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The geometry of laminations

by

R. J. F o k k i n k (Delft)
and L. G. O v e r s t e e g e n (Birmingham, Ala.)

Abstract. A lamination is a continuum which locally is the product of a Cantor
set and an arc. We investigate the topological structure and embedding properties of
laminations. We prove that a nondegenerate lamination cannot be tree-like and that a
planar lamination has at least four complementary domains. Furthermore, a lamination
in the plane can be obtained by a lakes of Wada construction.

1. Introduction. In this paper we study the structure and embedding
properties of spaces which locally are a product of a Cantor set and an
arc. This study can be motivated by the following problems and results.
During a lecture at the 1984 Spring Topology Conference held in Birming-
ham, Alabama, R. D. Edwards discussed the notion of a lamination, i.e.,
spaces which locally are a product of a Cantor set and an arc. He raised the
question whether a planar lamination must separate the plane (i.e. is not
tree-like). He solved this question in the affirmative but, as far as we know,
his solution has not appeared in print. Another result is due to Konstantinov
[K], and states that the closure of a smooth curve in the plane has at least
four complementary domains, under the conditions that the curve is self
entwined and of bounded curvature. Related is a result of Plykin [P1] that
the complement of every expanding attractor in the plane has at least four
complementary domains. There is an open problem of Kato [Ka] as to how
many complementary domains a plane continuum which admits an expan-
sive homeomorphism must have. In this paper we combine Edwards’ problem
and the results of Konstantinov and Plykin. We show that a continuum with
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local product structure of a Cantor set and an arc is not tree-like. Embedded
in the plane, such a continuum has at least four complementary domains.
In this paper a continuum is a compact and connected metrizable space.

(1.1) Definition. Let X be a continuum which does not contain a topo-
logical copy of the circle. We call X a lamination if its topology contains a
base of open sets homeomorphic to C × (−1, 1).

Many topological structures in dynamics are related to laminations. For
instance, the geodesic laminations as introduced by Thurston [T], [C-B].
A geodesic lamination is a collection of pairwise disjoint geodesics on a hy-
perbolic surface. Non-degenerate geodesic laminations are locally C×(−1, 1).

Another example are inverse limit spaces over f : M → M , where M is
a branched manifold and f is expanding. These spaces are the topological
models of attractors, studied by Williams [W1]. Well known attractors like
Plykin’s attractor and solenoids are examples of laminations.

Finally, matchbox manifolds, the topological models of one-dimensional
flows [A-M], are related to laminations.

We introduce some terminology. Following Aarts and Martens we call a
neighborhood homeomorphic to C×(−1, 1) an (open) matchbox if its closure
is homeomorphic to C × [−1, 1]. The closure is called a (closed) matchbox .
The copies of {x} × (−1, 1) are called the matches. An arc component of a
lamination is called a leaf . Since, by definition, a lamination does not contain
a simple closed curve, all leaves of a lamination are one-to-one continuous
images of the reals. A lamination is minimal if all of its leaves are dense.
A minimal lamination is indecomposable, i.e., it cannot be written as the
union of two proper subcontinua.

A continuum X is called tree-like if it admits open tree covers of arbi-
trarily small mesh. In other words, for every ε > 0 there exists a finite cover
U = {Ui | i = 1, . . . , N} of open sets, such that diam Ui < ε and the nerve
N (U) is a tree.

2. Examples. In this section we discuss some motivating examples.

2.1. Self-entwined curves. A curve, i.e., a one-to-one continuous image
of the reals, is called self-entwined if no open set intersects it in an arc. If
a self-entwined planar curve has bounded curvature, it divides the plane
into four components [K]. Self-entwined planar curves of bounded curvature
have local product structure Q × (−1, 1). A priori, the closure of such a
curve may not have local product structure C × (−1, 1). Possibly the closure
is a lamination with some pieces of the boundary leaves glued together. If
we open up the closure in some places, which can only decrease the num-
ber of complementary domains, we get a lamination. Hence, Konstantinov’s
theorem follows from Corollary (3.4).
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Konstantinov has constructed an example of a self-entwined curve of
bounded curvature which divides the plane into precisely four components
[K2]. A leaf of the Plykin attractor also has this property.

