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Categoricity of theories in Lκω, when
κ is a measurable cardinal. Part 1

by

Saharon S h e l a h (Jerusalem and New Brunswick, N.J.) and
Oren K o l m a n (Jerusalem)

Abstract. We assume a theory T in the logic Lκω is categorical in a cardinal λ ≥ κ,
and κ is a measurable cardinal. We prove that the class of models of T of cardinality < λ
(but ≥ |T |+ κ) has the amalgamation property; this is a step toward understanding the
character of such classes of models.

Annotated content
0. Introduction

1. Preliminaries. We review material on fragments F of Lκℵ0 (including the the-
ory T ) and basic model theoretic properties (Tarski–Vaught property and L.S.), define
amalgamation, indiscernibles and E.M. models, then limit ultrapowers which are suitable
(for Lκω) and in particular ultralimits. We then introduce a notion basic for this paper:
M �F

nice
N if there is an �F -embedding of N into a suitable ultralimit of M extending the

canonical one.

2. The amalgamation property for regular categoricity. We first get amal-
gamation in (Kλ,�F ) when one of the extensions is nice (2.1). We prove that if T is
categorical in the regular λ > |F| + κ, then (K<λ,�F ) has the amalgamation property.
For this we show that nice extensions (inK<λ) preserve being non-amalgamation basis. We
also start investigating (in 2.5) the connection between extending the linear order I and
the model EM(I): I ⊆

nice
J ⇒ EM(I) �

nice
EM(J); and give sufficient condition for I ⊆

nice
J

(in 2.6). From this we get in Kλ a model such that any submodel of an expansion is a
�

nice
-submodel (in 2.7, 2.10(2)), and conclude the amalgamation property in (K<λ,�F )

when λ is regular (in 2.9) and something for singulars (2.10).

3. Towards removing the assumption of regularity from the existence of
universal extensions. The problem is that EM(λ) has many models which “sit” well in
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it and many which are amalgamation bases but we need to get this simultaneously. First
(3.1) we show that if 〈Mi : i < θ+〉 is an ≺F -increasing continuous sequence of models
of Kθ ⊆ K = Mod(T ) then for a club of i < θ+, Mi �

nice

⋃
{Mj : j < θ+}. We define

nice models (Def. 3.2; essentially, every reasonable extension is nice), show a variant is
equivalent (3.4), and implies being an amalgamation base (3.5), and we prove that in Kθ
the nice models are dense (3.3). Then we define a universal extension of M ∈ Kθ in Kσ
(Def. 3.6), prove existence inside a model (3.7), and after preparation (3.8) prove existence
(3.9, 3.10, 3.11).

4. (θ, σ)-saturated models. If Mi ∈ Kθ for i ≤ σ is increasing continuous, with
Mi+1 universal over Mi, and each Mi nice, then Mσ is (θ, σ)-saturated over M0. We show
existence (and uniqueness). We connect this to a more usual saturation and prove that
(θ, σ)-saturation implies niceness (in 4.10).

5. The amalgamation property for K<λ. After preliminaries we prove that for
θ ≤ λ (and θ ≥ |F|+κ of course) every member of Kθ can be extended to one with many
nice submodels; this is done by induction on θ using the niceness of (θ1, σ1)-saturated
models. Lastly, we conclude that every M ∈ K<λ is nice hence K<λ has the amalgamation
property.

0. Introduction. The main result of this paper is a proof of the following
theorem:

Theorem. Suppose that T is a theory in a fragment of Lκω, where κ is
a measurable cardinal. If T is categorical in the cardinal λ > κ+ |T |, then
K<λ, the class of models of T of power strictly less than λ (but ≥ κ+ |T |),
has the amalgamation property (see Definition 1.3).

The interest of this theorem stems in part from its connection with the
study of categoricity spectra. For a theory T in a logic L let us define Cat(T ),
the categoricity spectrum of T , to be the collection of those cardinals λ in
which T is categorical. In the 1950’s Łoś conjectured that if T is a countable
theory in first-order logic, then Cat(T ) contains every uncountable cardinal
or no uncountable cardinal. This conjecture, based on the example of alge-
braically closed fields of fixed characteristic, was verified by Morley [M], who
proved that if a countable first-order theory is categorical in some uncount-
able cardinal, then it is categorical in every uncountable cardinal. Following
advances made by Rowbottom [Ro], Ressayre [Re] and Shelah [Sh1], She-
lah [Sh31] proved the Łoś conjecture for uncountable first-order theories: if
T is a first-order theory categorical in some cardinal λ > |T | + ℵ0, then T
is categorical in every cardinal λ > |T |+ ℵ0.

It is natural to ask whether analogous results hold for theories in logics
other than first-order logic. Perhaps the best-known extensions of first-order
logic are the infinitary logics Lκλ. As regards theories in Lω1ω, Shelah [Sh87]
continuing work begun in [Sh48] introduced the concept of excellent classes:
these have models in all cardinalities, have the amalgamation property and
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satisfy the Łoś conjecture. In particular, if ϕ is an excellent sentence of Lω1ω,
then the Łoś conjecture holds for ϕ. Furthermore, under some set-theoretic
assumptions (weaker than the Generalized Continuum Hypothesis), if ϕ is
a sentence in Lω1ω which is categorical in ℵn for every natural number n
(or even just if ϕ is a sentence in Lω1ω with at least one uncountable model
not having too many models in each ℵn), then ϕ is excellent.

Now [Sh300], [Sh-h] try to develop classification theory in some non-
elementary classes. We cannot expect much for Lκλ for λ > ℵ0. Shelah
conjectured that if ϕ is a sentence in Lω1ω categorical in some λ ≥ iω1 ,
then ϕ is categorical in every λ ≥ iω1 . (Recall that the Hanf number of
Lω1ω is iω1 , so if ψ is a sentence in Lω1ω and ψ has a model of power
λ ≥ iω1 , then ψ has a model in every power λ ≥ iω1 . See [K].) There were
some who asked why so tardy a beginning. Recent work of Hart and Shelah
[HaSh323] showed that for every natural number k greater than 1 there is
a sentence ψk in Lω1ω which is categorical in the cardinals ℵ0, . . . ,ℵk−1,
but which has many models of power λ for every cardinal λ ≥ 2ℵk−1 . The
general conjecture for Lω1ω remains open nevertheless.

As regards theories in Lκω, progress has been recorded under the as-
sumption that κ is a strongly compact cardinal. Under this assumption
Shelah and Makkai [MaSh285] have established the following results for a
λ-categorical theory T in a fragment F of Lκω: (1) if λ is a successor cardinal
and λ > ((κ′)κ)+, where κ′ = max(κ, |F|), then T is categorical in every
cardinal greater than or equal to min(λ,i(2κ′ )+), (2) if λ > iκ+1(κ′), then

T is categorical in every cardinal of the form iδ with δ divisible by (2κ
′
)+

(i.e. for some ordinal α > 0, δ = (2κ
′
)+ · α (ordinal multiplication)).

In proving theorems of this kind, one has recourse to the amalgamation
property which makes possible the construction of analogues of saturated
models. In turn, these are of major importance in categoricity arguments.
The amalgamation property holds for theories in first-order logic [CK] and
in Lκκ when κ is a strongly compact cardinal (see [MaSh285]: although ≺Lκκ
fails the Tarski–Vaught property for unions of chains of length κ (whereas
≺Lκω has it), under a categoricity assumption it can be shown that ≺Lκω
and ≺Lκκ coincide). However, it is not known in general for theories in Lκω
or Lκκ when one weakens the assumption on κ, in particular when κ is just
a measurable cardinal. Nevertheless, categoricity does imply the existence
of reasonably saturated models in an appropriate sense, and it is possible
to begin classification theory. This is why the main theorem of the present
paper is of relevance regarding the categoricity spectra of theories in Lκω
when κ is measurable.

A sequel to this paper under preparation tries to provide a characteri-
zation of Cat(T ) at least parallel to that in [MaSh285] and we hope to deal
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with the corresponding classification theory later. This division of labor both
respects historical precedent and is suggested by the increasing complexity
of the material. Another sequel deals with abstract elementary classes (in
the sense of [Sh88]) (see [Sh472], [Sh394] respectively). On later work see
[Sh576], [Sh600].

The paper is divided into five sections. Section 1 is preliminary and no-
tational. In Section 2 it is shown that if T is categorical in the regular
cardinal λ > κ + |T |, then K<λ has the amalgamation property. Section 3
deals with weakly universal models, Section 4 with (θ, σ)-saturated and
θ̄-saturated models. In Section 5 the amalgamation property for K<λ is
established.

All the results in this paper (other than those explicitly credited) are
due to Saharon Shelah.

1. Preliminaries. To start things off in this section, let us fix notation,
provide basic definitions and well-known facts, and formulate our working
assumptions.

The working assumptions in force throughout the paper are these.

Assumption 1. The cardinal κ is an uncountable measurable cardinal,
and so there is a κ-complete nonprincipal ultrafilter on κ.

Assumption 2. The theory T is a theory in the infinitary logic Lκω.

From these assumptions follow certain facts, of which the most important
are these.

Fact 1. For each model M of T , κ-complete ultrafilter D over I and
suitable set G of equivalence relations on I×I (see 1.7.4) the limit ultrapower
Op(M) = Op(M, I,D,G) is a model of T .

Fact 2. For each linear order I = (I,≤) there exists a generalized
Ehrenfeucht–Mostowski model EM(I) of T .

The remainder of this section provides more detailed explanations and
references.

Relevant set-theoretic and model-theoretic information on measurable
cardinals can be found in [J], [CK] and [D]. L denotes a language, i.e. a
set of finitary relation and function symbols, including equality. |L| is the
cardinality of the language L. For a cardinal λ ≤ κ, Lκλ is the smallest set of
(infinitary) formulas in the language L which contains all first-order formulas
and which is closed under (1) the formation of conjunctions (disjunctions)
of any set of formulas of power less than κ, provided that the set of free
variables in the conjunctions (disjunctions) has power less than λ; (2) the
formation of ∀xϕ, ∃xϕ, where x = 〈xα : α < λ′〉 is a sequence of variables
of length λ′ < λ. ([K] and [D] are comprehensive references for Lω1ω and



Categoricity of theories in Lκω 213

Lκλ respectively.) Whenever we use the notation ϕ(x) to denote a formula
in Lκλ, we mean that x is a sequence 〈xα : α < λ′〉 of variables of length
λ′ < λ, and all the free variables of ϕ(x) are among x = 〈xα : α < λ′〉. So if
ϕ(x) is a formula in Lκω, then x is a finite sequence of variables.
F denotes a fragment of Lκω, i.e. a set of formulas of Lκω which contains

all atomic formulas of L, and which is closed under negations, finite conjunc-
tions (finite disjunctions), and the formation of subformulas. An F-formula
is just an element of F .

T is a theory in Lκω, so there is a fragment F of Lκω such that T ⊂ F
and |F| < |T |+ + κ.

Models of T (invariably referred to as models) are L-structures which
satisfy the sentences of T . They are generally denoted M,N, . . . ; |M | is
the universe of the L-structure M ; ‖M‖ is the cardinality of |M |. For a
set A, |A| is the cardinality of A. <ωA is the set of finite sequences in A
and for a = 〈a1, . . . , an〉 ∈ <ωA, lg(a) = n is the length of a. Similarly, if
a = 〈aζ : ζ < δ〉, we write lg(a) = δ, where δ is an ordinal. For an element
R of L, val(M,R), or RM , is the interpretation of R in the L-structure M .

We ignore models of power less than κ. K is the class of all models of T ;

Kλ = {M ∈ K : ‖M‖ = λ},
K<λ =

⋃

µ<λ

Kµ, K≤λ =
⋃

µ≤λ
Kµ, K[µ,λ) =

⋃

µ≤χ<λ
Kχ.

