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A complement to the theory of
equivariant finiteness obstructions

by

Pawel Andrzejewski (Szczecin)

Abstract. It is known ([1], [2]) that a construction of equivariant finiteness obstruc-
tions leads to a family wk (X) of elements of the groups Ko (Z[mo(W H(X))%]). We prove
that every family {wk} of elements of the groups Ko(Z[ro(W H(X))%]) can be realized
as the family of equivariant finiteness obstructions wg, (X) of an appropriate finitely dom-
inated G-complex X. As an application of this result we show the natural equivalence of
the geometric construction of equivariant finiteness obstruction ([5], [6]) and equivariant
generalization of Wall’s obstruction ([1], [2]).

Introduction. The purpose of this paper is a clarification of the theory
of equivariant finiteness obstructions. At present there are four different
approaches to this subject. Two of them are equivariant generalizations of
Wall’s and Ferry’s ideas (see [1]-[3] and [4] respectively). In 1985 W. Liick [5]
suggested a purely geometric construction of the finiteness obstruction and
then he developed the global algebraic approach to the equivariant finiteness
obstruction [6] which covers all the constructions mentioned above.

In [7], Theorem F, C. T. C. Wall proved that if Y is a finite CW-complex
then each element of the group Ko(Z[r1(Y)]) can be realized as the finiteness
obstruction of a finitely dominated CW-complex.

We shall establish among other things a similar theorem for equivariant
finiteness obstructions proving in Section 2 that if Y is a finite G-complex
then every family {wX} of elements of the groups Ko(Z[mo(WH(Y))%]) can
be realized as the family of equivariant finiteness obstructions w (X) of an
appropriate finitely dominated G-complex X. This result, in turn, will be
used in Section 3 to show the existence of a natural equivalence between the
geometric finiteness obstruction introduced by Liick [5] and the obstructions
wi (X).

Throughout the paper G denotes a compact Lie group.
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1. A short review of the equivariant finiteness obstruction. In
this introductory section we recall a construction of the equivariant finiteness
obstruction based on the ideas of C. T. C. Wall [7] and described by the
author in [1] and [2]. As a result of this construction one gets a family
of invariants which decide whether a finitely G-dominated G-complex is
G-homotopy finite.

Roughly speaking, the family of obstructions we want to introduce is
defined for each component X! by means of the invariants wg (X, A) (see
[1], §1, or [2], §2). Precisely, let H denote a closed subgroup of G and let X
be a connected component of X # (). We define an equivalence relation ~
in the set of such components X by setting X ~ X g iff there exists an
element n € G such that nHn™! = K and n(XH) = Xéq. We denote the set
of equivalence classes of this relation by CI(X). Note that this definition is
functorial, i.e. a G-map f : X — Y induces amap CI(f): CI(X) — CI(Y).

If X is finitely G-dominated by a complex K and X denotes a com-
ponent of X # () which represents an element of the set CI(X) then the
group (WH), acts on the pairs (X, X7) and (KJ, KEH) in such a way
that (X, X2 ) is relatively free and (K g K5 HY is relatively free and rel-
atively finite. By the relative version of Proposition 1.3 in [1] we see that
the pair (K, K;™) (W H),-dominates the pair (X, X7 ).

DEFINITION ([1], [2]). We define a Wall-type invariant wt (X) to be
wil (X) = ww . (X3, X3H)

= w(C.(XH, X)) € Ko(Zlmo(WH))).

The elements w! (X) are invariants of the equivariant homotopy type

and they vanish for finite G-complexes. Moreover, the invariant w (X) does
not depend (up to canonical isomorphism) on the choice of the representative
XH from the equivalence class [X] in CI(X) (see [1]). The fundamental
property of the invariants wX (X) is that they are actually obstructions to
homotopy finiteness of X:

THEOREM 1.1 ([1]-[3]). Let a G-complex X be G-dominated by a finite G-
complex K. Then there exist a finite G-complex Y and a G-homotopy equiva-
lence h .Y — X iff all the invariants wt (X) vanish. Moreover, if the com-
plex X contains a finite G-subcomplex B and dim K = n then Y and h can
be chosen in such a manner that B C' Y, dimY = max(3,n) and h|p = idp.