2.2. The Plykin attractor. Let f : X → X be a map on a topological
space. An attractor A of f is an invariant subset which has a neighborhood
A ⊂ U such that A =

⋂
n∈N f

n(U). Many attractors have a local product
structure. For instance, it is an open problem whether an Axiom A attractor
is always locally C×(−1, 1)n [S]. In the one-dimensional case, the expanding
attractors studied by Williams are locally C × (−1, 1). There exists a theory
classifying most of the one-dimensional expanding attractors [P2].

The Plykin attractor is a well known example of an expanding attractor
in the plane. We sketch how it can be constructed. Represent the torus as
a product R/Z×R/Z. If points are identified under the involution (x, y)→
(−x,−y), the resulting quotient space is a sphere. The torus is a branched
cover of the sphere and the branch points are the fixed points of the invo-
lution: (0, 0), ( 1

2 , 0), (0, 1
2 ), ( 1

2 ,
1
2 ). Since the set of branch points is invariant

under the linear map L : (x, y)→ (2x+ y, x+ y), this map induces a home-
omorphism on the sphere.

The linear map L has two eigenvalues (3−√5)/2, (3 +
√

5)/2. Let v
be the eigenvector with eigenvalue (3 +

√
5)/2. The family of lines {w +

λv | w ∈ R × R, λ ∈ R} foliates the torus and is invariant under L. By
carefully blowing up the branch points, the map L can be perturbed into
a diffeomorphism f and the foliation can be transformed into an attractor
A of f . This construction is known as Smale’s DA construction [P-M]. The
diffeomorphism f can be projected onto the sphere, where it has an attractor
P covered by A. This is the Plykin attractor , which has four complementary
domains in the sphere, corresponding to the four branch points. Both P and
A are minimal laminations.

2.3. The bucket handle. The bucket handle K is a tree-like continuum
which is locally C × (−1, 1) except at one point p [Kn]. It is the attractor
of Smale’s horseshoe map [S]. The point p is the attractive fixed point of
the horseshoe map; it is an accumulation point of folds in K. The same phe-
nomenon is suggested by pictures of more complicated planar attractors. At
most points the attractors are locally C×(−1, 1) but there are accumulation
points of folds.

2.4. Lakes of Wada. The lakes of Wada construction starts out with
two lakes on an island. Three canals are dug in the island, two starting out
from the lakes and one starting out from the sea. The construction gives
a continuum K such that each point in K is a boundary point of all its
complementary domains. The Plykin attractor has the same property. It is
a corollary of our results that all planar laminations can be obtained from a
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lakes of Wada construction, starting out from at least four lakes (counting
the sea as a lake).

3. The number of complementary domains. A lamination is mini-
mal if it does not contain any lamination other than itself. By Zorn’s lemma,
every lamination contains a minimal lamination. We show that a minimal
lamination in the plane can be extended to a foliation of the sphere. The
complementary domains of the lamination correspond to the singularities of
the foliation.

(3.1) Lemma. Let U ≈ C × [−1, 1] be a matchbox in the plane. There
exists a curve K which intersects each match in a point.

A proof is given in the Appendix.

(3.2) Theorem. Let X be a minimal lamination in the sphere S2. The
lamination X can be extended to a foliation with singularities of S2.

P r o o f. Let K be an arc which intersects the lamination X transversely.
Without loss of generality we may assume that the end points of K are not
contained in X. Since X is minimal, K intersects each leaf of X and the
intersection K = K ∩X is a Cantor set. The complement X \K is a disjoint
union of arcs. Each arc has two end points in K and, conversely, each point
in K ∩X is an end point of two arcs in X \K.

