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Accretive approximation in C*-algebras
by

RAINER BERNTZEN {Miinster)

Abstract. The problem of approximation by accretive elements in a unital C™*-algebra
suggested by P. R. Halmos is substantially solved. The key idea is the observation that
aceretive approximation can be regarded as a combination of positive and self-adjoint
approximation. The approximation results are proved both in the ¢"-norm and in another,
topologically equivalent norm.

1. Introduction. For every unital C*-algebra A let Accy be the set
of all accretive elements of A, i.e. the set of all elements with positive real
part. For an element a of A let Accq(a) denote the set of all accretive
approximants of ¢. Here an approzimant means an element x of Acc4 such
that [|[e—z|| € |la—y]| for every element y of Acc 4. Furthermore, let the norm

|- | be defined by jla] = ||%(a‘*cﬁ—:m*)”l"2 (cf. [Bo 2, Be 1]). The accretive
approximants in this norm will be called accretive near-approzimants; the
set of all accretive near-approximants will be denoted by Acc4(a).

The main purpose of this paper is to describe the sets Acc4(a) and
Ace 4{a). The key idea is the observation that accretive approximation is
a combination of positive and self-adjoint approximation (Theorem 2.1(c)).
As a consequence the real dimensions of the convex sets Accg){A) and
.flccB(H)(A) can be computed for every bounded linear operator A on a
complex Hilbert space H, and some extreme points can be constructed.

2. Accretive approximation in C*-algebras. Let .A be a unital
C*-algebra. Then & 4 denotes the set, of all self-adjoint elements of A. For ev-
ery element a € A let S 4{a) (respectively S4(a)) be the set of all self-adjoint
approximants (respectively self-adjoint near-approximants) of a. Similarly
P4 denotes the set of all positive elements of A, and P 4(a) (respectively
P4(a)) denotes the set of all positive approximants (respectively near-
approximants) of a.
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116 R. Berntzen

In the case where A is the C*-algebra B(H) of all bounded linear opera-
tors on a complex Hilbert space H the index A will be skipped if that does
not lead to any confusion.

In this section the problem of accretive approximation suggested by
P. R. Halmos (see [Ha|} is discussed for unital C*-algebras. . R. Halmos
showed that the accretive part of ¢ iy an accretive approximant of ¢ in the
case A = B(H) (cf. Theorem 2.1(b)).

For an element o of a C*-algebra let dist{a,§) be the distance from a
to a given subset G of A measured in the C*-norm, whereas digty.{a,G)
denotes the distance measured in the norm. |- ||.

First some basic results about the positive and self-adjoint approxima-
tion are mentioned. In [Be 1] it is shown that for a normal element « of A
the positive part of the real part is a positive approximant and the real part
of o is a self-adjoint approximant (see Theorem 2.1{c)). In the case of self-
adjoint approximation the condition of o being normal can be dropped. For
e =b+ ic with b, ¢ self-adjoint one has dist(b+ ic, S.4) = dist{ic, S4) = {c|
and S4(b+ ic) = b+ S4(ic) since the set S4 of all self-adjoint elements of
A forms a real vector space. Hence ||b+ic| = [c|| and b € S4(b+ ic) for b, ¢
self-adjoint. Similar results hold for approximation in the norm || - [|.

TurQrEM 2.1. Let A be a unital C*-algebra and let a = b+ic € A with
b, ¢ self-adjoint. Then

(a) dist(a, Acca) = disty. (a, Accq) = dist(b, P4).

(b) b% +ic € Accala) C Accala), where b denotes the positive part
of b. _ :

(c) Accala)={p+id:p € Pa(h) and d ¢ Sale~i(b~p))} and

Accale) = {p+id:pePalb) and d € Salc—i(b—p))}.

Proof Let p+id € Accq with p positive and d self-adjoint. Then, as

in the proof of [Ha], Corollary 5,
fla = (p+id)|| = [I(b — p) +ic ~ )] 2 ||b~ p}
2 b=t = (b +ic) — (B +ic).