2. The realization theorems for the equivariant finiteness ob-
struction. As in the proof of Theorem 1.1 (see [1] or [2]) we begin with the
case of a relatively free action which will serve as an inductive step in the
proof of the main result.
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PROPOSITION 2.1. Let (Y, A) be a relatively free, relatively finite G-CW -
pair and wy € Ko(Z[ro(G(Y)*)]) be an arbitrary element. Then there exist
relatively free G-CW -pairs (X, A) and (K, A) and a G-retractionr : X —Y
inducing the isomorphism of fundamental groups such that Y C X, Y C K,
(K, A) is a relatively finite G-CW -pair and G-dominates (X, A) and the
equality r«(wa (X, A)) = wo holds where r, denotes the isomorphism induced
by r on f(g.

Remark. Here wg(X, A) denotes the algebraic Wall finiteness obstruc-
tion of a finitely dominated chain complex C. (X, A) of free Z[mo(G(Y)*)]-
modules (see [1], p. 12, or [2], §2).

Proof. Let P and @ be finitely generated, projective Z[mo(G(Y)*)]-
modules with P & Q = B a free module. Let wy = (—=1)"[P] = (=1)"T}[Q]
where n > 2. Let p: B — P and ¢ : B — (@ denote projections and C, be
the chain complex of the form

. —>BLBEBLB-0—-0—...

with C} = 0 for k < n.

We shall construct a relatively free G-CW-pair (X,Y) such that C, =
C.(X,Y).

Suppose rank(B) = m and let Y; be a G-complex obtained from Y by
attaching m free G-n-cells via trivial G-maps

bi: G xSy,

®i(g,) = g - yo, where yo € Y is fixed.

We shall show inductively that for each k£ > 0 there exists a relatively free
G-CW-pair (Xj,Y) and a G-map i : X — Y7 such that C, = Ci(Xj,Y)
for * < n+k—1 and that P (respectively @) is a direct summand in 7,4 (rk)
for odd (resp. even) k. We start with the inclusion ro : Y = Xy — Yj. Since
the attaching maps of free G-n-cells in Y; are equivariantly trivial there
exists an exact sequence

= (Y1) — m(ro) 9, Tn-1(Y) = mpo1(Y1) — ...

with m,(rg) = B and 0 = 0. Let & (j = 1,...,m) denote free generators
of the module B and a; = ¢(§;) € B = m,(r9). If 1 : X1 — Y} is obtained
from 7 by attaching m free G-n-cells to Y = X via a; € 7, (1) then one
has the split exact sequence

co = Tpt1(r0) = Tpg1(r)) 2 P — 0

and P is a direct summand in 7,41 (r1).
Since 0 = 0, the attaching maps of G-n-cells in X; are equivariantly
trivial. Hence there is a G-homotopy equivalence k; : Y7 — Xj.
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Let further b; = p(§;) € P C mp11(r1) and let 79 : Xo — Y; be obtained
from r; by attaching free G-(n + 1)-cells via b;. We have the split exact
sequence

e 7Tn+2(?”1) — 7Tn+2(7“2> = Q — 0
and @ is a direct summand in 7, 2(r2).

It follows from the construction that C,(X;,Y) = C, for * < n and
C(X2,Y) =C, for x <n+ 1.

The inductive step goes alternately.

Set X = Up>o Xk and 7 : X — Y] by r|x, = 7. Then for K = X; we
see that the pair (K, A) G-dominates the pair (X, A) with the section given
by the composition

(X,4) % (v, 4) 2 (K, 4),
Finally, we have by definition
ro(wa(X, A)) = (=1)"[Cri1(X,Y)/Bpa (X,Y)]
= (=1)"* " Chy1/im O]
= (“1)"B/P] = (~1)"(Q) = wp. =

We will also need the following technical result concerning the glueing
equivariant domination maps.

LEMMA 2.2. Let A — X be a G-cofibration, Y a G-space and r : Y — A
a G-domination map with a section s : A — Y. Then in the commutative

diagram
X

the map r extends to a G-domination map R: X U, Y - X Ug A= X.
Now we can formulate the realization theorem.