Denote the end points of K by a, b. Consider two copies of the arc K
denoted by K×{−,+}. Identify (a,−) with (a,+) and (b,−) with (b,+). In
this way we get a circle which is called the double of K. Consider the sphere
S2 \K which has been opened up along the arc K. The opened up sphere
S2 \K can be compactified with the double of K. This compactification is
denoted by S.

The arcs in X\K have end points on the double of K. Two arcs L1, L2 in
X \K are called homotopic if there exists a homotopy on S which moves L1

to L2 and keeps the double of K invariant. There are finitely many homotopy
types and if two arcs are sufficiently close, they are homotopic. Therefore,
the double of K can be divided into finitely many intervals I1, . . . , In such
that arcs in X are homotopic if they have an end point in the same interval.
The intervals are chosen such that their interiors are mutually disjoint.

Let e1, e2 be the end points of I1. Consider the family A of all arcs in
X\K which have an end point in the interval I1. Let V be the set of opposite
end points, i.e., V is the set of end points outside I1 of arcs in A. Let J be
the smallest interval in the double of K, which contains V and has empty
intersection with I1. Let f1, f2 be the end points of J . Since all arcs in A are
homotopic, there exist two arcs A1, A2 which connect e1, e2 to f1, f2, such
that A1∪A2∪I1∪J is a simple closed curve which contains the entire family
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A in a complementary domain. This domain T is called a strip. Thus the
lamination X is contained in a union

⋃
i Ti of strips. The strips Ti can be

chosen such that the complementary domains of
⋃
i Ti in S are bounded by

simple closed curves. By Theorem (6.2), the lamination X can be extended
to a foliation of

⋃
i Ti. Collapse the complementary domains to obtain a

foliation with singularities of S. Then collapse the double of K to obtain a
foliation of the sphere S2.

It follows from the construction that the foliation has a finite number
of singularities. The singularities correspond to the complementary domains
of X.

(3.3) Theorem. A minimal lamination in the plane has at least four
complementary domains.

P r o o f. The complementary domains of the lamination correspond to
the singularities of the foliation. By the Index Theorem [C-N], the index
sum of the singularities is equal to 2. A singularity has index 1 if it is a
source or a sink. Otherwise, it has index ≤ 1/2. The foliation constructed
in the proof of Theorem (3.2) has no sources or sinks. Therefore, it has at
least four singularities.

(3.4) Corollary. A lamination in the plane has at least four comple-
mentary domains.

4. Planar laminations are lakes of Wada continua. We demon-
strate that a minimal planar lamination can be obtained from a lakes of
Wada construction. We use some topological techniques from hyperbolic
geometry.

The Poincaré disc, as a subset of the complex plane, is denoted by H2 =
{z ∈ C | |z| < 1} and it is endowed with the Poincaré metric [C-B]. The
circle at infinity is the unit circle {z ∈ C | |z| = 1}. Its union with H2

is called the extended Poincaré disc. Geodesics in H2 are the semi-circles
orthogonal to the circle at infinity.

(4.1) Lemma. Let M be a surface with Euler characteristic χ(M) < 0.
The universal cover of M is homeomorphic to the Poincaré disc.

A proof can be found in [C-B]. Moreover, the surface M can be en-
dowed with a hyperbolic metric, which is complete, such that the covering
projection is a local isometry.

(4.2) Lemma. Let X be a minimal lamination in the plane. The lamina-
tion can be lifted to a subspace X of the Poincaré disc.

P r o o f. By Theorem (3.2) the lamination X can be extended to a foli-
ation with singularities of the sphere. Delete the singularities, so we get a
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foliation F without singularities of a punctured sphere. According to The-
orem (3.2), the Euler characteristic of the punctured sphere is at most −2,
so it is a hyperbolic surface. It follows from Lemma (4.1) that X is covered
by a subspace of the Poincaré disc.

(4.3) Lemma. Let F be a foliation without singularities. Then F admits
a flow without rest points if and only if it is orientable.

A proof can be found in [C-N]. Moreover, every foliation has an orientable
cover.