We write f : M →F N (abbreviated f : M → N) to mean that f is
an F-elementary embedding (briefly, an embedding) of M into N , i.e. f is
a function with domain |M | into |N | such that for every F-formula ϕ(x),
and a ∈ <ω|M | with lg(a) = lg(x), M ² ϕ[a] iff N ² ϕ[f(a)], where if
a = 〈ai : i < n〉, then f(a) := 〈f(ai) : i < n〉. In the special case where
the embedding f is a set-inclusion (so that |M | ⊂ |N |), we write M ≺F N
(briefly M ≺ N) instead of f : M →F N and we say that M is an F-
elementary submodel of N , or N is an F-elementary extension of M .

(I,≤I), (J,≤J ), . . . are partial orders; we will not bother to subscript the
order relation unless really necessary; we write I for (I,≤). (I,≤) is directed
iff for every i1 and i2 in I, there is i ∈ I such that i1 ≤ i and i2 ≤ i. (I,<)∗

is the (reverse) linear order (I∗, <∗), where I∗ = I and s <∗ t iff t < s.
A set 〈Mi : i ∈ I〉 of models indexed by I is a ≺F -directed system

iff (I,≤) is a directed partial order and for i ≤ j in I, Mi ≺F Mj . The
union

⋃
i∈IMi of a ≺F -directed system 〈Mi : i ∈ I〉 of L-structures is an

L-structure. In fact, more is true.

Fact 1.1 (Tarski–Vaught property). (1) The union of a ≺F -directed sys-
tem 〈Mi : i ∈ I〉 of models of T is a model of T , and for every j ∈ I,
Mj ≺F

⋃
i∈IMi.
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(2) If M is a fixed model of T such that for every i ∈ I there is
fi : Mi →F M and for all i ≤ j in I, fi ⊆ fj , then

⋃
i∈I fi :

⋃
i∈IMi →F

M . In particular , if Mi ≺F M for every i ∈ I, then
⋃
i∈IMi ≺F M .

Let α be an ordinal. A ≺F -chain of models of length α is a sequence
〈Mβ : β < α〉 of models such that if β < γ < α, then Mβ ≺F Mγ . The chain
is continuous if for every limit ordinal β < α, Mβ =

⋃
γ<βMγ .

Fact 1.2 (Downward Loewenheim–Skolem property). Suppose that M is
a model of T , A ⊂ |M | and max(κ + |T |, |A|) ≤ λ ≤ ‖M‖. Then there is a
model N such that A ⊂ |N |, ‖N‖ = λ and N ≺F M .

Finally, λ > κ+ |T | usually denotes a power in which T is categorical.
Now we turn from the rather standard model-theoretic background to

the more specific concepts which are central in our investigation.

Definition 1.3. (1) Suppose that < is a binary relation on a class K
of models. K = 〈K,<〉 has the amalgamation property (AP) iff for every
M,M1,M2 ∈ K, if fi is an isomorphism from M onto rng(fi) and rng(fi) <
Mi for i = 1, 2, then there exist N ∈ K and isomorphisms gi from Mi onto
rng(gi) for i = 1, 2 such that rng(gi) < N and g1f1 = g2f2. The model N is
called an amalgam of M1,M2 over M with respect to f1, f2.

(2) An L-structure M is an amalgamation base (a.b.) for K = 〈K,<〉 iff
M ∈ K and whenever for i = 1, 2, Mi ∈ K and fi is an isomorphism from M
onto rng(fi) with rng(fi) < Mi, then there exist N ∈ K and isomorphisms gi
(i = 1, 2) from Mi onto rng(gi) such that rng(gi) < N and g1f1 = g2f2.

So K = 〈K,<〉 has AP iff every model in K is an a.b. for K.

Example 1.3A. Suppose that T is a theory in first-order logic having
an infinite model. Define, for M,N in the class K≤|T |+ℵ0 of models of T of
power at most |T |+ ℵ0, M < N iff the identity is an embedding of M into
an elementary submodel of N . Then K≤|T |+ℵ0 = 〈K≤|T |+ℵ0 , <〉 has AP (see
[CK]).

Example 1.3B. Suppose that T is a theory in Lκω and F is a fragment
of Lκω containing T with |F| < |T |+ + κ. Let < be the binary relation
≺F defined on the class K of all models of T . M ∈ K is an a.b. for K iff
whenever for i = 1, 2, Mi ∈ K and fi is an ≺F -elementary embedding of M
into Mi, there exist N ∈ K and F-elementary embeddings gi (i = 1, 2) of
Mi into N such that g1f1 = g2f2.

Definition 1.4. Suppose that < is a binary relation on a class K of
models. Let µ be a cardinal. M ∈ K≤µ is a µ-counter amalgamation basis
(µ-c.a.b.) of K = 〈K,<〉 iff there are M1,M2 ∈ K≤µ and isomorphisms fi
from M into Mi such that
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(A) rng(fi) < Mi (i = 1, 2),
(B) there is no amalgam N ∈ K≤µ of M1,M2 over M with respect to

f1, f2.

Observation 1.5. Suppose that T,F and < are as in 1.3B and κ +
|T | ≤ µ < λ. Note that if there is an amalgam N ′ of M1,M2 over M (for
M1,M2,M in K≤µ), then by 1.2 there is an amalgam N ∈ K≤µ of M1,M2

over M .

Indiscernibles and Ehrenfeucht–Mostowski structures. The basic results
on generalized Ehrenfeucht–Mostowski models can be found in [Sh-a] or
[Sh-c, Ch. VII]. We recall here some notation. Let I be a class of models
which we call the index models. Denote the members of I by I, J, . . . For I ∈ I
we say that 〈as : s ∈ I〉 is indiscernible in M iff for every s, t ∈ <ωI realizing
the same atomic type in I, as̄ and at̄ realize the same type in M (where
a〈s0,...,sn〉 = as0

∧ . . . ∧asn). If L ⊆ L′ are languages and Φ is a function with
domain including {tpat(s, ∅, I) : s ∈ <ωI} and I ∈ I, we let EM′(I, Φ) be an
L′-model generated by

⋃
s∈I as such that tpat(as, ∅,M) = Φ(tpat(s, ∅, I)).

We say that Φ is proper for I if for every I ∈ I, EM′(I, Φ) is well defined.
Let EM(I, Φ) be the L-reduct of EM′(I, Φ). For the purposes of this

paper we will let I be the class LO of linear orders and Φ will be proper
for LO. For I ∈ LO we abbreviate EM′(I, Φ) by EM′(I) and EM(I, Φ) by
EM(I).

Claim 1.6A. For each linear order I = (I,≤) there exists a generalized
Ehrenfeucht–Mostowski model EM(I) of T (see Nadel [N] and Dickmann
[D1] or [Sh-c, VII, §5]; there are “large” models by using limit ultrapowers,
see 1.12).

Let F be a fragment of Lκω. Recall that a theory T ⊂ F is called a
universal theory in Lκω iff the axioms of T are sentences of the form ∀xϕ(x),
where ϕ(x) is a quantifier-free formula in Lκω.

Definition and Proposition 1.6. Suppose that T is a theory such that
T ⊂ F , where F is a fragment of Lκω. There are a (canonically constructed)
finitary language Lsk and a universal theory Tsk in Lκω such that :

(0) L ⊂ Lsk and |Lsk| ≤ |F|+ ℵ0;
(1) the L-reduct of any Lsk-model of Tsk is a model of T ;
(2) whenever Nsk is an Lsk-model of Tsk and Msk is a substructure of

Nsk, then Msk¹L ≺F Nsk¹L;
(3) any L-model of T can be expanded to an Lsk-model of Tsk;
(4) if M ≺F N , then there are Lsk-expansions Msk, Nsk of M,N respec-

tively such that Msk is a substructure of Nsk and Nsk is a model of Tsk;
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(5) to any F-formula ϕ(x), there corresponds a quantifier-free formula
ϕqf(x) of (Lsk)κω such that

Tsk ² ∀x(ϕ(x)↔ ϕqf(x)).

Limit ultrapowers, iterated ultrapowers and nice extensions. An impor-
tant technique we shall use in studying the categoricity spectrum of a theory
in Lκω is the limit ultrapower. It is convenient to record here the well-known
definitions and properties of limit and iterated ultrapowers (see Chang and
Keisler [CK] and Hodges and Shelah [HoSh109]) and then to examine nice
extensions of models.

Definition 1.7.1. Suppose that M is an L-structure, I is a nonempty
set, D is an ultrafilter on I, and G is a filter on I × I. For each g ∈ I|M |, let
eq(g) = {〈i, j〉 ∈ I × I : g(i) = g(j)} and g/D = {f ∈ I|M | : g = f mod D},
where g = f mod D iff {i ∈ I : g(i) = f(i)} ∈ D. Let

∏
D/G |M | = {g/D :

g ∈ I |M | and eq(g) ∈ G}. Note that
∏
D/G |M | is a nonempty subset of∏

D |M | = {g/D : g ∈ I |M |} and is closed under the constants and functions
of the ultrapower

∏
DM of M modulo D. The limit ultrapower

∏
D/GM

of the L-structure M (with respect to I,D,G) is the substructure of
∏
DM

whose universe is the set
∏
D/G |M |. The canonical map d from M into∏

D/GM is defined by d(a) = 〈ai : i ∈ I〉/D, where ai = a for every i ∈ I.
Note that the limit ultrapower

∏
D/GM depends only on the equivalence

relations which are in G, i.e. if E is the set of all equivalence relations on I
and G∩E = G′∩E, where G′ is a filter on I×I, then

∏
D/GM =

∏
D/G′M .

Definition 1.7.2. Let M be an L-structure, 〈Y,<〉 a linear order and,
for each y ∈ Y , let Dy be an ultrafilter on a nonempty set Iy. Write H =∏
y∈Y Iy. Let

∏
y∈Y Dy be the set of s ⊂ H for which there are y1 < . . . < yn

in Y such that

(1) for all i, j ∈ H, if i¹{y1, . . . , yn} = j¹{y1, . . . , yn} then i ∈ s iff j ∈ s;
(2) {〈i(y1), . . . , i(yn)〉 : i ∈ s} ∈ Dy1 × . . .×Dyn .

Write E =
∏
y∈Y Dy. The iterated ultrapower

∏
E |M | of the set |M |

with respect to 〈Dy : y ∈ Y 〉 is the set {f/E : f : H → |M | and
for some finite Zf ⊂ Y for all i, j ∈ H, if i¹Zf = j¹Zf , then f(i) =
f(j)}. The iterated ultrapower

∏
EM of the L-structure M with respect

to 〈Dy : y ∈ Y 〉 is the L-structure whose universe is the set
∏
E |M |;

for each n-ary predicate symbol R of L,RΠEM (f1/E, . . . , fn/E) iff {i ∈
H : RM (f1(i), . . . , fn(i))} ∈ E; for each n-ary function symbol F of L,
FΠEM (f1/E, . . . , fn/E) = 〈FM (f1(i), . . . , fn(i)) : i ∈ H〉/E. The canonical
map d : M →∏

EM is defined as usual by d(a) = 〈a : i ∈ H〉/E.

R e m a r k 1.7.3. (1) Every ultrapower is a limit ultrapower: take G =
P (I × I) and note that

∏
DM =

∏
D/GM .
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(2) Every iterated ultrapower is a limit ultrapower. [Why? let the iterated
ultrapower be defined by 〈Y,<〉 and 〈(Iy, Dy) : y ∈ Y 〉 (see Definition 1.7.2).
For Z ∈ [Y ]<ω, let AZ = {(i, j) ∈ H × H : i¹Z = j¹Z}. Note that {AZ :
Z ∈ [Y ]<ω} has the finite intersection property and hence can be extended
to a filter G on H ×H. Now for any model M we have

∏
EM

∼= ∏
D/GM

for every filter D over H extending E under the map f/E → f/D.]