Thus dist(a, Aecs) = ||b = b*|| = dist(h, P.4). Moreover, the accretive part
bt +ic of @ is an accretive approximant of a. Similarly disty. (e, Accy) =

6=+ = ||b~ bt and b+ -+ icis an accretive near-approximant of a. This
shows (a) and (b}, '

() Suppose p +id is an accretive approximant of a with p positive and
d self-adjoint. Then " - SR |
lo—b*] = lla — (p+ id)]| = |[(b = p) +i{c — d)|| = |b ~pl,

i.e., p is.a:positive approximant of b and
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5 =pll = [|(b~p) +i(c— ).
Thus
dist(c —i(b— p)), Sa) = |[Im(c ~ i(b - p))|| = b - p|)
== p) +ile—d)|| = ||(c - i(b — p)) — dlj,
which means that d is a self-adjoint approximant of ¢ —i(b — p). Here Im{z)
denotes the imaginary part of z.
Hence
Acca(a) C{p+id:pePu(b)and d € Sale~i(b—p))}.
For the reverse inclusion suppose p € P4(b) and d € Sq{c—i(b — p)). Then
lo ~ (p+dd)|l = [I(b—p) +ilc — d)]| = |[(e — i(b~ p)) - d
= {lm (¢ — &b~ pY)l| = [1b — p|| = dist(b, P.a),
ie., p+id € Acca(a) by part (a).
This shows Acca(a) = {p-+id: p € Pa(b) and d € S4(c—i(b~p))} and
similarly Acca(a) = {p+id: p e Pa(h) and d € Sa(c—i(b~p))}.

As a consequence of the above theorem the properties of the sets Acc 4{a}
and Acc4(a) can be deseribed by using the results for self-adjoint and pos-
itive approximation,

CoROLLARY 2.2. Let A be a unital C*-algebra and let a = b+4c € A
with b, ¢ self-adjoint.

(a) The following conditions are equivalent:

(1} 0 € Accala);
(2} —llalt € o(b).

(b) The following conditions are equivalent:

(Hoe ACCA(G,);
(2) ~llall € o(b).

Proof. By Theorem 2.1(a) one has dist(a, Acca) = I|b7|, where b~
denotey the negative part of b. Thus 0 € Aecq{a) if and only if {ja] = ||p~ [,
Le., if and ouly if —~||a|| € o(b). Part (b} can be proved in the same way. m

ConrouLary 2.3, Let A be a unital C*-algebra and let a = b+ice A
with b, ¢ self-adjoint. Then the following conditions are equivalent:

(1) o has a unique accretive approximant;

(2) @ has a unigue accretive near-approzimant;

(3) there exists a non-negative number § such that dist(),RZY) = § for
every A € o(b);

(4) b has o unique positive approzimant;

(5) b has a unique positive near-approzimant. .
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Proof The equivalence of (3), (4) and (5) follows from Theorem 2.5 of
[Be 1].

By Theorem 2.1 the implications (2)=>(1) and (1)=-(4} hold.

For the implication (3)=(2) suppose that there exists a positive number
& such that dist(A,R=%) = § for every A & ¢(&). Then b has a unique positive
near-approximant (see [Be 1], Theorem 2.5).

If 6 = 0 then o(b) C RZ%, i.e. b is the unique positive near-approximant
of b. Thus disty.(a, Acca(a)) = Ja — (b +ic)] = 0, i.e., b+ ic is the unique
accretive near-approximant of a.

If 6 > 0 then o(b) = {~6}, i.e, b = —& and 0 is the unique posi-
tive near-approximant of b. Moreover, ¢ + i§ has the unique self-adjoint
near-approximant ¢ by Theorem 2.5 of [Be 1]. Hence ic is the unique ac-
cretive near-approximant of e by Theorem 2.1(c). This completes the
proof. m

3. Pimension of the set of approximants. In this section the dimen-
sion of the convex sets Acca(a) and Accy(a) is discussed for every element
a € A. Recall that the dimension of a convex set X is the (real) dimension
of the smallest (real) affine subspace including X (cf. [Val]).