(4.4) Lemma. Let X be a minimal lamination in the plane and let X be
its lift to the Poincaré disc. In the extended Poincaré disc, X is a union of
mutually disjoint arcs, with end points on the circle at infinity.

P r o o f. The minimal lamination can be extended to a foliation F of a
punctured sphere. The orientable cover of F admits a flow ϕ without rest
points. The flow ϕ can be lifted to a flow ϕ on the Poincaré disc, which has
no rest points and leaves X invariant. To prove the lemma, it suffices to
show that for every trajectory in X, the limit set ω(x) is a single point on
the circle at infinity.

The orientable cover of F foliates a surface M . There exists a simple
closed curve C in M which is transversal to ϕ, i.e., C is a section. The curve
C cannot be nullhomotopic, so, by eventually perturbing the flow, we may
assume that C is geodesic. Let p be a point on C and let q be its first return
point to C under the flow ϕ. Hence, the part of the trajectory between p and
q connects points of C. Lifted to H2, it is an arc which connects two disjoint
geodesics. So, the positive trajectory with starting point p is lifted to an arc
in H2 which intersects infinitely many disjoint geodesics. In the euclidean
metric, the diameter of these geodesics goes to zero. It follows that the limit
set of the lift of the positive trajectory contains one point on the circle at
infinity.

Lemma (4.4) associates a geodesic lamination to a minimal lamination
as follows. Each arc component of X is a curve with end points in the unit
circle and these end points determine a geodesic in H2. The union of all such
geodesics covers a geodesic lamination L in the punctured sphere. We want
to show that X is a lakes of Wada continuum. So we are interested in the
complementary domains of X. The following result is proved in [C-B].

(4.5) Lemma. The complementary domains of a geodesic lamination are
bounded by finitely many geodesics.

Consider a complementary domain of L bounded by the geodesics
φ1, φ2, . . . , φn. Lifted to the Poincaré disc, the geodesics are asymptotic,
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i.e., for consecutive indices, the lifts of φi and φi+1 have one end point in
common.

It is important to note that different arcs in X may have the same pair
of end points on the circle at infinity. To one geodesic in L may correspond
two leaves of X. There cannot be more than two, for suppose that more than
two curves in X have both the end points in common. Remove all curves but
the two outer curves from X. Do this for every pair of end points. The result
is a closed space X

′
which covers a sublamination X ′ ⊂ X. This contradicts

the minimality of X and hence only two different arcs in X may have the
same end points. This leads us to the following result.

(4.6) Lemma. A complementary domain of X is bounded by a finite
number of leaves.

P r o o f. Consider a complementary domain in X. Either it is bounded by
two leaves, which are collapsed in L, or it corresponds to a complementary
domain of L, in which case it is bounded by a finite number of asymptotic
leaves. In particular, the number of boundary leaves in X is finite. The same
holds for X.

Now it is obvious that in a lakes of Wada construction, a canal must
be bounded by a pair of asymptotic boundary leaves. To prove that X can
be obtained by digging canals, we still have to verify that the canals grow
narrower as they are dug deeper.

(4.7) Theorem. A minimal lamination in the plane can be obtained by
a lakes of Wada construction.

P r o o f. Let F be a foliation of the punctured sphere which extends X.
Its orientable cover is denoted F̃ and its subset covering X is denoted X̃.
Let L1, L2 be arcs in X which have a common end point e on the circle at
infinity. They cover leaves L1, L2 in F̃ . Consider a simple closed curve C
transversal to ϕ. The curve C intersects X̃ in a Cantor set. We show that
the arcs L̃i eventually intersect C in consecutive end points of this Cantor
set.

Let C be a lift of C to the Poincaré disc which intersects Li in two points
pi (i = 1, 2). The arc [p1, p2] in C connects these two points. Consider the
region in H2 bounded by [p1, p2] and the part of Li from pi to e. If an arc
in X intersects [p1, p2], then it is trapped in this region. Hence, it has end
point e, which contradicts the fact that at most two arcs in X can have
one end point in common. We conclude that L1, L2 eventually intersects C
in consecutive boundary points. It follows that the trajectories L̃i bound
an ever narrower channel. Projecting this on the sphere we see that the
underlying channel is ever narrower as well. This implies that X is a lakes
of Wada continuum.
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The construction in this section has the following corollary.