Definition 1.7.4. Suppose that M is an L-structure, D is an ultrafilter
on a nonempty set I, and G is a suitable set of equivalence relations on I, i.e.

(i) if e ∈ G and e′ is an equivalence relation on I coarser than e, then
e′ ∈ G;

(ii) G is closed under finite intersections;
(iii) if e ∈ G, then D/e = {A ⊂ I/e :

⋃
x∈A x ∈ D} is a κ-complete

ultrafilter on I/e which, for simplicity, has cardinality κ; we state this as
“(I,D,G) is κ-complete”.

(We may say (I,D,G) is suitable.)

Then Op(M, I,D,G) is the limit ultrapower
∏
D/Ĝ

M , where Ĝ is the
filter on I × I generated by G. One abbreviates Op(M, I,D,G) by Op(M),
and one writes fOp for the canonical map d : M → Op(M).

Note that

Observation/Convention 1.7.4A. 1) For any L-structure N , fOp is
an Lκω-elementary embedding of N into Op(N) and in particular
fOp : N →F Op(N).

2) Since fOp is canonical, one very often identifies N with the L-structure
rng(fOp) which is an F-elementary substructure of Op(N), and one writes
N ≺F Op(N). In particular, for any model M of T ⊂ F and Op,
fOp : M →F Op(M) (briefly written, M ≺F Op(M) and sometimes even
M ≺ Op(M)) so that Op(M) is a model of T too.

3) Remark that if D is a κ-complete ultrafilter on I and G is a filter on
I × I, then Op(M, I,D,G) is well defined.

4) “Suitable limit ultrapower” means one using a suitable triple.

More information on limit and iterated ultrapowers can be found in [CK]
and [HoSh109].

Observation 1.7.5. Suppose that M is a model of a theory T ⊂ F ,
where F is a fragment of Lκω. Given θ-complete ultrafilters D1 on I1, D2 on
I2 and suitable filters G1 on I1× I1, G2 on I2× I2 respectively, there exist a
θ-complete ultrafilter D on a set I and a suitable filter G on I × I such that

Op(M, I,D,G) = Op(Op(M, I1, D1, G1), I2, D2, G2)
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and (D,G, I) is κ-complete. Also iterated ultrapower (along any linear order)
with each iterand being an ultrapower by a κ-complete ultrafilter, gives
a suitable triple (in fact, even iteration of suitable limit ultrapowers is a
suitable ultrapower).

Definition 1.8. Suppose that K is a class of L-structures and < is a
binary relation on K. For M,N ∈ K, write f : M →

nice,<
N to mean

(1) f is an isomorphism from M into N and rng(f) < N ;
(2) there are a set I, an ultrafilter D on I, a suitable set G of equivalence

relations on I (so Definition 1.7.4(i)–(iii) holds), and an isomorphism g from
N into Op(M, I,D,G) such that rng(g) < Op(M, I,D,G) and gf = fOp,
where fOp is the canonical embedding of M into Op(M, I,D,G). f is called
a <-nice embedding of M into N . Of course one writes f : M →

nice
N and says

that f is a nice embedding of M into N when < is clear from the context.

Example 1.9.1. Consider T , F and K = 〈K,<〉 as set up in 1.3B. In this
case f : M →

nice,<
N holds iff f : M →F N and for some suitable 〈I,D,G〉

and some g : N →F Op(M, I,D,G), gf = fOp.
Abusing notation one writes M →

nice
N to mean that there are f, g and

Op such that f : M →
nice,<

N using g and Op. If not said otherwise, < is <F .

We may also write M �
nice

N , and for linear orders we use I ⊆
nice

J .

Example 1.9.2. Let LO be the class of linear orders and let (I,≤I) <
(J,≤J) mean that (I,≤I) ⊆ (J,≤J), i.e. (I,≤I) is a suborder of (J,≤J). If
f : (I,≤I) →

nice,<
(J,≤J), then for some Op, identifying isomorphic orders,

one has (I,≤I) ⊆ (J,≤J) ⊆ Op(I,≤I).
Observation 1.10. Suppose that T,F and K are as in 1.3B and 1.9.1.

Suppose further that M <
nice

N and M �F M ′ �F N for M,M ′, N ∈ K.

Then M <
nice

M ′.

P r o o f. For some f , g and Op, f : M →F N , g : N →F Op(M) and
gf = fOp. Now g : M ′ →F Op(M) (since M ′ �F N) and gf = fOp so that
M <

nice
M ′.

Observation 1.11. Suppose that 〈Mi : i ≤ δ〉 is a continuous increasing
chain and for each i < δ, Mi <

nice
Mi+1. Then for every i < δ, Mi <

nice
Mδ.

P r o o f (like the proof of 1.7.3(2)). For each i < δ, there are (Ii, Di, Gi)
as in Definition 1.7.4 which witness Mi ≤

nice
Mi+1. Let I :=

∏
i<δ Ii and

G := {e : e ⊆ I × I and for some n < ω and α1 < . . . < αn < δ and e1 ∈
Gα1 , . . . , en ∈ Gαn , we have: for every x, y ∈ I such that (x(αl), y(αl)) ∈ el
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for l = 1, . . . , n, we have (x, y) ∈ e}. D will be any ultrafilter on I such that:
if n < ω and α1 < . . . < αn < δ, e1 ∈ Gα1 , . . . , en ∈ Gαn , el is an equivalence
relation on Iαl for l = 1, . . . , n and A ∈ (Dα1/eα1)× . . .× (Dαn/eαn), then
the set {x ∈ I : 〈x(α1)/eα1 , . . . , x(αn)/eαn〉 ∈ A} belongs to D. We leave
the rest to the reader.

Claim 1.12. For every model M and λ ≥ κ+ |F|+ ‖M‖ there is N such
that M �F

nice
N , M 6= N and ‖N‖ = λ.

P r o o f. As κ is measurable.

2. The amalgamation property for regular categoricity. The main
aim in this section is to show that if T is categorical in the regular cardinal
λ > κ + |T |, then K<λ = 〈K<λ,�F 〉 has the amalgamation property (AP)
(Definition 1.3(1)). Categoricity is not presumed if not required.

Lemma 2.1. Suppose that κ + |T | ≤ µ ≤ λ, M,M1,M2 ∈ K≤µ,
f1 : M →

nice
M1, f2 : M →F M2. Then there is an amalgam N ∈ K≤µ

of M1,M2 over M with respect to f1, f2. Moreover , there are gl : Ml →F N
for l = 1, 2 such that g1f1 = g2f2 and rng(g2) ∩ rng(g1) = rng(g1f1).

P r o o f. There are g and Op such that g : M1 →F Op(M) and gf1 = fOp.
Then f2 induces an F-elementary embedding f∗2 of Op(M) into Op(M2)
such that f∗2 fOp = fOpf2. Let g1 = f∗2 g and g2 = fOp¹M2. By 1.2 one finds
N ∈ K≤µ such that rng(g1)∪ rng(g2) ⊂ N ≺F Op(M2). Now N is an amal-
gam of M1,M2 over M with respect to f1, f2 since g1f1 = f∗2 gf1 = f∗2 fOp =
fOpf2 = g2f2. The last phrase in the lemma is easy by properties of Op.

Lemma 2.2. Suppose that M ∈ K≤µ is a µ-c.a.b. and κ + |T | ≤ µ < λ.
Then N ∈ K<λ is a ‖N‖-c.a.b. whenever f : M →

nice
N .

P r o o f. Suppose that g : N →F Op(M) and gf = fOp. Since M is
a µ-c.a.b., for some Mi ∈ K≤µ and fi : M →F Mi (i = 1, 2) there
is no amalgam of M1,M2 over M with respect to f1, f2. Let f∗i be the
F-elementary embedding from Op(M) into Op(Mi) defined by fi (note that
f∗i fOp = fOpfi, i = 1, 2). Choose Ni of power ‖N‖ such that Mi ∪ rng(f∗i g)
⊂ Ni ≺F Op(Mi). Note that f∗i f : N →F Ni. It suffices to show that there
is no amalgam of N1, N2 over N with respect to f∗1 g, f

∗
2 g.

Well, suppose that one could find an amalgam N∗ and hi : Ni →F
N∗, i = 1, 2, with h1(f∗1 g) = h2(f∗2 g). Using 1.2 choose M∗ such that
‖M∗‖ ≤ µ, M∗�F N∗ and rng(h1fOp¹M1) ∪ rng(h2fOp¹M2) ⊂ |M∗|. Set
gi = hifOp¹Mi, for i = 1, 2, and note that

g1f1 = h1fOpf1 = h1f
∗
1 fOp = h1f

∗
1 gf = h2f

∗
2 gf

= h2f
∗
2 fOp = h2fOpf2 = g2f2.
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In other words, M∗ is an amalgam of M1,M2 over M with respect to
f1, f2—contradiction. It follows that N is a ‖N‖-c.a.b.

Corollary 2.3. Suppose that κ+|T | ≤ µ < λ. If M ∈ Kµ is a µ-c.a.b.,
then there exists M∗ ∈ Kλ such that

(∗) M �F M∗ and for every M ′ ∈ K<λ, if M �FM ′�FM∗, then M ′ is
a ‖M ′‖-c.a.b.

P r o o f. As ‖M‖ ≥ κ, for some appropriate Op one has ‖Op(M)‖ ≥ λ,
and by 1.2 one finds M∗ ∈ Kλ such that M ⊂M∗�F Op(M). Let us check
that M∗ works in (∗). Take M ′ ∈ K<λ with M �FM ′�FM∗; so M �

nice
M ′

since M∗�F Op(M); hence by 2.2, M ′ is a ‖M ′‖-c.a.b.

Theorem 2.4. Suppose that T is λ-categorical and λ = cf(λ) > κ+ |T |.
If K<λ fails AP , then there is N∗ ∈ Kλ such that for some continuous
increasing ≺F -chain 〈Ni ∈ K<λ : i < λ〉 of models,

(1) N∗ =
⋃
i<λNi;

(2) for every i < λ, Ni �
nice

Ni+1 (and so Ni �
nice

N∗).

P r o o f. K<λ fails AP, so for some µ < λ and M ∈ K≤µ, M is a
µ-c.a.b. By 2.2 and 1.12, without loss of generality, M ∈ Kµ. Choose by
induction a continuous strictly increasing ≺F -chain 〈Ni ∈ K<λ : i < λ〉 as
follows: N0 = M ; at a limit ordinal i, take the union; at a successor ordinal
i = j + 1, if there is N ∈ K<λ such that Nj � N and Nj �

nice
N , choose

Ni = N , otherwise choose for Ni any nontrivial F-elementary extension of
Nj of power less than λ.

Claim. (∃j0 < λ)(∀j ∈ (j0, λ))(Nj is a ‖Nj‖-c.a.b.).

P r o o f. Suppose not. So one has a strictly increasing sequence 〈ji : i < λ〉
such that for each i < λ, Nji is not a ‖Nji‖-c.a.b. Let N∗ =

⋃
i<λNji .

So ‖N∗‖ = λ. Applying 2.3 one can find M∗ ∈ Kλ such that whenever
M ′ ∈ K<λ and M �M ′ �M∗, then M ′ is a ‖M ′‖-c.a.b.

Since T is λ-categorical, there is an isomorphism g of N∗ onto M∗. Let
N = g−1(M) and Mi = g(Ni) for i < λ. Since ‖N‖ = µ < cf(λ) = λ, there
is i0 < λ such that N ⊂ Nji0 .