Similar to the case of positive and self-adjoint approximation, the dimen-
sion of the set of accretive approximants depends heavily on the ¢ “-algebra
A (see [Be 3], Example 2.1, for positive approximation). However, for the
C™-algebra B(H) the dimension can be computed by using techniques similar
to [Be 3].

In the following remark some notations and properties of positive and
self-adjoint approximation in B(M) are listed which will be used in this
section. They can be found in [Bo 2} and [Bo 3).

Remark 3.1. For every operator A € B(H) the space max A is defined
oy max A = {z. € H: | Av| = 4] - lo][} = ker(|A|? — 4" ).

If A = B +4C with B, C self-adjoint, then the subspace Hy = H; (A) is
defined by M1 (4) =1an(||C|* ~ C%) = (max )+, :

If § is a self-adjoint near-approximant of A, then M, reduces B ~ §
with (B — S)|y =0 and Hi C max(4 - §), since ran(B ~ §) < H; and
max (4 — B) = Hi-. ‘ |

Moreover, the subspace Hz = Ha(A) is given by H (A) =10 Dy NTaEn Py
with § = dist(4, P), Dy = (6% = C?)}/2 and Py = B + D.

I P is & posttive near-approximant of A, then Ha reduces Py — P with
(Po = P)laz. = 0 and Hf C max(A — B}, since ran(Py ~ P) ¢ ‘Hy and
max(A — By) = ker(5” — (A~ Py} (A~ Bo)) = H.
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LeMMmaA 3.2. Let A = B+ 1C € B(H) with B,C self-adjoint and let
HZ = HQ(B} Then

dimp Acc{A) < dimg Acc(A) < 2 - (dime M )2

Proof. Since Acc{A) C Ace(A) the first inequality follows immediately.
Suppose now that 7' == P 44D is an accretive near-approximant of 4
with P positive and D self-adjoint. Then the subspace Hy = Hy(B) re-
duces Py — P with (Py =~ Py = 0 and Hy C max(B — P), since P is
a positive near-approximant of B by Theorem 2.1{c). Since B™* is also a
positive near-approximant of B this implies that H, reduces P — BT with
(P~ B[y =0
Moreover, the subspace My = H;{C - i(B — P)) = max(B — P)* C
Hs reduces C' — D with (C - D)|‘H-{- = 0, since D is a self-adjoint near-
approximant of C' — (B — P).
This shows that the set Acc(4) — (BT + i0) is included in the set
{P"--iD": P' € B(H) positive with Tan P’ C Hy and
D’ € B(H) self-adjoint with Tan D’ C Hs},
which has real dimension 2 - (dimg Hz)?. =

THEOREM 3.3. Let A = B 4 iC ¢ B(K) with B,C self-adjoint and let
Ha = Ha(B). Then

dimp Acc(4) = dimg Acc(4) = 2 - (dimg Hp)?.

Proof In view of the previous lemma it suflices to prove that
dimp Acc(4) > 2 - (dimc Hp)? Fix n € N and define the subspace M,
by M, = ran £{D,), where E denotes the spectral measure for B and

= {A € o(B) : dist(\,R2) < d(c(B),R2%) — 2/n}. Here d(s(B), R2?)
denotes the one-sided Hausdorff distance from o (B) to R=0. Then M, is a B-
reducing subspace of Hy = Hy(B) since Hz{B) = Hp(R=%, B) = ran E({) €
o(B) : dist(A, RZ0) < d(o(B),R29)}.