(4.8) Corollary. Let X be a minimal planar lamination with finitely
many boundary leaves. A continuous map from X onto itself is either ho-
motopic to a homeomorphism or to a constant map.

Let f : X → X be a continuous function on a minimal planar lamination.
If the image f(X) contains elements of two separate leaves, then by the
minimality of X, f(X) is equal to X. Hence, if f is not homotopic to a
constant map, it is a surjection.

Suppose that f is a surjection. We have shown above that the boundary
leaves of X are asymptotic. In fact, the boundary leaves are the only asymp-
totic leaves in X and therefore f permutes the boundary leaves of X. Lift f
to a map f on X on the Poincaré disc. Since f permutes boundary leaves,
there exists an extension f : H2 → H2 which leaves the flow ϕ invariant.
Consider all arcs in X which cover boundary leaves of X̃. They have a dense
set of end points in the circle at infinity and f induces a bijection on these
end points. So, f induces a bijection on the circle at infinity. It follows that
f is homotopic to a homeomorphism h on H2. So, f permutes the leaves of
X, only it may not be 1-1. In [F], it is shown that such a map f is homotopic
to a homeomorphism of X.

5. General laminations. In this section we show that a general lam-
ination cannot be tree-like. We start with some preliminary lemmas. For
a closed matchbox U ≈ C × [0, 1] the ends of U are the points in the set
C × {0, 1}. The set of ends of U is denoted E(U). The ends at the top
C × {1} are denoted T (U). The bottom ends are denoted B(U). The first
lemma follows directly from these definitions.

(5.1) Lemma. Let X be a tree-like lamination. Then there exists a finite
cover U of X such that each element of U is a closed matchbox , the nerve
N (U) is a tree and for any two distinct elements U, V ∈ U , E(U)∩E(V ) = ∅.

The second lemma is taken from [A-M].

(5.2) Lemma (lemma of the long box). Let J be an arc in a matchbox
manifold X with initial point x1 and end point x2. Suppose that V1 and V2

are disjoint matchbox neighborhoods of x1 and x2 respectively. For i = 1, 2
let hi : C × (0, 1) → Vi be a homeomorphism between Vi and the standard
matchbox. We write Zi = hi(C × {0}). There exists a homeomorphism h :
C × [0, 1]→ V such that

(1) x1 ∈ h(C × {0}) ⊂ Z1,
(2) x2 ∈ h(C × {1}) ⊂ Z2,
(3) h(C × {0}) is clopen in Z1,
(4) h(C × {1}) is clopen in Z2.



The geometry of laminations 203

Stated less accurately, there is a long box V along the arc J with bottom
in Z1 and top in Z2.

(5.3) Lemma. Let X be a minimal lamination and U a finite cover by
closed matchboxes. Let U ∈ U and let δ(U) be the minimum distance between
two distinct matches of U which both meet the closure of a single component
of X \ U . Then δ(U) > 0.

P r o o f. Suppose the lemma fails. Then there exist sequences of matches
M1
i and M2

i meeting components Ci of X \ U such that d(M1
i ,M

2
i ) → 0.

Note that every component of X \ U is an arc. Without loss of generality,
limM1

i = limM2
i = M0 and limCi = C0, where M0 is a match of U and C0

is a continuum in X \U . Let ai and bi be the end points of the arc Ci. Since
M1
i and M2

i are distinct matches of U , Ci must meet U in two distinct end
points.

Let K be the component of X \U whose closure contains C0. By Lemma
(5.2), K has a matchbox neighborhood in X \U . In this neighborhood, the
components Ci are matches converging to K. It follows that C0 is equal
to K and therefore it meets U in two distinct end points a and b. In this
case C0 ∪M0 is a simple closed curve, contradicting the minimality of the
lamination.

