

114

STUDIA MATHEMATICA 117 (2) (1996)

- [22] C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), 715-719.
- [23] —, On a generalized punctured neighborhood theorem in L(X), ibid. 123 (1995), 1237-1240.
- [24] T. Starr and T. West, A positive contribution to operator theory, Bord na Mona Bull. 5 (1938), 6.

SCHOOL OF MATHEMATICS TRINITY COLLEGE DUBLIN, IRELAND

Current address:
INSTITUTO DE MATEMÁTICAS
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
MÉXICO 04510 DF, MEXICO
E-mail: RHARTE@GAUSS.MATEM.UNAM.MX

Received January 27, 1994
Revised version August 18, 1995

(3223)

Accretive approximation in C^* -algebras

b

RAINER BERNTZEN (Münster)

Abstract. The problem of approximation by accretive elements in a unital C^* -algebra suggested by P. R. Halmos is substantially solved. The key idea is the observation that accretive approximation can be regarded as a combination of positive and self-adjoint approximation. The approximation results are proved both in the C^* -norm and in another, topologically equivalent norm.

1. Introduction. For every unital C^* -algebra \mathcal{A} let $\mathcal{A}cc_{\mathcal{A}}$ be the set of all accretive elements of \mathcal{A} , i.e. the set of all elements with positive real part. For an element a of \mathcal{A} let $\mathcal{A}cc_{\mathcal{A}}(a)$ denote the set of all accretive approximants of a. Here an approximant means an element x of $\mathcal{A}cc_{\mathcal{A}}$ such that $||a-x|| \leq ||a-y||$ for every element y of $\mathcal{A}cc_{\mathcal{A}}$. Furthermore, let the norm $||\cdot||$ be defined by $||a|| = \left|\left|\frac{1}{2}(a^*a + aa^*)\right|\right|^{1/2}$ (cf. [Bo 2, Be 1]). The accretive approximants in this norm will be called accretive near-approximants; the set of all accretive near-approximants will be denoted by $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a)$.

The main purpose of this paper is to describe the sets $Acc_{\mathcal{A}}(a)$ and $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a)$. The key idea is the observation that accretive approximation is a combination of positive and self-adjoint approximation (Theorem 2.1(c)). As a consequence the real dimensions of the convex sets $Acc_{\mathcal{B}(\mathcal{H})}(A)$ and $\tilde{\mathcal{A}}cc_{\mathcal{B}(\mathcal{H})}(A)$ can be computed for every bounded linear operator A on a complex Hilbert space \mathcal{H} , and some extreme points can be constructed.

2. Accretive approximation in C^* -algebras. Let \mathcal{A} be a unital C^* -algebra. Then $\mathcal{S}_{\mathcal{A}}$ denotes the set of all self-adjoint elements of \mathcal{A} . For every element $a \in \mathcal{A}$ let $\mathcal{S}_{\mathcal{A}}(a)$ (respectively $\tilde{\mathcal{S}}_{\mathcal{A}}(a)$) be the set of all self-adjoint approximants (respectively self-adjoint near-approximants) of a. Similarly $\mathcal{P}_{\mathcal{A}}$ denotes the set of all positive elements of \mathcal{A} , and $\mathcal{P}_{\mathcal{A}}(a)$ (respectively $\tilde{\mathcal{P}}_{\mathcal{A}}(a)$) denotes the set of all positive approximants (respectively near-approximants) of a.

[115]

¹⁹⁹¹ Mathematics Subject Classification: Primary 47A58; Secondary 47B44.

In the case where \mathcal{A} is the C^* -algebra $\mathcal{B}(\mathcal{H})$ of all bounded linear operators on a complex Hilbert space \mathcal{H} the index \mathcal{A} will be skipped if that does not lead to any confusion.

In this section the problem of accretive approximation suggested by P. R. Halmos (see [Ha]) is discussed for unital C^* -algebras. P. R. Halmos showed that the accretive part of a is an accretive approximant of a in the case $A = \mathcal{B}(\mathcal{H})$ (cf. Theorem 2.1(b)).