THEOREM 2.3. Let Y be a finite G-complex and {wk} be a family of
elements indexed by the set CL(Y), with wi € Ko(Z[ro(WH(Y)*)]). Then
there exist a G-complex X and a G-retraction r : X — Y inducing bijections

s mo(XH) — mo(YH)
and isomorphisms
re (X)) — m(YT)
such that Y C X, X is finitely G-dominated and r.(wH (X)) = wk
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Proof. Note that the set CI(Y') consists of one connected component
from each W H-component (W H)Y.Z. One can assume, in view of Proposi-
tion 2.14 in [6], that H runs through a complete set of representatives for
all the isotropy types (H) occurring in X.

We may suppose, in view of Proposition 2.12 in [6], that the set CI(Y")
is finite. Let Yaljp, with 1 <p <r, 1 < g < s, denote the representatives
of W Hy,-components in the set CI(Y'). Order the set of pairs {(p,q) : 1 <
p <r,1<q<sp} lexicographically. For each pair (p, q) we shall construct
inductively a G-complex X,, , with the following properties:

(1) Y C X, and there exists a G-retraction 7,4 : X, 4 — Y induc-
ing bijections on the mp-level and isomorphisms of fundamental groups of
appropriate fixed point set components.

(2) If (p,q) < (m,n) then X, o C X, .

(3) The complex X, , is G-dominated by the finite G-complex K, ,.
(4) wH(X,,) = wk for (H) = (H;),1 <i < p and for any a.

(5) wgfj” (Xp,q) = ng” for 1 <j<gq.

(6) wgf’ (Xp,q) =0 for j >gq.

(7) wH (X, ,) =0 for (H) = (H;), i > p and for any a.

Then the complex X, ; obtained as a result of the final inductive step
satisfies the assertion of the theorem.

Let Xo,0 = Y and suppose that X, , has been constructed. There are
two cases to consider.

Case I: ¢ < s,. Simplify the notation by setting H = H, and
a = agr1. Then (X, )2 (X, 4)2H) is a relatively free and relatively
finite (W H),-CW-pair (by property (6) and Theorem 1.1). Since (Y. H)
> m((Xpe)H) we can assume that CI(Y) = CI(X,,) and wf €

Ko(Zro(WH(X,,4))4]). By Proposition 2.1 there exists a relatively free
(WH)o-CW-pair (Z,(X,4)2H) such that

«

(a) (Z,(Xp.q)2H) is (WH),-dominated by a relatively free, relatively

finite (W H)o-CW-pair (K, (X,.)2H),

(b) (Xp.q)H C Z and there exists a (W H),-retraction 7 : Z — (X, ,)H,
and

(c) re(wwm. (Z, (Xp,g)a™)) = wll.

Let

d: (K, (Xp,q>>H) — (Z, (Xp,q)>H)

o [e%

denote a (W H),-domination map with a section

s (Zv (XP7Q)>H) - (Ku (XP7Q)>H)‘

« «
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One can treat the pair (Z, (X, ,)2%) as an (N H),-pair and then the inclu-

(0%
sion (b) extends to the inclusion of G-pairs

(G X(nm), (Xpa), G X(NH)q (Xp)a™)
C (G X nmy, Z:G X (v, (Xp.g)Z")
and the retraction r : Z — (X, 4)¥ to the G-retraction
r:Gxnmy. Z — G xX(vmy., (Xpq)k.
If
Zy = (G XNy, Z) Yq G(Xpg)a "
then by Lemma 2.2 we have the inclusion (Xp,q)&H) C 7y and the G-retra-
ction rq : 7y — (an)(aH). By the inductive assumption (conditions (6), (7)
and Theorem 1.1) the pair (X, g, (an)(aH)) is relatively finite and taking
Zy=XpaUZy

one can extend the inclusion (Xp7q)£,H) C Z to the inclusion X, , C Z5 and

the retraction ry : Z; — (Xp7q)§xH) to a G-retraction ry : Zy — X, , such
that the G-pair (Z2, Z) is relatively finite.