In fact, Nji0 is a ‖Nji0‖-c.a.b. [Otherwise, consider Mji0
. Since M �F

Mji0
�FM∗ and ‖Mji0

‖ < λ, Mji0
is a ‖Mji0

‖-c.a.b., so there are
fl : Mji0

→F M ′l (l = 1, 2) with no amalgam of M ′1,M
′
2 over Mji0

with
respect to f1, f2. If Nji0 is not a ‖Nji0‖-c.a.b., then one can find an amal-
gam N+ ∈ K≤‖Nji0 ‖ of M ′1,M

′
2 over Nji0 with respect to f1g, f2g such that

hl : M ′l →F N+ and h1(f1g) = h2(f2g); so h1f1 = h2f2 and N+ is thus an
amalgam of M ′1,M

′
2 over Mji0

with respect to f1, f2, and ‖N+‖ ≤ ‖Nji0‖ =
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‖Mji0
‖—contradiction.] This contradicts the choice of Nji0 . So the claim is

correct.
It follows that for each j ∈ (j0, λ) there are N1

j , N
2
j in K<λ and

fl : Nj →F N l
j such that no amalgam of N1

j , N
2
j over Nj with respect

to f1, f2 exists. By 2.2 for some l ∈ {1, 2}, Nj �
nice

N l
j+1. So by the induc-

tive choice of 〈Nj+1 : j < λ〉, (∀j ∈ (j0, λ))(Nj �
nice

Nj+1). Taking N∗ =
⋃
j0<j<λ

Nj , one completes the proof. (Of course for j0 < j < λ, Nj �
nice

N∗:

if Nj �F N∗�F Op(Nj), then by 1.10, Nj �
nice

Nj+1—contradiction).

Theorem 2.5. Suppose that (I,<I), (J,<J) are linear orders and I is a
suborder of J . If (I,<I) ⊆

nice
(J,<J), then EM(I) �

nice
EM(J).

P r o o f. Without loss of generality, for some cardinal µ, ultrafilter D on µ
and suitable set G, a filter on µ×µ, (I,<I) ⊆ (J,<J) ⊆ Op((I,<I), µ,D,G)
= Op(I,<), and |Op(I,<)| = {f/D : f ∈ µI, eq(f) ∈ G}, where eq(f) =
{(i, j) ∈ µ × µ : f(i) = f(j)}. So for each t ∈ J , there exists ft ∈ µI such
that t = ft/D. Note that if t ∈ I, then ft/D = fOp(t) so that without
loss of generality, for all i < µ, ft(i) = t. Define a map h from EM(J) into
Op(EM(I)) as follows. An element of EM(J) has the form

τEM′(J)(xt1 , . . . , xtn),

where t1, . . . , tn ∈ J and τ is an L-term. Define, for t ∈ J , gt ∈ µEM(I) by
gt(i) = xft(i). Note that ft(i) ∈ I, so that xft(i) ∈ EM(I) and so gt/D ∈
Op(EM(I)). Let h(τEM′(J)(xt1 , . . . , xtn)) = τOp(EM′(I))(gt1/D, . . . , gtn/D),
which is an element in Op(EM(I)). The reader is invited to check that h is an
F-elementary embedding of EM(J) into Op(EM(I)). So EM(I)�F EM(J).

Finally, note that if τ = τEM′(I)(xt1 , . . . , xtn) ∈ EM(I) with t1, . . . , tn
∈ I, then

h(τ) = τOp(EM′(I))(gt1/D, . . . , gtn/D)

= τOp(EM′(I))(〈xt1 : i < µ〉/D, . . . , 〈xtn : i < µ〉/D)

= fOp(τEM′(I)(xt1 , . . . , xtn)) = fOp(τ).

Thus EM(I) �
nice

EM(J).

Criterion 2.6. Suppose that (I,<) is a suborder of the linear order
(J,<). If

(∗) for every t ∈ J \ I,

(ℵ) cf((I,<)¹{s ∈ I : (J,<) ² s < t}) = κ
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or

(i) cf((I,<)∗¹{s ∈ I : (J,<)∗ ² s <∗ t}) = κ

then (I,<) ⊆
nice

(J,<). [Notation: (I,<)∗ is the (reverse) linear order (I∗, <∗),

where I∗ = I and (I∗, <∗) ² s <∗ t iff (I,<) ² t < s.]

P r o o f. Let us list some general facts which facilitate the proof.

Fact (A). Let κ denote the linear order (κ,<), where < is the usual
order ∈¹κ× κ. If J1 = κ+ J0, then κ ⊆

nice
J1 (+ is addition of linear orders

in which all elements in the first order precede those in the second).

Fact (B). If κ ⊆ (I,<), κ is unbounded in (I,<) and J1 = I + J0, then
I ⊆

nice
J1.

Fact (C). If I ⊆
nice

J , then I + J1 ⊆
nice

J + J1.

Fact (D). I ⊆
nice

J iff (J,<)∗ ⊆
nice

(I,<)∗.

Fact (E). If 〈Iα : α ≤ δ〉 is a continuous increasing sequence of linear
orders and for α < δ, Iα ⊆

nice
Iα+1, then Iα ⊆

nice
Iδ.

Now using these facts, let us prove the criterion. Define an equivalence
relation E on J \ I as follows: tEs iff t and s define the same Dedekind cut
in (I,<). Let {tα : α < δ} be a set of representatives of the E-equivalence
classes. For each β ≤ δ, define

Iβ = J¹{t : t ∈ I ∨ (∃α < β)(tEtα)}
so I0 = I, Iδ = J and 〈Iα : α ≤ δ〉 is a continuous increasing sequence
of linear orders. By Fact (E), to show that I ⊆

nice
J , it suffices to show that

Iα ⊆
nice

Iα+1 for each α < δ.

Fix α < δ. Now tα belongs to J \I, so (ℵ) or (i) holds. By Fact (D), it is
enough to treat the case (ℵ). So, without loss of generality, cf((I,<)¹{s ∈ I :
(J,<) |= s < ts}) = κ.

Let
Ia
α = {t ∈ Iα : t < tα},
Ib
α = {t ∈ Iα+1 : t ∈ Ia

α ∨ tEtα},
Ic
α = {t ∈ Iα : t > tα}.

Note that Iα = Ia
α + Ic

α and Iα+1 = Ib
α + Ic

α. Recalling Fact (C), it is now
enough to show that Ia

α ⊆
nice

Ib
α. Identifying isomorphic orders and using (ℵ),

one deduces that κ is unbounded in Ia
α and Ib

α = Ia
α + (Ib

α \ Ia
α) so by Fact

(B), Ia
α ⊆

nice
Ib
α as required.
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Of the five facts, we prove (A), (B) and (E), as (C) and (D) are obvious.

P r o o f o f F a c t (A). Since κ is measurable, there is a κ-complete
uniform ultrafilter D on κ (see [J]). For every linear order J0 (or J∗0 ) there
is OpI,D(−), the iteration of I ultrapowers (−)κ/D, ordered in the order J0

(or J∗0 ), giving the required embedding (use 1.7.5).

P r o o f o f F a c t (B). Since κ ⊆ I and using Fact (A), we know that
there is an operation Op such that the following diagram commutes:

I

κ Op(κ) Op(I)

κ+ J0 I + J0

Canonical
//

id
lllllllllllllllll55

id

RRRRRRRRRRRRRRR))

Natural
//

Canonical

iiTTTTTTTTTTTTTTTTT

id
//

Fact (A)

OO OO

Chasing through the diagram, we obtain the required embedding.

P r o o f o f F a c t (E). Apply 1.11 to the chain 〈Iα : α ≤ δ〉.
Fact 2.7. Suppose that λ ≥ κ. There exist a linear order (I,<I) of power

λ and a sequence 〈Ai ⊂ I : i ≤ λ〉 of pairwise disjoint subsets of I, each of
power κ, such that I =

⋃
i≤λAi and

(∗) if λ ∈ X ⊂ λu 1, then I¹
⋃

i∈X
Ai ⊆

nice
I.

P r o o f. Let I = (λu 1)× κ and define <I on I by (i1, α1) <I (i2, α2) iff
i1 < i2 or (i1 = i2 and α1 > α2). For each i ≤ λ, let Ai = {i} × κ. Check
(∗) of 2.6: suppose that λ ∈ X ⊂ λ + 1. Write IX = I¹

⋃
i∈X Ai. To show

that IX ⊆
nice

I, one deploys Criterion 2.6. Consider t ∈ I − IX , say t = (i, α)

(note that α < κ and i < λ, since λ ∈ X) and i 6∈ X. Let j = min(X − i);
note that j is well defined, since λ ∈ X − i, and j 6= i. For every β < κ,
one has t <I (j, β) and (j, β) ∈ IX . Also if s ∈ IX and t <I s, then for
some β < κ, (j, β) <I s. Thus 〈(j, β) : β < κ〉 is a cofinal sequence in
(IX¹{s ∈ I : t <I s})∗. By the criterion, IX ⊆

nice
I.

Theorem 2.8. Suppose that κ = cf(δ) ≤ δ < λ. Then EM(δ) �
nice

EM(λ).

P r o o f. By Fact (B) of 2.6, one has δ ⊆
nice

λ; so by 2.5, EM(δ) �
nice

EM(λ).

Now let us turn to the main theorem of this section.

Theorem 2.9. Suppose that T is categorical in the regular cardinal
λ > κ+ |T |. Then K<λ has the amalgamation property.
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P r o o f. Suppose that K<λ fails AP. Note that ‖EM(λ)‖ = λ. Apply
2.4 to find M∗ ∈ Kλ and 〈Mi : i < λ〉 satisfying 2.4(1), (2). Since T is
λ-categorical,M∗ ∼= EM(λ), so without loss of generality, EM(λ) =

⋃
i<λMi.

Now C = {i < λ : Mi = EM(i)} is a club of λ. Choose δ ∈ C with
cf(δ) = κ. By 2.8, EM(δ) �

nice
EM(λ), so Mδ �

nice
M∗. But of course by 2.4(2),

Mδ �
nice

M∗—contradiction.

Theorem 2.10. Suppose that T is categorical in λ > κ+ |T |. Then:

(1) T has a model M of power λ such that if N �F M and ‖N‖ < λ,
then there exists N ′ such that

(α) N �F N ′ �F M ;
(β) ‖N ′‖ = ‖N‖+ κ+ |T |;
(γ) N ′ �

nice
M .

(2) T has a model M of power λ and an expansion M+ of M by at most
κ+ |T | functions such that if N+ ⊆M+, then N+¹L �

nice
M .

P r o o f. Let 〈I, 〈Ai : i ≤ λ〉〉 be as in 2.7. Let M = EM(I). Suppose
that N �M and ‖N‖ < λ. Then there exists J ⊂ I with |J | < λ such that
N ⊂ EM(J), hence N �F EM(J)�F EM(I). So there is X ⊂ λ + 1 with
λ ∈ X and |X| < λ such that J ⊂ ⋃

i∈X Ai. Note that |⋃i∈X Ai| ≤
|X|κ < λ. Now N ′ = EM(I¹

⋃
i∈X Ai) is as required, since I¹

⋃
i∈X Ai ⊆

nice
I

and so by 2.5, EM(I¹
⋃
i∈X Ai) �

nice
EM(I). This proves (1).

(2) We expand M = EM(I) as follows:

(a) By all functions of EM′(I).
(b) By the unary functions fl (l < ω) which are chosen as follows: we

know that for each b ∈ M there is an L1-term τb (L1 is the vocabulary
of EM′(I)) and t(b, 0) < t(b, 1) < . . . < t(b, nτb − 1) from I such that
b = τb(xt(b,0), xt(b,1), . . . , xt(b,nτb−1)) (it is not unique, but we can choose
one; really if we choose it with nb minimal it is almost unique). We let

fl(b) =
{
xt(b,l) if l < nτb ,
b if l ≥ nτb .