For an element a of a C^* -algebra let $\operatorname{dist}(a,\mathcal{G})$ be the distance from a to a given subset \mathcal{G} of \mathcal{A} measured in the C^* -norm, whereas $\operatorname{dist}_{\|\cdot\|}(a,\mathcal{G})$ denotes the distance measured in the norm $\|\cdot\|$.

First some basic results about the positive and self-adjoint approximation are mentioned. In [Be 1] it is shown that for a normal element a of $\mathcal A$ the positive part of the real part is a positive approximant and the real part of a is a self-adjoint approximant (see Theorem 2.1(c)). In the case of self-adjoint approximation the condition of a being normal can be dropped. For a=b+ic with b,c self-adjoint one has $\mathrm{dist}(b+ic,\mathcal S_{\mathcal A})=\mathrm{dist}(ic,\mathcal S_{\mathcal A})=\|c\|$ and $\mathcal S_{\mathcal A}(b+ic)=b+\mathcal S_{\mathcal A}(ic)$ since the set $\mathcal S_{\mathcal A}$ of all self-adjoint elements of $\mathcal A$ forms a real vector space. Hence $\|b+ic\| \geq \|c\|$ and $b\in\mathcal S_{\mathcal A}(b+ic)$ for b,c self-adjoint. Similar results hold for approximation in the norm $\|\cdot\|$.

Theorem 2.1. Let \mathcal{A} be a unital C^* -algebra and let $a=b+ic\in\mathcal{A}$ with b,c self-adjoint. Then

- (a) $\operatorname{dist}(a, \mathcal{A}cc_{\mathcal{A}}) = \operatorname{dist}_{\|\cdot\|}(a, \mathcal{A}cc_{\mathcal{A}}) = \operatorname{dist}(b, \mathcal{P}_{\mathcal{A}}).$
- (b) $b^+ + ic \in Acc_A(a) \subset \tilde{A}cc_A(a)$, where b^+ denotes the positive part of b.

(c)
$$\mathcal{A}cc_{\mathcal{A}}(a) = \{p + id : p \in \mathcal{P}_{\mathcal{A}}(b) \text{ and } d \in \mathcal{S}_{\mathcal{A}}(c - i(b - p))\}$$
 and $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a) = \{p + id : p \in \tilde{\mathcal{P}}_{\mathcal{A}}(b) \text{ and } d \in \tilde{\mathcal{S}}_{\mathcal{A}}(c - i(b - p))\}.$

Proof. Let $p + id \in Acc_A$ with p positive and d self-adjoint. Then, as in the proof of [Ha], Corollary 5,

$$||a - (p+id)|| = ||(b-p) + i(c-d)|| \ge ||b-p||$$

$$\ge ||b-b^+|| = ||(b+ic) - (b^+ + ic)||.$$

Thus $\operatorname{dist}(a, \mathcal{A}cc_{\mathcal{A}}) = \|b - b^+\| = \operatorname{dist}(b, \mathcal{P}_{\mathcal{A}})$. Moreover, the accretive part $b^+ + ic$ of a is an accretive approximant of a. Similarly $\operatorname{dist}_{\|\cdot\|}(a, \mathcal{A}cc_{\mathcal{A}}) = \|b - b^+\| = \|b - b^+\|$ and $b^+ + ic$ is an accretive near-approximant of a. This shows (a) and (b).

(c) Suppose p + id is an accretive approximant of a with p positive and d self-adjoint. Then

$$||b-b^+|| = ||a-(p+id)|| = ||(b-p)+i(c-d)|| \ge ||b-p||,$$

i.e., p is a positive approximant of b and

$$||b-p|| = ||(b-p) + i(c-d)||.$$

Thus

$$dist(c - i(b - p)), S_{\mathcal{A}}) = ||Im(c - i(b - p))|| = ||b - p||$$
$$= ||(b - p) + i(c - d)|| = ||(c - i(b - p)) - d||,$$

which means that d is a self-adjoint approximant of c - i(b - p). Here Im(x) denotes the imaginary part of x.