Given a finite cover U of a minimal lamination X by closed matchboxes
we denote

δ(U) = min{δ(U) | U ∈ U}.
We discuss the notion of orientability of laminations, which is studied

in more detail in [A-M]. The notion is almost analogous to the notion of
orientability of foliations [C-N, p. 37]. There is one important difference: a
matchbox can be oriented in infinitely many ways. This complicates matters
slightly.

Let V ≈ C × [0, 1] be a closed matchbox. Each match M carries two
possible orientations. An orientation O(V ) of V is a continuous choice of
orientations of the matches of V . If W ⊂ V are matchboxes, then the orien-
tation O(V ) induces an orientation O(W ). Two matchboxes U and V are
coherently oriented provided they induce the same orientation at points in
the intersection U ∩ V . A subset A ⊂ X of a lamination X is coherently
oriented provided for each point x ∈ A there exist a matchbox U containing
x in its interior and an orientation O(U) such that the orientation at each
point of U ∩ A induced by O(U) agrees with the given orientation of A.
Every non-orientable lamination has an orientable double cover, which is
defined in the same way as the orientable cover of a foliation.

An open cover V is taut provided for each pair U, V ∈ V,

U ∩ V 6= ∅ if and only if U ∩ V 6= ∅.
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It is known that each cover U has a taut refinement V such that N (U) is
homeomorphic to N (V). By a chain of elements of a cover V we mean a
finite subcollection {V1, . . . , Vn} with the property that Vi ∩ Vj 6= ∅ if and
only if |i− j| ≤ 1. In other words, the nerve of {Vi} is an arc.

(5.4) Theorem. Let U be a finite cover satisfying the conclusions of
Lemma (5.1) and let V be a finite taut open tree cover refining U such that
the closure of each element of V is a closed matchbox and

mesh(V) < 1
3 min{δ(U),min{d(T (U), B(U)) | U ∈ U}}.

Let {V1, . . . , Vn} be a chain of elements of V. Then there exists a coherent
orientation of

⋃{Vi}.
P r o o f. The proof is by induction on the length n of the chain. If n = 1,

the lemma follows immediately since any orientation of the matchbox V1

induces the required orientation. Hence, suppose the theorem is proved for
all chains of length ≤ n and let {V1, . . . , Vn+1} be a chain of length n + 1.
By using the inductive assumption, we obtain an orientation of the chain
{V1, . . . , Vn}. By assumption Vn+1 meets only Vn. Since mesh V < δU , each
match µ of Vn+1 meets at most one match of Vn. Hence the orientation
of the matches of Vn induces an orientation of the matches of Vn+1 which
meet Vn. Since the matches of Vn+1 which meet Vn form a clopen subset,
we can orient the remaining matches of Vn+1 coherently. It remains to be
shown that this choice of orientation is continuous. Suppose matches µk of
Vn+1 converge to a match µ which meets Vn. Since E(Vn) ∩ E(Vn+1) = ∅,
µk ∩ Vn converges to µ ∩ Vn. Since the choice of orientation was continuous
on Vn, it follows that the choice of orientation is also continuous on Vn+1.
This completes the proof.

Notice that the above proof guarantees that if {Vi | i = 1, . . . , n} and
{V ′i | i = 1, . . . , n′} are two chains in V, then we can orient their union
coherently.

(5.5) Corollary. Let U and V be as in Theorem (5.3). Then V admits
a coherent orientation.

(5.6) Theorem. Let X be a lamination. Then X is not tree-like.