(c) By unary functions gα, gα for α < κ such that if t < s are in I
and α = otp[(t, s)∗I ] then gα(xt) = xs, gβ(xs) = xt for some β < κ (more
formally, gα(x(i,β)) = x(i,β+α) and gα(x(i,β)) = x(i,α)) and in the other cases
gα(b) = b, gα(b) = b.

(d) By individual constants cα = x(λ,α) for α < κ.

Now suppose N+ is a submodel of M+ and N its L-reduct. Let
J := {t ∈ I : xt ∈ N}. Now J is a subset of I of cardinality ≤ ‖N‖ as
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for t 6= s from J , xt 6= xs. Also if b ∈ N then by (b), xt(b,l) ∈ N , hence
b ∈ EM(J); on the other hand, if b ∈ EM(J) then by (a) we have b ∈ N ; so
we can conclude N = EM(J). So far this holds for any linear order I.

By (c), J =
⋃
i∈X Ai for some X ⊆ λ+ 1, and by (d), λ ∈ X.

Now EM(J) �
nice

EM(I) 6= M by 2.7.

3. Towards removing the assumption of regularity from the
existence of universal extensions. In Section 2 we showed that K<λ has
the amalgamation property when T is categorical in the regular cardinal
λ > κ + |T |. We now study the situation in which λ is not assumed to be
regular.

Our problem is that while we know that most submodels of N ∈ Kλ

sit well in N (see 2.10(2)) and that there are quite many N ∈ K<λ which
are amalgamation bases, our difficulty is to get those things together: con-
structing N ∈ Kλ as

⋃
i<λNi with Ni ∈ K<λ means N has �F -submodels

not included in any Ni.

Theorem 3.1. Suppose that T is categorical in λ and κ + |T | ≤ θ < λ.
If 〈Mi ∈ Kθ : i < θ+〉 is an increasing continuous ≺F -chain, then{

i < θ+ : Mi �
nice

⋃

j<θ+

Mj

}
∈ Dθ+ .

R e m a r k 3.1A. (1) We cannot use 2.10(1) e.g. as possibly λ has cofi-
nality < κ+ |T |.

(2) Recall that Dθ+ is the closed unbounded filter on θ+.

P r o o f o f T h e o r e m 3.1. Write Mθ+ =
⋃
i<θ+ Mi. Choose an op-

eration Op such that for all i < θ+, ‖Op(Mi)‖ ≥ λ. Let M∗i = Op(Mi).
Applying 1.2 for nonlimit ordinals, and 1.1 for limit ordinals, one finds
inductively an increasing continuous ≺F -chain 〈Ni : i ≤ θ+〉 such that
Mi � Ni � M∗i and ‖Ni‖ = λ for i < θ+, and Nθ+ =

⋃
i<θ+ Ni. Note that

‖Nθ+‖ = θ+ · λ = λ.
Since T is λ-categorical, Nθ+ ∼= EM(I), where 2.7 furnishes I of power λ.

By 2.10(2), there is an expansion N+
θ+ of Nθ+ by at most κ + |T | func-

tions such that if A ⊂ |N+
θ+ | is closed under the functions of N+

θ+ , then
(N+

θ+¹L)¹A �
nice

Nθ+ .

Choose a set Ai and an ordinal ji, by induction on i < θ+, satisfying

(1) Ai ⊂ |Nθ+ |, |Ai| ≤ θ; 〈Ai : i < θ+〉 is continuous increasing;
(2) 〈ji : i < θ+〉 is continuous increasing;
(3) Ai is closed under the functions of N+

θ+ ;
(4) Ai ⊂ |Nji+1 |;
(5) |Mi| ⊂ Ai+1.
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This is possible: for zero or limit ordinals unions work; for i+ 1 choose ji+1

to satisfy (2) and (4), and Ai+1 to satisfy (1), (3) and (5).
By (2), C = {i < θ+ : i is a limit ordinal and ji = i} is a club of θ+, i.e.

C ∈ Dθ+ .
Fix i ∈ C. Note that |Mi| ⊂ Ai and Ai ⊂ |Ni| (since |Mi| =

⋃
j<i |Mj | ⊆⋃

j<iAj+1 = Ai =
⋃
i′<iAi′ ⊂

⋃
i′<i |Nji′+1

| = Nji = Ni (using (5), (1), (4),
(2) and ji = i)) and soMi �F (N+

θ+¹L)¹Ai �F Ni �F M∗i = Op(Mi), so that
Mi �

nice
(N+

θ+¹L)¹Ai. However, by (3) and the choice of Nθ+ and N+
θ+ one also

has (N+
θ+¹L)¹Ai �

nice
Nθ+ . So by transitivity of �

nice
, one obtains Mi �

nice
Nθ+ .

Finally, remark that Mθ+ �F Nθ+ since Mi �
nice

Ni �F Nθ+ for every

i < θ+. Hence C ⊂ {i < θ+ : Mi �
nice

Mθ+} ∈ Dθ+ .

Definition 3.2. Suppose that θ ∈ [κ + |T |, λ) and M ∈ Kθ. Then
M is nice iff whenever M �F N ∈ Kθ, then M �

nice
N . (The analogous F-

elementary embedding definition runs: M is nice iff whenever f : M →F
N ∈ Kθ then f : M →

nice
N .)

Theorem 3.3. Suppose that T is categorical in λ and M ∈ Kθ with
θ ∈ [κ + |T |, λ). Then there exists N ∈ Kθ such that M �F N and N is
nice.

P r o o f. Suppose otherwise. We will define a continuous increasing
≺F -chain 〈Mi ∈ Kθ : i < θ+〉 such that for j < θ+,

(∗)j Mj �
nice

Mj+1.

For i = 0, put M0 = M ; if i is a limit ordinal, put Mi =
⋃
j<iMj ; if i = j+1,

then, since 3.3 is assumed to fail, Mj+1 exists as required in (∗)j (otherwise
Mi works as N in 3.3). But now 〈Mi : i < θ+〉 yields a contradiction to
3.1, since C = {i < θ+ : Mi �

nice

⋃
j<θ+ Mj} ∈ Dθ+ by 3.1 so that choosing j

from C one has Mj �
nice

Mj+1 by 1.10, contradicting (∗)j .

Theorem 3.4. Suppose that T is categorical in λ and θ ∈ [κ + |T |, λ).
If M ∈ Kθ is nice and f : M →F N ∈ K≤λ, then f : M →

nice
N .

P r o o f. Choosing an appropriate Op and using 1.2 one findsN1 such that
N �F N1 and ‖N1‖ = λ. Find M ′1 �

nice
N1 by 2.10(2) such that rng(f) ⊂ |M ′1|

and ‖M ′1‖ = θ. So M ′1�F N1 and so rng(f)�FM ′1. Since M is nice, we
have f : M →

nice
M ′1. Now M ′1 �

nice
N1, so f : M →

nice
N1. So there are Op

and g : N1 →F Op(M) satisfying gf = fOp. Since N �F N1 it follows that
f : M →

nice
N as required.
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Corollary 3.5. Suppose that M ∈ Kθ is nice with θ ∈ [κ + |T |, λ).
Then M is an a.b. in K≤λ, i.e. if fi : M →F Mi and Mi ∈ K≤λ (i = 1, 2),
then there exists an amalgam N ∈ K≤λ of M1,M2 over M with respect to
f1, f2.

P r o o f. By 3.4, fi : M →
nice

Mi (i = 1, 2). Hence by 2.1 there is an

amalgam N ∈ K≤λ of M1,M2 over M with respect to f1, f2.

Definition 3.6. Suppose that θ ∈ [κ+ |T |, λ) and σ is a cardinal.

(1) A model M ∈ Kθ is σ-universal iff for every N ∈ Kσ, there ex-
ists an F-elementary embedding f : N →F M . M is universal iff M is
‖M‖-universal.

(2) A model M2 ∈ K≥σ is σ-universal over the model M1 (and one
writes M1 �

σ-univ
M2) iff M1�FM2 and whenever M1�FM ′2 ∈ Kσ, then

there exists an F-elementary embedding f : M ′2 →F M2 such that f¹M1 is
the identity. (The embedding version runs: there exists h : M1 →F M2 such
that whenever g : M1 →F M ′2 ∈ K‖σ‖, then there exists f : M ′2 →F M2 with
fg = h.) M2 is universal over M1 (M1 �

univ
M2) iff M2 is ‖M2‖-universal

over M1.
(3) M2 is σ-universal over M1 in M iff M1 �F M2 �F M , ‖M1‖ ≤

σ and whenever M ′2 ∈ Kσ and M1�FM ′2�FM , then there exists an
F-elementary embedding f : M ′2 → M2 such that f¹M1 is the identity.
M2 is universal over M1 in M iff M2 is ‖M2‖-universal over M1 in M .

(4) M2 is weakly σ-universal over M1 (written M1 ≺
σ-wu

M2) iff M1 �F
M2 ∈ Kσ and wheneverM2 ≺F M ′2 ∈ Kσ, then there exists an F-elementary
embedding f : M ′2 →F M2 such that f¹M1 is the identity. (The embedding
version is: there exists h : M1 →F M2 such that whenever g : M2 →F
M ′2 ∈ Kσ, then there exists f : M ′2 →F M2 such that h = fgh (written
h : M1 →

σ-wu
M2).). M2 is weakly universal over M1 (M1 �

wu
M2) iff M2 is

‖M2‖-weakly universal over M1.

(Note that “M2 is σ-universal over M1” does not necessarily imply
“M2 is weakly σ-universal over M1” as possibly ‖M2‖ > σ.)

R e m a r k 3.6A. Observe that

(5) In K<λ, if M1 is an a.b., then weak universality over M1 is equivalent
to universality over M1.

P r o o f. Suppose that h : M1→
wu
M2 and g : M1 →F M ′2 ∈ K‖M2‖. Since

M1 is an a.b. there exist a model N and h′ : M2 →F N , g′ : M ′2 →F N
satisfying h′h = g′g. By 1.2 we can assume that ‖N‖ = ‖M2‖. Since M2 is
weakly universal over M1, there exists h′′ : N →F M2 with h = h′′h′h. Let
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f = h′′g′ : M ′2 → M2, and note that fg¹M1 = h′′g′g = h′′h′h = h, so that
M2 is universal over M1.

R e m a r k 3.6B. Conversely,

(6) For any model M , universality over M implies weak universality
over M .

Lemma 3.7. Suppose that T is categorical in λ and θ ∈ [κ + |T |, λ). If
M ∈ Kθ and M �F N ∈ Kλ, then there exists M+ ∈ Kθ such that

(1) M �FM+�F N ;
(2) M+ is universal over M in N .

P r o o f. Now choose I such that

(∗)λ[I] (i) I is a linear order of cardinality λ;
(ii) if θ ∈ [ℵ0, λ) and J0 ⊆ I with |J0| = θ then there is J1

satisfying J0 ⊆ J1 ⊆ I, |J1| = θ, and such that for every
J∗ ⊆ I of cardinality ≤ θ there is an order preserving (one-
to-one) mapping from J0∪J∗ into J0∪J1 which is the identity
on J0.

Essentially the construction follows Laver [L] and [Sh220, Appendix];
but for our present purpose let I = (ω>λ,<lex); given θ and J0 we can
increase J0 so without loss of generality, J0 = ω>A, A ⊆ λ, |A| = θ. Define
an equivalence relation E on I \ J0: ηEν ⇔ (∀% ∈ J0)(% <lex η ≡ % <lex ν);
clearly it has ≤ θ equivalence classes. Let {η∗i : i < i∗ ≤ θ} be a set of
representatives, each of minimal length, so η∗¹(lg η∗i −1) ∈ J0 and η∗i (lg η∗i −
1) ∈ λ \A.