Hence

$$Acc_{\mathcal{A}}(a) \subset \{p + id : p \in \mathcal{P}_{\mathcal{A}}(b) \text{ and } d \in \mathcal{S}_{\mathcal{A}}(c - i(b - p))\}.$$

For the reverse inclusion suppose $p \in \mathcal{P}_{\mathcal{A}}(b)$ and $d \in \mathcal{S}_{\mathcal{A}}(c - i(b - p))$. Then

$$||a - (p + id)|| = ||(b - p) + i(c - d)|| = ||(c - i(b - p)) - d||$$

= $||\operatorname{Im}(c - i(b - p))|| = ||b - p|| = \operatorname{dist}(b, \mathcal{P}_{A}),$

i.e., $p + id \in Acc_{\mathcal{A}}(a)$ by part (a).

This shows $\mathcal{A}cc_{\mathcal{A}}(a) = \{p + id : p \in \mathcal{P}_{\mathcal{A}}(b) \text{ and } d \in \mathcal{S}_{\mathcal{A}}(c - i(b - p))\}$ and similarly $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a) = \{p + id : p \in \tilde{\mathcal{P}}_{\mathcal{A}}(b) \text{ and } d \in \tilde{\mathcal{S}}_{\mathcal{A}}(c - i(b - p))\}$.

As a consequence of the above theorem the properties of the sets $\mathcal{A}cc_{\mathcal{A}}(a)$ and $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a)$ can be described by using the results for self-adjoint and positive approximation.

COROLLARY 2.2. Let \mathcal{A} be a unital C^* -algebra and let $a=b+ic\in\mathcal{A}$ with b,c self-adjoint.

- (a) The following conditions are equivalent:
 - (1) $0 \in Acc_{\mathcal{A}}(a)$;
 - $(2) ||a|| \in \sigma(b).$
- (b) The following conditions are equivalent:
 - (1) $0 \in \tilde{\mathcal{A}}cc_{\mathcal{A}}(a)$;
 - $(2) ||a|| \in \sigma(b).$

Proof. By Theorem 2.1(a) one has $\operatorname{dist}(a, Acc_{\mathcal{A}}) = ||b^-||$, where b^- denotes the negative part of b. Thus $0 \in Acc_{\mathcal{A}}(a)$ if and only if $||a|| = ||b^-||$, i.e., if and only if $-||a|| \in \sigma(b)$. Part (b) can be proved in the same way.

COROLLARY 2.3. Let A be a unital C^* -algebra and let $a = b + ic \in A$ with b, c self-adjoint. Then the following conditions are equivalent:

- (1) a has a unique accretive approximant;
- (2) a has a unique accretive near-approximant;
- (3) there exists a non-negative number δ such that $\operatorname{dist}(\lambda, \mathbb{R}^{\geq 0}) = \delta$ for every $\lambda \in \sigma(b)$:
 - (4) b has a unique positive approximant;
 - (5) b has a unique positive near-approximant.

Proof. The equivalence of (3), (4) and (5) follows from Theorem 2.5 of [Be 1].

By Theorem 2.1 the implications $(2) \Rightarrow (1)$ and $(1) \Rightarrow (4)$ hold.

For the implication $(3)\Rightarrow(2)$ suppose that there exists a positive number δ such that $\operatorname{dist}(\lambda,\mathbb{R}^{\geq 0})=\delta$ for every $\lambda\in\sigma(b)$. Then b has a unique positive near-approximant (see [Be 1], Theorem 2.5).

If $\delta=0$ then $\sigma(b)\subset\mathbb{R}^{\geq 0}$, i.e. b is the unique positive near-approximant of b. Thus $\mathrm{dist}_{\|\cdot\|}(a,\tilde{\mathcal{A}}cc_{\mathcal{A}}(a))=\|a-(b+ic)\|=0$, i.e., b+ic is the unique accretive near-approximant of a.

If $\delta>0$ then $\sigma(b)=\{-\delta\}$, i.e., $b=-\delta$ and 0 is the unique positive near-approximant of b. Moreover, $c+i\delta$ has the unique self-adjoint near-approximant c by Theorem 2.5 of [Be 1]. Hence ic is the unique accretive near-approximant of a by Theorem 2.1(c). This completes the proof.

