Lemma 3 is valid with a constant L = L(k) in place of (Kk)1/p

then it is true also with the constant 1
2L + 1

2 (Kk)1/p. Thus Lemma 3 can
be proved by a limit argument.

Without loss of generality we can assume that z1, . . . , zk ≥ 0. Applying
Lemma 3 to the cube [0, 1]k we see that there exists y ∈ {0, 1}k such that
‖G(y) − G(z)‖ ≤ 1

2L. Now we only need to show that there exists x ∈
{−1, 1}n such that ‖G(x)−G(y)‖p ≤ (Kk)/(2p). Without loss of generality
we can assume that y1 = . . . = yi = 0, yi+1 = . . . = yk = 1. Let r1, . . . , ri
be independent symmetric random Bernoulli variables, i.e. P (rj = ±1) = 1

2
for j ≤ i. From p-smoothness of the norm we easily deduce that

E‖G(r1, . . . , ri, 1, . . . ,1)−G(0, 0, . . . , 1, . . . , 1)‖p

= E
∥∥∥

i∑

j=1

(G(r1, . . . , rj−1, rj , 0, 0, . . . , 1, . . . , 1)

−G(r1, . . . , rj−1, 0, 0, . . . , 1, . . . , 1))
∥∥∥
p

≤ K
i∑

j=1

E‖G(r1, . . . , rj−1, rj , 0, 0, . . . , 1, . . . , 1)

−G(r1, . . . , rj−1, 0, 0, . . . , 1, . . . , 1)‖p
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=
1
2p
K

i∑

j=1

E‖G(r1, . . . , rj−1, 1, 0, 0, . . . , 1, . . . , 1)

−G(r1, . . . , rj−1,−1, 0, 0, . . . , 1, . . . , 1)‖p

≤ Ki

2p
≤ Kk

2p
.

We used the same properties of the function G which were verified during
the proof of Theorem 1. This completes the proof of Lemma 3. The proof
of Theorem 2 in the case n ≤ k follows by the argument ending the proof of
Theorem 1.

R e m a r k. Let us consider Xk = Rk with lp and lq norms for p, q ∈ [1, 2].
One can easily deduce from Corollary 2 and elementary inequalities between
norms that for f : Cn → Xk satisfying the conditions

f(−x) = f(x) and ‖f(x)− f(y)‖p ≤ d(x, y)

for any x, y ∈ Cn, there exists z ∈ Cn such that ‖f(z)‖q ≤ k1/q/2. The
constant k1/q/2 is optimal with respect to k. It is of interest to know what
happens when p = 2 and q =∞. The well known and still unproved Komlós
conjecture states that in this case the above estimate is universal (does not
depend on k or n) if f is linear (as we consider Cn embedded in the natural
way in Rn).
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