P r o o f. Since every subcontinuum of a tree-like continuum is tree-like,
we may assume that X does not contain a simple closed curve. Hence, X
contains a minimal lamination. By Corollary (5.5), X admits a coherent
orientation. It follows from [K-S] that X admits a flow and is homeomorphic
to the suspension over a Cantor set. Since X is minimal, the suspension
admits an essential map to a circle. This contradicts the fact that X is
tree-like [C-C] and completes the proof of the theorem.
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6. Appendix. We show that a closed matchbox is tamely embedded in
the plane. The proof depends on the Riemann mapping theorem. A simple
closed curve in the plane can be mapped onto the unit circle by a transforma-
tion of the plane. Moreover, if two curves are close, then the transformations
are close.

A quadrilateral Q = {K,x1, x2, x3, x4} in the plane is a simple closed
curve K with four distinct points x1, x2, x3, x4. We say that f : Q → Q′ is
a map between quadrilaterals if it maps K onto K ′ and xi onto x′i.

The following theorem is a version of the Riemann mapping theorem for
quadrilaterals.

(6.1) Theorem. Let Q be a quadrilateral. There exists a rectangle R
such that Q can be mapped onto R by a homeomorphism of the plane. The
homeomorphism is holomorphic and uniquely determined on the interior
of Q.

If Q and Q′ are close in the Hausdorff metric, then the holomorphic maps
on the interior are close in the compact open topology.

(6.2) Theorem. A matchbox U is tamely embedded in the plane. In
other words, there exists a transformation of the plane which maps U onto
the standard matchbox C × [0, 1], where C denotes a Cantor set.

P r o o f. Without loss of generality, we may suppose that U is contained
in the unit square [0, 1]× [0, 1]. Since U is a matchbox there exists a home-
omorphism γ : C × [0, 1] → U . As before, the top T (U) is the set of end
points γ(C×{1}) and the bottom B(U) is the set of end points γ(C×{0}).
We may assume that {0}× [0, 1] and {1}× [0, 1] are matches of U , and that
B(U) ⊂ I × {0} and T (U) ⊂ I × {1}. Note that this requires that the end
points of matches of U are accessible from the complement. (For a complete
proof of this see [A-O].)

The complement of U in [0, 1]×[0, 1] is a union of infinitely many domains
Qj , for j ∈ N, bounded by matches Lj and Rj . Each match Γ ⊂ U is
parameterized by a homeomorphism γc : {c} × I → U . The two boundary
matches Lj and Rj of Qj are parameterized by lj(t) = γLj (t) and rj(t) =
γRj (t), respectively. Note that each point lj(t) can be joined to rj(t) by a
curve γj,t embedded in Qj , such that diam(γj,t) → 0 as j → ∞ uniformly
in t. For arbitrary j, s, t, the four arcs γj,s, γj,t, lj(s, t), rj(s, t) bound a
quadrilateral T (j, s, t), provided γj,s and γj,t are disjoint. For any ε > 0 and
for large enough j, there exists a subdivision {−1 = t0 < t1 < . . . < tn(j) =
1} such that the curves γj,ti are pairwise disjoint, and the quadrilaterals
T (j, ti, ti+1) have diameter less than ε. We may choose subdivisions for every
j such that the diameter of the T (j, ti, ti+1) goes to zero uniformly as j →∞.
By Theorem (6.1), each quadrilateral can be identified with a rectangle.
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We may assume that the arcs lj(s, t) and rj(s, t) are identified with the
vertical sides of the rectangle, whereas γj,s and γj,t are identified with the
top and the bottom of the rectangle. Hence the quadrilateral T (j, ti, ti+1)
is foliated by arcs corresponding to the vertical lines of the rectangle. This
can be done for all the quadrilaterals. The foliation of T (j, ti−1, ti) can be
glued to the foliation of T (j, ti, ti+1), so that the matchbox U is extended
to a foliation F of the unit rectangle. For each point x ∈ [0, 1] there exists
exactly one parameterized leaf Fx in F which contains (x, 0). Since diam
T (j, ti, ti+1) → 0 uniformly as j → ∞, the parameterization of the leaves
Fx defines a homeomorphism on the unit square which maps the leaves of
F onto the vertical lines {x} × I.

The authors are indebted to the referee who suggested several improve-
ments in the exposition and in the proofs.
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