For every positive operator P’ € B(H) with ran P' C M, and |P'|| <
1/n and for every self-adjoint operator D’ € B(H) with ran D' C M,, and
[I1D"|| < 1/n the operator T = (B+ + P') +i(C + D'} is accretive. Moreover,

|4 = T = {|(B +iC)~(B* + P')~i(C + D')|
= [|B~(B* + P')-iD'|
= max{||(B~(B* + P')=iD") 31, |, | (B—(B* + P')=iD")| s |}
< max{[[(B=B*)ag, | + 1P iacall + 1D |ag, I [ (B=B* Y aes 1}
- < max{||B” |san g0 + 2/n, | B-BT{|}
< d(o(B),RZ%) = dist(B, P4)



120 R. Berntzen

by the spectral theorem and by the distance formula 1.4 of [Be 1]. Hence T
is an accretive approximant of A. Thus the set Acc(A) — (Bt +iC') includes
the set

{P' +iD": P' € B(H) positive with T80 P’ C M,, and | P'|| £ 1/n and
D' e B(H) self-adjoint with tan.D’ C M, and |D'|| < 1/n},

which has real dimension 2 - (dime My, )?. Since Hy = Hy(B) = Une&I M.,
one has imy,_, oo dime M, = dime Hs, so that

dimp Acc(A4) > 2 - (dime Ha)?.
This completes the proof. w

4. Extreme points in the set of approximants. In this section the
extreme points of the convex sets Acc 4 () and Ace4(a) are studied for every
element a of the unital C*-algebra A.

First, sufficient conditions are specified for an approximant to be such
an extreme point:

PROPOSITION 4.1. Let A be o unital C*-algebra and let o € A.

(a) If t = p+id € A is an accretive approzimant of a with p positive
and d self-adjoint such that (a—t)*(a—1t)} or (a—t)(a~1*)* is a scalar, then
t € ex Accala).

(b) If t = p+1id € A s an accretive near-approzimant of a with p
positive and d self-adjoint such that (a—t)*(ea—t)+ (a—t)a—t)* is 0
scalor, then t € ex Acca(a).

~Proof. (a) It is a well-known result that every element z € A with
¥z = e or zz* = ¢ is an extreme point of the closed unit ball (see e.g. [Pe],
Prop. 1.4.7). Hence the element a — ¢ is an extreme point of the closed ball
with center 0 and radius |ja — £||. Since the set a — Acca(a) is included in
this ball, the element ¢ is an extreme point of Ace.4(a).

Similarly part (b) follows from the proposition below. w

PROPOSITION 4.2, Let A be a C*-algebra with unit e and let Ay = {a €
el £ 1} be the closed unit ball in A for the norm || - |. Then every
elemem& x € A with 3 5(z*T -+ zx*) = e is an exlreme point of Aj.

Proof. Usmg the Theorem of Gelfand-Neumark it suffices to prove the
statement. for A = B(H). -

Suppose T' € B( ) with 1(T*T A TT*) = Id. Then |T| = ||Id || = 1,
le. T e B(H);. If R e B(’H) with [|T'— R|| < 1 and ||T + R|| £ 1, then
Lemma 2.1(b} of {Be 2] ifnplies that max(T*T +TT*) ¢ ker R, which means
that R =0 Hence T'is an extreme point. of B(H)y. u
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As a comsequence of Proposition 4.1 and Theorem 2.1 some extreme
points of Accq(a) and Acca{a) can easily be constructed:

COROLLARY 4.3. Let A be a unital C*-algebra and let a = b+ice A
with b, ¢ self-adjoint. Furthermore, let p € Pa(b) = P4(b). Then

By = a(b - pll ~ (b= p))H + o)
and
ki = p - (b= pl* ~ (8- p)*) P +¢)
are both extreme points of Aceala) and Acey(a).
CorovuLARy 4.4, Let A be a unital C*-algebra and let a € A. Then either

a has o unique accretive approzimant and near-approzimant or Acca(a) and
Acc (@) have uncountably many estreme points.

Proof If a does not have a unique accretive approximant or near-
approximant then b := Rea does not have a unique positive approximant by
Corollary 2.3. This implies that b has uncountably many positive approxi-
mants since the set of all positive approximants is convex. Hence Acc 4(a)
and Accy(a) have uncountably many extreme points by the previous corol-
lary. w
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