Let J1 = I ∪ {η∗i ∧ν : ν ∈ ω>θ and i < i∗}. Then clearly J0 ⊆ J1 ⊆ I
and |J1| = θ. Suppose J0 ⊆ J ⊆ I, |J | ≤ θ, and we should find the required
embedding h. As before we can assume that J = ω>B, |B| = θ and A ⊆ B.
Now h¹J0 = idJ0 so it is enough to define h¹(J1∩(η∗i /E)), hence it is enough
to embed J1 ∩ (η∗i /E) into {η∗1∧ν : ν ∈ ω>θ} (under <lex).

Let γ = otpB. It is enough to show (<ωγ,<lex) can be embedded into
ω>θ, where of course |γ| ≤ θ. This is proved by induction on γ.

Since T is λ-categorical and EM(I) is a model of T of power λ, there is
an isomorphism g from EM(I) onto N . It follows from (∗)λ[I] that M+ =
g′′EM(J) ∈ Kθ satisfies (1) and (2). (Analogues of (1) and (2) are checked
also in the course of the proof of 3.11.)

Lemma 3.8. Suppose that T is categorical in λ, θ ∈ [κ + |T |, λ) and
〈Mi ∈ Kθ : i < θ+〉 and 〈Ni ∈ Kλ : i < θ+〉 are continuous ≺F -chains
such that for every i < θ+, Mi�F Ni. Then there exists i(∗) < θ+ such that
(i(∗), θ+) ⊂ C = {i < θ+ : Mi+1 can be F-elementarily embedded into Ni
over M0}.
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P r o o f. Apply 3.7 for M0 ∈ Kθ and Nθ+ =
⋃
i<θ+ Ni ∈ Kλ (noting that

M0�F N0�F Nθ+) to find M+ ∈ Kθ such that M0�FM+�F Nθ+ and
M+ is universal over M0 in Nθ+ .

For some i(∗) < θ+, M+ ⊆ Ni(∗) and so M+�F Ni(∗). If i ∈ (i(∗), θ+),
then Mi+1 ∈ Kθ and M0�FMi+1�F Ni+1�F Nθ+ , so there is an F-
elementary embedding f : Mi+1 →F M+ and f¹M0 is the identity. Now
M+�F Ni(∗)�F Ni, so f : Mi+1 →F Ni. Hence (i(∗), θ+) ⊂ C as required.

Theorem 3.9. Suppose that T is categorical in λ, θ ∈ [κ + |T |, λ), and
M ∈ Kθ. Then there exists M+ ∈ Kθ such that

(ℵ) M �FM+ and M+ is nice;
(i) M+ is weakly universal over M .

P r o o f. Define by induction on i < θ+ continuous ≺F -chains 〈Mi ∈ Kθ :
i < θ+〉 and 〈Ni ∈ Kλ : i < θ+〉 such that

(0) M0 = M ;
(1) Mi �F Ni;
(2) if (∗)i holds, then Mi+1 cannot be F-elementarily embedded into Ni

over M0, where (∗)i is the statement: there are M ′ ∈ Kθ and N ′ ∈ Kλ such
that Mi �F M ′, Ni �F N ′, M ′ �F N ′ and M ′ cannot be F-elementarily
embedded into Ni over M0;

(3) Mi+1 �
nice

Ni+1.

This is possible. N0 is obtained by an application of 1.2 to an appropriate
Op(M0) of power at least λ. At limit stages, continuity dictates that one
take unions. Suppose that Mi has been defined. If (∗)i does not hold, by
2.10(2) there is M ′′ ∈ Kθ with Mi �F M ′′ �

nice
Ni. Let Mi+1 = M ′′ and

Ni+1 = Ni. If (∗)i does hold for M ′, N ′, let Ni+1 = N ′; note that by 2.10(2)
there exists M ′′ ∈ Kθ such that M ′ �F M ′′ �

nice
N ′; now let Mi+1 = M ′′.

Note that in each case, (3) is satisfied.
Find i(∗) < θ+ and C as in 3.8 and choose i ∈ C. By (1), Mi+1 �F Ni+1

so by 3.7 there exists M− ∈ Kθ such that Mi+1 �F M− �F Ni+1 and M− is
weakly universal over Mi+1 in Ni+1. By 3.3 one can find M+ ∈ Kθ such that
M− �F M+ and M+ is nice. So M+ satisfies (ℵ). It remains to show that
M+ is weakly universal over M . Suppose not and let g : M+ →F M∗ ∈ Kθ,
where M∗ cannot be F-elementarily embedded in M+ over M , hence cannot
be �F -elementarily embeddable in M− over M , hence in Ni+1 over M .
Since Mi+1 �F M∗ ∈ Kθ and by (3), Mi+1 �

nice
Ni+1 ∈ Kλ, by 2.1 there is an

amalgam N∗ ∈ Kλ of M∗, Ni+1. The existence of M∗, N∗ implies that (∗)i+1

holds since M∗ cannot be F-elementarily embedded into Ni+1 over M0,
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hence Mi+2 cannot be F-elementarily embedded into Ni+1 in contradiction
to the choice of i as by 3.7, i+ 1 is in C.

Corollary 3.10. If T is categorical in λ, θ ∈ [κ+ |T |, λ) and M ∈ Kθ

is an a.b. (e.g. M is nice—see 2.1), then there exists M+ ∈ Kθ such that

(ℵ) M �F M+ and M+ is nice;
(β) M+ is universal over M .

P r o o f. 3.9 and 3.6A(5).

Corollary 3.11. Suppose that T is categorical in λ and θ ∈ [κ+ |T |, λ).
Then there is a nice universal model M ∈ Kθ.

P r o o f. By 3.3 it suffices to find a universal model of power θ, noting
that universality is preserved under F-elementary extensions in the same
power.

As in the proof of 3.7, there is a linear order (I,<I) of power λ and
J ⊂ I with |J | = θ such that

(∗) (∀J ′ ⊂ I) (if |J ′| ≤ θ, then there is an order-preserving injective map
g from J ′ into J).

Claim. EM(J) ∈ Kθ is universal.

P r o o f. EM(J) is a model of power θ since max(|J |, κ + |T |) ≤ θ and
θ = |J | ≤ ‖EM(J)‖. Suppose that N ∈ Kθ. Applying 1.2 to a suitably
large Op(N) find M ∈ Kλ with N �F M so that by λ-categoricity of T ,
M ∼= EM(I). There is a surjective F-elementary embedding h : N →F
N ′ �F EM(I) and there exists J ′ ⊂ I with |J ′| ≤ ‖N ′‖+ κ+ |T | = θ such
that N ′ ⊆ EM(J ′). So by (∗) there is an order-preserving injective map g
from J ′ into J . Then g induces an F-elementary embedding ĝ from EM(J ′)
into EM(J). Let f = ĝh. Then f : N →F EM(J) is as required.

Theorem 3.12. Suppose that T is categorical in λ, θ ∈ [κ + |T |, λ),
N ∈ K<λ is nice, M ∈ Kθ and M �

nice
N . Then M is nice.

P r o o f. Let B ∈ Kθ with M �F B. Show that M �
nice

B. Well, since

M �
nice

N and M �F B, by 2.1 there exists an amalgam M∗ ∈ K<λ of N,B

over M . Without loss of generality, by 1.5, ‖M∗‖ = ‖N‖. Now N is nice,
hence N �

nice
M∗. Since M �

nice
N , it follows by 1.7.5 that M �

nice
M∗. Since

M �F B �F M∗, it follows by 1.10 that M �
nice

B.

4. (θ, σ)-saturated models. In this section we define notions of satu-
ration which will be of use in proving amalgamation for Kλ.



Categoricity of theories in Lκω 231

Definition 4.1. Suppose that σ is a limit ordinal with 1 ≤ σ ≤ θ ∈
[κ+ |T |, λ).

(1) An L-structure M is (θ, σ)-saturated iff

(a) ‖M‖ = θ;
(b) there exists a continuous ≺F -chain 〈Mi ∈ Kθ : i < σ〉 such that

(i) M0 is nice and universal, (ii) Mi+1 is universal over Mi, (iii)
Mi is nice, and (iv) M =

⋃
i<σMi.

(2) M is θ-saturated iff M is (θ, cf(θ))-saturated.
(3) M is (θ, σ)-saturated over N iff M is (θ, σ)-saturated as witnessed

by a chain 〈Mi : i < σ〉 such that N ⊆M0.

The principal facts established in this section connect the existence,
uniqueness and niceness of (θ, σ)-saturated models.

Theorem 4.2. Suppose that T is categorical in λ and σ ≤ θ ∈ [κ+|T |, λ).
Then

(1) there exists a (θ, σ)-saturated model M ;
(2) M is unique up to isomorphism;
(3) M is nice.

P r o o f. One proves (1), (2) and (3) simultaneously by induction on σ.
(1) Choose a continuous ≺F -chain 〈Mi ∈ Kθ : i < σ〉 of nice models

by induction on i as follows. For i = 0, apply 3.11 to find a nice univer-
sal model M0 ∈ Kθ. For i = j + 1, note that Mj is an a.b. by 3.5 (since
Mj is nice), hence by 3.10 there exists a nice model Mi ∈ Kθ such that
Mj �FMi and Mi is universal over Mj . For limit i, let Mi =

⋃
j<iMj .

Note that by the inductive hypothesis (3) on σ for i < σ, since Mi is
(θ, i)-saturated, Mi is nice. Thus M =

⋃
i<σMi is (θ, σ)-saturated (wit-

nessed by 〈Mi : i < σ〉). Note that M is universal, since 〈Mi : i < σ〉 is
�F -increasing and M0 is universal.

(2) As σ is a limit ordinal, a standard back-and-forth argument shows
that if M and N are (θ, σ)-saturated models, then M and N are isomorphic.

(3) By the uniqueness (i.e. by (2)) it suffices to prove that some (θ, σ)-
saturated model is nice. Suppose that M is (θ, σ)-saturated. We will show
that M is nice.

If cf(σ) < σ, then M is also (θ, cf(σ))-saturated and hence by the in-
ductive hypothesis (3) on σ for cf(σ), M is nice. So we will assume that
cf(σ) = σ. Choose a continuous ≺F -chain 〈Mi ∈ Kθ : i < θ+〉 such that:
M0 is nice and universal (possible by 3.11); if Mi is nice, then Mi+1 ∈ Kθ

is nice and universal over Mi (possible by 3.5 and 3.10); if Mi is not nice
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(so necessarily i is a limit ordinal), then Mi+1 ∈ Kθ, Mi�FMi+1 and
Mi �

nice
Mi+1. By 3.1 and 1.10 there is a club C of θ+ such that if i ∈ C,

then Mi �
nice

Mi+1. So by the choice of 〈Mi : i < θ+〉, if i ∈ C, then Mi is

nice. Choose i ∈ C with i = sup(i ∩ C) and cf(i) = σ. It suffices to show
that Mi is (θ, σ)-saturated (for then, by (2), Mi is isomorphic to M and
so M is nice). Choose a continuous increasing sequence 〈αζ : ζ < σ〉 ⊂ C
such that i = supζ<σ αζ (recall that i = sup(i ∩ C) and cf(i) = σ). Now
Mi =

⋃
ζ<σMαζ . Of course Mα0 is universal (since M0 is universal and

M0 �F Mα0), Mαζ+1 is universal over Mαζ since Mαζ+1 is universal over
Mαζ and Mαζ �FMαζ+1 �F Mαζ+1 . Also Mαζ is nice for each ζ < σ since
αζ ∈ C. Hence Mi is (θ, σ)-saturated.

R e m a r k 4.3. Remember that by 3.12, if T is categorical in λ,
θ ∈ [κ+ |T |, λ), N ∈ K<λ is nice, M ∈ Kθ and M �

nice
N , then M is nice.