If K1 = (Gx(vmy, K)UgG(Xp,q)2™, then we can extend the domination
d to the G-domination map

di : (K1, G(Xp,0)2") = (Z1,G(Xpq)a™)
such that the pair (Ki,G(X,,)2H) is relatively finite. By the inductive

assumption (property (3)) G(X, )2 is G-dominated by a finite G-complex
G(K, )" = K'. Let
¢: K — G(Xp7q)>H

a

denote this domination and
51 G(szq);H — K’
its section. Applying Lemma 2.2 to the diagram

«

T

Ki<=—G(Xpg)3" — K

Ky <— G(vaq)iH —ds G(vaq)>H

we get the G-domination map
¢1 IKl Usl K/ — Kl
where K{ = K7 U, K’ is a finite G-complex. Then the composition

K 2K 5z
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is a finite domination over Z;. Invoking Lemma 2.2 again we get a G-domi-
nation map

d21K2%Z2

with K> a finite G-complex. Hence X, ;11 = Z3 is G-dominated by a finite
G-complex K, ;11 = K3 and the composition

) Tp,q
Xpg+1 = Xpgqg = Y

defines a G-retraction r, 441 : Xpq41 — Y.
Finally, it follows from the construction that X, ;41 has the desired
properties (4)—(7).

Case II: g = s,. This is similar to Case I. m

3. The geometric finiteness obstruction of W. Liick and the
invariants w!(X). Let X be a G-complex G-dominated by a finite one.
W. Liick [5], [6] defined geometrically a group Wa%(X) and an element
w%(X) € Wa®%(X) that decides when the G-complex X has the G-homotopy
type of a finite G-complex.

The aim of this section is to connect Liick’s obstruction with the in-
variants w!?(X). This theorem along with results of [1], §4, completes the
proof of the equivalence of three out of four definitions of the equivariant
obstruction to finiteness.

We start by recalling the construction from [5], [6]. Let X be an arbi-
trary G-complex. Consider the set of G-maps f : Y — X, where Y ranges
through finitely G-dominated G-complexes. We define an equivalence rela-
tion as follows: fy : Yo — X and f4 : Y4 — X are equivalent iff there exists

a commutative diagram

f1 f3
fo 2 fa
X

such that j; and j, are G-homotopy equivalences and 14, i3 are inclusions
such that the G-CW-pairs (Y1,Yy) and (Y3,Yy) are relatively finite. Let
Wa%(X) denote the set of equivalence classes. The disjoint union induces an
addition on Wa®(X) and the inclusion of the empty space defines a neutral
element. One can show that this addition gives Wa%(X) the structure of an
abelian group ([5], p. 370, or [6], p. 51).

DEFINITION. Let X be a finitely G-dominated G-complex. We define its
geometric obstruction to finiteness as w®(X) = [id : X — X]| € Wa%(X).
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Then we have the following result.

THEOREM 3.1. ([5], Theorem 1.1, or [6], §3). Let X be finitely G-domi-
nated. Then

(a) Wa® : G-CW — Ab is a covariant functor from the category of
equivariant CW -complezes to the category of abelian groups.

(b) w¥(X) is an invariant of the G-homotopy type.

(¢) A G-complex X is G-homotopy equivalent to a finite G-complex iff
w%(X) =0.

Let X be a G—complex We define a homomorphism

F:Wa% @ Ko(Z[mo(WH(X))Z))
CI(X)

by the formula F([f: Y — X]) =Y fo(w (Y)) where
fi: Ko(Zlmo(WH(Y))3]) = Ko(Z[mo(WH (X))

«

denotes the homomorphism induced on ffo by f. The following result gives
the precise relation between Liick’s obstruction w®(X) and Wall-type in-
variants wi (X).

THEOREM 3.2. Suppose X is a G-complex such that

(1) X has finitely many orbit types,

(2) mo(XH) is finite for any subgroup H of G occurring on X as an
isotropy subgroup,

(3) m (X x) is finitely presented for any representative X from the
class [XX] € CI(X) and for any x € X1

Then the natural homomorphism

F:Wa(X) = P Ko(Zlm(WH(X)):)
CI(X)

is an isomorphism. If the G-complex X is finitely G-dominated then
F(w®(X)) = X wl (X).

Remark. Observe that any finitely G-dominated G-complex satisfies
conditions (1)—(3) of Theorem 3.2.

Before presenting a proof of the theorem let us recall one technical lemma
from [6] which will be used in the proof.

LEMMA 3.3 ([6], Lemma 14.7). Let f : Y — X be a G-map between
G-complexes. Suppose the sets Iso(X) and Iso(Y') of orbit types on X and
Y, respectively, are finite. Suppose that for any H € Iso(X) UIso(Y) the
sets mo(X ) and mo(YH) are finite and the fundamental groups w1 (Y2 y)
and Wl(Xé{,CC) are finitely presented for any y € Y, x € Xg. Then one
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can extend the map f to a G-map g : Z — X such that for any subgroup H
of G,
g« 2 (21 — (X M)
1s bijective and
g i (21, 2) = m(X], g(2)

is an isomorphism for any component ZH and any point = € ZH.

Proof of Theorem 3.2. Suppose an element [f : Y — X]| belongs
to the kernel of F'. The assumptions on X and Lemma 3.3 imply that there

exists a G-complex Z obtained from Y by attaching finitely many G-cells
and an extension g : Z — X of the map f such that

(1) g 2 (2 — (X )
is a bijection and
(2) g m(Z5]) — m(X3)

is an isomorphism. Note that [f] = [g] in the group Wa®%(X). Hence

FIf)=F(g) =Y g.(w(2)) =0.
Since (1), (2) and
9. : Ko(Z[no(WH(2))%]) — Ko(Zlmo(WH(X))L)

are bijections we have CI(Z) = CI(X) and wf(Z) = 0 for any compo-
nent ZX which represents an element of the set CI(Z). It follows from
Theorem 1.1 that there exists a finite G-complex Z; and a G-homotopy
equivalence h : Z; — Z. Then the diagram

<

shows that [f] = 0 in the group Wa®(X). Thus F' is a monomorphism.

Similarly, the assumptions on the space X and Lemma 3.3 applied to
the map ) — X imply that we can find a finite G-complex K and a G-map
g : K — X such that

0

ge s mo(KH) — mo(X ™)
is a bijection and
g s m(EG) — m(X2)
is an isomorphism. Then CI(K) = CI(X) and ¢ induces an isomorphism
g+ : Ko(Zlmo(WH(K))3]) — Ko(Z[mo(WH(X))3)).

e
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By the commutativity of the diagram

WaS(K) —> B¢ Ko(Zlro(WH(K))5)

9= i%

Wa® (X) ~E By ) KolZlmo(WH(X))3))

it suffices to show that
Fy: Wa9(K) — @@ Ko(Z[ro(WH(K))3))
CI(K)
is an epimorphism. Let w € Ko(Z[ro(W H(K))%]) be an arbitrary element.
By Theorem 2.3 there exists a G-complex L, G-dominated by a finite G-

complex and a G-retraction r : L — K such that r,(wZ (L)) = wX. Then
[r:L— K] € Wa%(K) and

Fi([r]) =) re(wl (L) =Y _wl. w

References

[1] P. Andrzejewski, The equivariant Wall finiteness obstruction and Whitehead tor-
sion, in: Transformation Groups, Poznan 1985, Lecture Notes in Math. 1217,
Springer, 1986, 11-25.

[2] —, Equivariant finiteness obstruction and its geometric applications—a survey, in:
Algebraic Topology, Poznan 1989, Lecture Notes in Math. 1474, Springer, 1991,
20-37.

3] K. Iizuka, Finiteness conditions for G-CW -complezes, Japan. J. Math. 10 (1984),
55-69.

[4] S. Kwasik, On equivariant finiteness, Compositio Math. 48 (1983), 363-372.

[6] W.Liick, The geometric finiteness obstruction, Proc. London Math. Soc. 54 (1987),
367-384.

[6] —, Transformation Groups and Algebraic K-Theory, Lecture Notes in Math. 1408,
Springer, 1989.

[7] C.T.C. Wall, Finiteness conditions for CW-complezes, Ann. of Math. 81 (1965),
55—69.

Department of Mathematics

University of Szczecin

Wielkopolska 15

70-451 Szczecin 3, Poland

E-mail: pawelan@Quoo.univ.szczecin.pl
pawelan@euler.mat.univ.szczecin.pl

Received 27 February 1995