Theorem 4.4. Suppose that T is categorical in λ and κ+ |T | ≤ θ < θ+

< λ. If 〈Mi ∈ Kθ : i < θ+〉 is a continuous ≺F -chain of nice models such
that Mi+1 is universal over Mi for i < θ+, then

⋃
i<θ+ Mi is (θ+, θ+)-

saturated.

P r o o f. Write M =
⋃
i<θ+ Mi. Note that if 〈M ′i ∈ Kθ : i < θ+〉 is any

other continuous ≺F -chain of nice models such that M ′i+1 is universal over
M ′i , then

⋃
i<θ+ M ′i ∼= M (use again the back-and-forth argument).

By 4.2 there exists a (θ+, θ+)-saturated model N which is unique and
nice. In particular, ‖N‖ = θ+ and there exists a continuous ≺F -chain 〈Ni ∈
Kθ+ : i < θ+〉 such that (i) N0 is nice and universal, (ii) Ni+1 is universal
over Ni, (iii) Ni is nice, and (iv) N =

⋃
i<θ+ Ni. It suffices to prove that M

and N are isomorphic models.
Without loss of generality, |N | = θ+. By 1.2, C1 = {δ < θ+ : N¹δ �F N}

contains a club of θ+. By 3.1 there exists a club C2 of θ+ such that for every
δ ∈ C2, N¹δ �

nice
N . Since {|Ni| : i < θ+} is a continuous increasing sequence

of subsets of θ+, it follows that C3 = {δ < θ+ : δ ⊆ |Nδ|} is a club of θ+.
Hence there is a club C4 of θ+ such that C4 ⊂ C1 ∩ C2 ∩ C3 ∩ [θ, θ+). Note
that for δ ∈ C4 one has N¹δ �

nice
N , |N¹δ| = δ ⊆ |Nδ| and Nδ �F N , so that

N¹δ �F Nδ �F N and so by 1.10, N¹δ �
nice

Nδ. 〈Nδ : δ ∈ C4〉 is a continuous

increasing ≺F -chain, Nδ ∈ Kθ+ and N¹δ ∈ Kθ.
By 3.12, N¹δ is nice since Nδ is nice (by (iii)). So by 3.10, N¹δ has a

nice ≺F -extension Bδ ∈ Kθ which is universal over N¹δ. Without loss of
generality, N¹δ �F Bδ � N . [Why? since N¹δ �F Bδ (in fact N¹δ �

nice
Bδ)

and N¹δ �
nice

Nδ, by 2.1 there exists an amalgam Aδ ∈ K≤θ+ of Bδ, Nδ
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over N¹δ. Let fδ : Bδ →F Aδ be a witness. But Nδ+1 is universal over Nδ
(by (ii)), so Aδ can be ≺F -elementarily embedded into Nδ+1 over Nδ
(say by gδ), hence Bδ can be ≺F -elementarily embedded into N (using
gδfδ).]

Let C5 = {δ ∈ C4 : if α ∈ C4 ∩ δ, then |Bα| ⊂ δ}. Note that C5 is a club
of θ+ since ‖Bα‖ = θ. [Let Eα = (sup |Bα|, θ+) ∩ C4 for α ∈ C4, Eα = θ+

for α 6∈ C4, and let E be the diagonal intersection of 〈Eα : α < θ+〉,
i.e. E = {δ < θ+ : (∀α < δ)(δ ∈ Eα)}. Note that E is club of θ+ and
C5 ⊇ E ∩ C4, which is a club of θ+.] Thus 〈N¹δ : δ ∈ C5〉 is a continuous
≺F -chain of nice models, each of power θ. If δ1 ∈ C5 and δ2 = min(C5\(δ1 +
1)), then N¹δ1 �F Bδ1 �F N¹δ2. Hence N¹δ2 is universal over N¹δ1 (since
Bδ1 is universal over N¹δ1). Let {δi : i < θ+} enumerate C5 and set M ′i =
N¹δi. Note that N =

⋃
i<θ+ M ′i . Then 〈M ′i ∈ Kθ : i < θ+〉 is a continuous

≺F -chain of nice models, and M ′i+1 is universal over M ′i . Therefore N and
M are isomorphic (as said at the beginning of the proof), as required.

Notation 4.5. Θ = {θ : θ = 〈θi : i < δ〉 is a continuous (strictly)
increasing sequence of cardinals, κ + |T | < θ0, δ < θ0 (a limit ordinal),⋃
i<δ θi ≤ λ} and Θ− = {θ ∈ Θ : sup θi < λ}.

R e m a r k 4.6. Let θ = sup rng(θ) for θ ∈ Θ. Then θ is singular, since
cf(θ) ≤ δ < θ0 ≤ θ.

Definition 4.7. Let θ ∈ Θ. A model M is θ-saturated iff there is a
continuous ≺F -chain 〈Mi ∈ Kθi : i < δ〉 such that M =

⋃
i<δMi, Mi is nice

and Mi+1 is θi+1-universal over Mi.

Definition 4.8. Suppose that θ ∈ Θ. Pr(θ) holds iff every θ-saturated
model is nice.

R e m a r k 4.9. (1) If θ1, θ2 ∈ Θ, rng(θ1) ⊆ rng(θ2), sup rng(θ1) =
sup rng(θ2), and M is θ2-saturated, then M is θ1-saturated.

(2) For θ ∈ Θ and Pr(θ′) whenever θ′ ∈ Θ is a proper initial segment of
θ, there is a θ-saturated model and it is unique.

Theorem 4.10. Suppose that T is categorical in λ, θ ∈ Θ− and for every
limit ordinal α < lg(θ), Pr(θ¹α). Then Pr(θ).

P r o o f. By 4.9(1) and the uniqueness of θ-saturated models (4.9(2)),
without loss of generality one may assume that otp(θ) = cf(sup rng(θ)). Let
θ = sup rng(θ). Now by 4.6, (cf(θ))+ < θ, so by [Sh420, 1.5 + 1.2(1)] there
exists 〈S, 〈Cα : α ∈ S〉〉 such that

(α) S ⊂ θ+ is set of ordinals; 0 6∈ S;
(β) S1 = {α ∈ S : cf(α) = cf(θ)} is a stationary subset of θ+;
(γ) if α (∈ S) is a limit ordinal then α = supCα and if α ∈ S then

otp(Cα) ≤ cf(θ);
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(δ) if β ∈ Cα, then β ∈ S and Cβ = Cα ∩ β;
(ε) Cα is a set of successor ordinals.

[Note that the existence of 〈S, 〈Cα : α ∈ S〉〉 is provable in ZFC.]
Without loss of generality, S \ S1 =

⋃{Cα : α ∈ S1}. We shall construct
the required model by induction, using 〈Cα : α ∈ S〉. Remember θ = 〈θζ :
ζ < cf(θ)〉. Let us start by defining by induction on α < θ+ the following
entities: Mα, Mαξ (for α < θ+, ξ < cf(θ)), and Nα (only when α ∈ ⋃β∈S Cβ)
such that

(Aℵ) Mα ∈ Kθ;
(Ai) 〈Mα : α < θ+〉 is a continuous increasing ≺F -chain of models;
(Aג) Mα+1 is nice, and if Mα is not nice, then Mα �

nice
Mα+1;

(Ak) Mα 6= Mα+1;
(Ad) Mα+1 is weakly universal over Mα;
(Bℵ) Mα =

⋃
ξ<cf(θ)Mαξ, ‖Mαξ‖ = θξ;

if α ∈ S1, β ∈ Cα, γ ∈ Cα, β < γ, then

(Bi) Nβ �F Mβ ;
(Bג) ‖Nβ‖ = θotp(Cβ);
(Bk) (∀ξ < otp(Cγ))(Mβξ ⊆ Nγ);
(Bd) Nβ is nice;
(Be) Nγ is θotp(Cγ)-universal over Nβ .

There are now two tasks at hand. First of all, we shall explain how to
construct these entities (The Construction). Then we shall use them to
build a nice θ-saturated model (Proving Pr(θ)). From the uniqueness of
θ-saturated models it will thus follow that Pr(θ) holds.

The Construction.

C a s e (i): β = 0. Choose M0 ∈ Kθ and 〈M0ξ ∈ Kθ : ξ < cf(θ)〉 with
M0 =

⋃
ξ<cf(θ)M0ξ using 1.2. There is no need to define N0 since 0 6∈ Cα.

C a s e (ii): β is a limit ordinal . Let Mβ =
⋃
γ<βMγ and choose

〈Mβξ : ξ < cf(θ)〉 using 1.2. Again there is no call to define Nβ since Cα is
always a set of successor ordinals.

C a s e (iii): β is a successor ordinal , β = γ + 1. Choose M ′γ ∈ Kθ

such that Mγ �F M ′γ and if possible Mγ �
nice

M ′γ ; without loss of generality,

M ′γ is weakly universal over Mγ and is nice. If β 6∈ S, then define things
as above, taking into account (Aג). The definitions of Mβ , Mβξ present
no special difficulties. Now suppose that β ∈ S. The problematic entity to
define is Nβ .

If Cβ = ∅, choose for Nβ any nice �F -submodel (of power θotp(Cβ))
of Mγ .
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If Cβ 6= ∅, then first define N−β =
⋃
γ∈Cβ Nγ . Note that N−β is nice.

[If Cβ has a last element β′, then N−β = Nβ′ , which is nice; if Cβ has no
last element, then N−β =

⋃
γ∈Cβ Nγ is θ¹otp(Cβ)-saturated, and, by the

hypothesis of the theorem, Pr(θ¹otp(Cβ)), so N−β is nice.] Also N−β �F Mγ .
If otp(Cβ) is a limit ordinal we let Nβ = N−β and Mβ = M ′γ , so we have
finished, so assume otp(Cβ) is a successor ordinal. To complete the definition
of Nβ , one requires a Lemma (the proof of which is similar to 3.9, 3.10):

(∗) if A ⊂ M ∈ Kθ and |A| ≤ θj < θ, then there exist a nice M+ ∈ Kθ

with M �F M+, and nice models N∗, N+ ∈ Kθj such that A ⊆
N∗ �F N+ �F M+ and N+ is universal over N∗.

Why is this enough? Use the Lemma with M = M ′β and A = N−β ∪⋃
ξ<otp(Cβ), α∈Cβ Mαξ to find N∗, N+, M+ and choose N+, M+ as Nβ , Mβ

respectively.
Why does (∗) hold? The proof of (∗) is easy.

Proving Pr(θ). For α ∈ S1, consider 〈Nβ : β ∈ Cα〉. For β, γ ∈ Cα with
β < γ, one has

⋃
ξ<otp(Cβ)Mβξ ⊆ Nγ by (Bk). Therefore Mβ ⊆

⋃
γ∈Cα Nγ

(Mβ =
⋃
ξ<cf(θ)Mβξ =

⋃
ξ<cf(α)Mβξ (α ∈ S1); for ξ < cf(α), choose γ ∈ Cα

with ξ, β < γ; so Mβξ ⊆ Nγ and Mβ ⊆
⋃
γ∈Cα Nγ).

Thus Mβ ⊆
⋃
γ∈Cα Nγ for every β ∈ Cα, hence Mα =

⋃
β∈CαMβ ⊆⋃

γ∈Cα Nγ (remember α = supCα as α ∈ S1). If γ ∈ Cα, then Nγ �F Mγ

(by (Bi)), and so
⋃
γ∈Cα Nγ ⊆

⋃
β∈CαMβ = Mα by continuity. So Mα =⋃

β∈Cα Nβ , hence 〈Nβ : β ∈ Cα〉 exemplifies Mα is θ-saturated (remember
Pr(θ¹δ) for every limit δ < lg(θ); more exactly, we use 〈N ′i : i < θ〉, N ′i =⋃{Nβ : β ∈ Cα and [i limit⇒ otp(β ∩ Cα) < i], [i nonlimit⇒ otp(β ∩ Cα)
≤ i]}). So Mα is θ-saturated for every α ∈ S1. In other words, {α < θ+ :
Mα is θ-saturated} ⊇ S1 and is stationary, so, applying 3.1, there exists
α < θ+ such that Mα is θ-saturated and Mα �

nice

⋃
β<θ+ Mβ . Hence by 1.10,

Mα �
nice

Mα+1 and so, since Mα+1 is nice (Aג), Mα is nice (by 3.12).

We conclude that Pr(θ) holds.

To round off this section of the paper, let us make the connection between
θ-saturation and (θ, cf(θ))-saturation (notation follows 4.5–4.10).

Theorem 4.11. Assume that T is categorical in λ. Let θ ∈ Θ− and
θ = sup θi. Then every θ-saturated model is (θ, cf(θ))-saturated.

P r o o f. Let 〈Mα : α < θ+〉 be as in the proof of 4.10. By 3.1 there
exists a club C of θ+ such that Mα �

nice

⋃
β<θ+ Mβ for every α ∈ C, hence

by the construction Mα is nice. So if α, β ∈ C and α < β, then Mβ is a
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universal extension of Mα and for γ = sup(γ ∩ C), γ ∈ C, one sees that
Mγ is (θ, cf(γ))-saturated. Choose γ ∈ S1 ∩ C and sup(γ ∩ C) = γ. So Mγ

is (θ, cf(θ))-saturated and also θ-saturated (see proof of 4.10). Together we
finish.

5. The amalgamation property for K<λ. Corollaries 5.4 and 5.5 are
the goal of this section, showing that every element of K<λ is nice (5.4) and
K<λ has the amalgamation property (5.5).

Lemma 5.1. Suppose that 〈µi : i < cf(µ)〉 is a continuous strictly in-
creasing sequence of ordinals, µ = supi<cf(µ) µi, and κ+ |T | ≤ µ0 < µ ≤ λ.
Then there exist a linear order I of power µ and a continuous increasing
sequence 〈Ii : i < cf(µ)〉 of linear orders such that

(1) κ+ |T | ≤ |Ii| ≤ µi;
(2)

⋃
i<cf(µ) Ii = I;

(3) every t ∈ Ii+1 \ Ii defines a Dedekind cut of Ii in which (at least)
one side of the cut has cofinality κ.

P r o o f. Let I = ({0}×µ)∪ ({1}×κ), Ii = ({0}×µi)∪ ({1}×κ) ordered
by (i, α) <I (j, β) iff i < j or 0 = i = j and α < β, or 1 = i = j and α > β.

Lemma 5.2. Suppose that T is categorical in λ > cf(λ) and κ + |T | <
µ ≤ λ. If M ∈ Kλ, then there exists a continuous increasing ≺F -chain
〈Mi : i < cf(λ)〉 of models such that

(1) M �F
⋃
i<cf(λ)Mi;

(2) ‖⋃i<cf(λ)Mi‖ = λ;

(3) κ+ |T | ≤ ‖Mi‖ < ‖Mi+1‖ < λ;
(4) for each i < cf(λ), Mi �

nice

⋃
j<cf(λ)Mj.

P r o o f. If λ is a limit cardinal, choose a continuous increasing sequence
〈µi : i < cf(λ)〉 with λ = supi<cf(λ) µi and κ+|T | ≤ µ0 < λ. If λ is a successor
let µi = 1 + i. Let 〈I, 〈Ii : i < cf(λ)〉〉 be as in 5.1. By λ-categoricity of T ,
without loss of generality, M = EM(λ). Let Mi = EM(Ii) for i < cf(λ).
Clearly (1), (2) and (3) hold. To obtain (4), observe that by 2.6 and 3.5 it
suffices to remark that by demand (3) from 5.1 on 〈Ii : i < cf(λ)〉 clause (ℵ)
or (i) in 2.6 holds for each t ∈ I \ Ii.

Theorem 5.3. For every µ ∈ [κ + |T |, λ] and M ∈ Kµ, there exists
M ′ ∈ Kµ with M �F M ′ such that

(∗)M ′ for every A ⊂ |M ′| with |A| < λ and |A| ≤ µ, there is N ∈
Kκ+|T |+|A| such that A ⊂ N �F M ′ and N is nice.
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P r o o f. The proof is by induction on µ.

C a s e 1: µ = κ + |T |. By 3.3 there is M ′ ∈ Kµ such that M �F M ′

and M ′ is nice. Given A ⊂ |M ′| let N = M ′ and note that N is as required
in (∗)M ′ .

C a s e 2: κ+ |T | < µ. Without loss of generality, one can replace M by
any ≺F -extension in Kµ. Choose a continuous increasing sequence 〈µi : i <
cf(µ)〉 such that if µ is a limit cardinal it is a strictly increasing sequence with
limit µ; if µ is a successor, use µ+

i = µ and in both cases κ+ |T | ≤ µi < µ.
Find M = 〈Mi : i < cf(µ)〉 such that

(a) M �F
⋃
i<cf(µ)Mi;

(b) ‖⋃i<cf(µ)Mi‖ = µ;
(c) ‖Mi‖ = µi;
(d) Mi �

nice

⋃
j<cf(µ)Mj .

Why does M exist? If µ = λ by 5.2, otherwise by 4.4 (µ regular) and 4.11
(µ singular).

Choose by induction on i < cf(µ) models L0
i , L

1
i , L

2
i in that order such

that

(ℵ) Mi �F L0
i �F L1

i �F L2
i ∈ Kµi ;

(i) j < i⇒ L2
j �F L0

i ;
(ג) (∗)L1

i
holds, i.e. for each A ⊂ |L1

i |, there is N ∈ K≤κ+|T |+|A| such
that A ⊂ N �F L1

i and N is nice (so in particular L1
i is nice, letting

A = |L1
i |);

(k) L2
i is nice and µi-universal over L1

i ;
(d) L0

i is increasing continuous;
(e) Lli ∩

⋃
j<cf(µ)Mj = Mi (or use a system of �F -embeddings).

For i = 0, let L0
i = M0. For i = j+1, note that by 2.1 there is an amalgam

L0
i ∈ Kµi of Mi, L

2
j over Mj since Mj �

nice
Mi and Mj �F L2

j (use the last

phrase of 2.1 for clause (e)); actually not really needed. For limit i, continuity
necessitates choosing L0

i =
⋃
j<i L

0
j (note that in this case L0

i =
⋃
j<i L

2
j ).

To choose L1
i apply the inductive hypothesis with respect to µi, L0

i to find L1
i

so that L0
i �F L1

i and L1)(∗)(ג)
i
) holds. To choose L2

i apply 3.10 to L1
i ∈ Kµi

giving L1
i �F L2

i , L
2
i is nice and µi-universal over L1

i (so (k) holds).
Let L =

⋃
i<cf(µ) L

0
i =

⋃
i<cf(µ) L

1
i =

⋃
i<cf(µ) L

2
i , and let Li = L0

i if i
is a limit, L1

i otherwise. Now show by induction Li is nice. [Why? show by
induction on i for i = 0 or i successor that Li = L1

i , hence use clause ;(ג)
if i is limit then Li is (θ¹i)-saturated, hence Li is nice by 4.8, 4.10.] Now
〈Li : i < cf(µ)〉 witnesses that if µ is regular, then L is (µ, µ)-saturated by
4.4 and if µ is singular, then L is µ-saturated; in all cases L is µ-saturated
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of power µ, hence by the results of Section 4 (i.e. 4.8, 4.10), if µ < λ then L
is nice.

Claim. M ′ = L is as required.

P r o o f. M �F
⋃
i<cf(µ)Mi �F

⋃
i<cf(µ) L

0
i = L ∈ Kµ. Suppose that

A ⊂ |L|. If |A| = µ, then necessarily µ < λ and we take N = L.
So without loss of generality, |A| < µ. If µ = cf(µ) or |A| < cf(µ), then
there is i < cf(µ) such that A ⊂ L1

i and, by ,(ג) (∗)L1
i

holds, so there is
N ∈ Kκ+|T |+|A| such that A ⊂ N �F L1

i , N is nice and N �F L as re-
quired. So suppose that cf(µ) ≤ |A| < µ. Choose by induction on i < cf(µ)
models N0

i , N
1
i , N

2
i in that order such that

(α) N0
i �F N1

i �F N2
i ;

(β) N2
i �F N0

i+1;
(γ) A ∩ L0

i ⊆ N0
i �F L0

i ;
(δ) N1

i �F L1
i and N1

i is nice;
(ε) N2

i �F L2
i , N

2
i is nice and universal over N1

i ;
(ζ) N0

i , N
1
i , N2

i have power at most min{|T |+ κ+ |A|, µi}.
For i = 0, apply 1.2 for A ∩ L0

0, L
0
0; for i = j + 1, apply 1.2 to find

N0
i ∈ Kµi such that (A∩L0

i )∪N2
j ⊂ N0

i �F L0
i (in particular, N2

j �F N0
i );

for limit i, N0
i =

⋃
j<iN

0
j . To choose N1

i , use (∗)L1
i

for the set Ai = N0
i to

find a nice N1
i ∈ K≤κ+|T |+|A| with N0

i �F N1
i �F L1

i . Note that ‖N1
i ‖ ≤ µi.

Finally, to choose N2
i note that by 3.9 the model N1

i has a nice extension
N+
i (of power ‖N1

i ‖) weakly universal over N1
i . Now N1

i is nice, hence N2
i is

universal over N1
i (by 3.6A(5)) and by 2.1 there is an amalgam Ni of N+

i , L
1
i

over N1
i such that ‖Ni‖ ≤ µi. Since L2

i is universal over L1
i one can find an

F-elementary submodel N2
i of L2

i isomorphic to Ni. Let Ni be N0
i if i is a

limit, N1
i otherwise; prove by induction on i that Ni is nice (by 4.2).

Now
⋃
i<cf(µ)N

0
i is an F-elementary submodel of L of power at most

κ+ |T |+ |A|, including A (by (γ)) and
⋃
i<cf(µ)N

0
i is (κ+ |T |+ |A|, cf(µ))-

saturated, hence (by 4.2) nice, as required.

Corollary 5.4. Suppose that T is categorical in λ. Then every element
of K<λ is nice.

P r o o f. Suppose otherwise and let N0 ∈ K<λ be a model which is
not nice. Choose a suitable Op such that ‖Op(N0)‖ ≥ λ and by 1.2 find
M0 ∈ Kλ with N0 �F M0 �F Op(N0), i.e. N0 �

nice
M0. It follows that

(+) if N0 �F N �F M0 and N ∈ K<λ then N is not nice.

[Why? By 4.3; alternatively suppose by contradiction that N is nice. So there
is N1 ∈ K<λ such that N0 �F N1, N0 �

nice
N1 ·N0 �

nice
N since N0 �

nice
M0 and
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N �FM0, hence there is an amalgam N ′ ∈ K<λ of N1, N over N0. Since
N is nice, N �

nice
N ′;N0 �

nice
N , N0 �

nice
N ′ and so N0 �

nice
N1, a contradiction.]

On the other hand, applying 5.3 for µ = λ there exists M ′ ∈ Kλ satisfy-
ing (∗)M ′ . By λ-categoricity of T , without loss of generality, (∗)M0 holds
(see 5.3) and for A = |N0| yields a nice model N ∈ Kκ+|T |+‖N0‖ such that
N0 �F N �F M0, contradicting (+).

Corollary 5.5. Suppose that T is categorical in λ. Then K<λ has the
amalgamation property.

P r o o f. 2.1 and the previous corollary.
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