3. Dimension of the set of approximants. In this section the dimension of the convex sets $Acc_{\mathcal{A}}(a)$ and $\tilde{A}cc_{\mathcal{A}}(a)$ is discussed for every element $a \in \mathcal{A}$. Recall that the *dimension* of a convex set X is the (real) dimension of the smallest (real) affine subspace including X (cf. [Val]).

Similar to the case of positive and self-adjoint approximation, the dimension of the set of accretive approximants depends heavily on the C^* -algebra \mathcal{A} (see [Be 3], Example 2.1, for positive approximation). However, for the C^* -algebra $\mathcal{B}(\mathcal{H})$ the dimension can be computed by using techniques similar to [Be 3].

In the following remark some notations and properties of positive and self-adjoint approximation in $\mathcal{B}(\mathcal{H})$ are listed which will be used in this section. They can be found in [Bo 2] and [Bo 3].

Remark 3.1. For every operator $A \in \mathcal{B}(\mathcal{H})$ the space max A is defined by max $A = \{x \in \mathcal{H} : ||Ax|| = ||A|| \cdot ||x||\} = \ker(||A||^2 - A^*A)$.

If A = B + iC with B, C self-adjoint, then the subspace $\mathcal{H}_1 = \mathcal{H}_1(A)$ is defined by $\mathcal{H}_1(A) = \overline{\operatorname{ran}}(\|C\|^2 - C^2) = (\max C)^{\perp}$.

If S is a self-adjoint near-approximant of A, then \mathcal{H}_1 reduces B-S with $(B-S)|_{\mathcal{H}_1^{\perp}}=0$ and $\mathcal{H}_1^{\perp}\subset\max(A-S)$, since $\operatorname{ran}(B-S)\subset\mathcal{H}_1$ and $\max(A-B)=\mathcal{H}_1^{\perp}$.

Moreover, the subspace $\mathcal{H}_2 = \mathcal{H}_2(A)$ is given by $\mathcal{H}_2(A) = \overline{\operatorname{ran}} D_0 \cap \overline{\operatorname{ran}} P_0$ with $\delta = \operatorname{dist}(A, \mathcal{P})$, $D_0 = (\delta^2 - C^2)^{1/2}$ and $P_0 = B + D_0$.

If P is a positive near-approximant of A, then \mathcal{H}_2 reduces $P_0 - P$ with $(P_0 - P)|_{\mathcal{H}_2^{\perp}} = 0$ and $\mathcal{H}_2^{\perp} \subset \max(A - P)$, since $\operatorname{ran}(P_0 - P) \subset \mathcal{H}_2$ and $\max(A - P_0) = \ker(\delta^2 - (A - P_0)^*(A - P_0)) = \mathcal{H}$.

LEMMA 3.2. Let $A = B + iC \in \mathcal{B}(\mathcal{H})$ with B, C self-adjoint and let $\mathcal{H}_2 = \mathcal{H}_2(B)$. Then

$$\dim_{\mathbb{R}} Acc(A) \leq \dim_{\mathbb{R}} \tilde{A}cc(A) \leq 2 \cdot (\dim_{\mathbb{C}} \mathcal{H}_2)^2.$$

Proof. Since $Acc(A) \subset \tilde{A}cc(A)$ the first inequality follows immediately. Suppose now that T = P + iD is an accretive near-approximant of A with P positive and D self-adjoint. Then the subspace $\mathcal{H}_2 = \mathcal{H}_2(B)$ reduces $P_0 - P$ with $(P_0 - P)|_{\mathcal{H}_2^{\perp}} = 0$ and $\mathcal{H}_2^{\perp} \subset \max(B - P)$, since P is a positive near-approximant of B by Theorem 2.1(c). Since B^+ is also a positive near-approximant of B this implies that \mathcal{H}_2 reduces $P - B^+$ with $(P - B^+)|_{\mathcal{H}_2^{\perp}} = 0$.

Moreover, the subspace $\mathcal{H}_1 = \mathcal{H}_1(C - i(B - P)) = \max(B - P)^{\perp} \subset \mathcal{H}_2$ reduces C - D with $(C - D)|_{\mathcal{H}_1^{\perp}} = 0$, since D is a self-adjoint near-approximant of C - i(B - P).

This shows that the set $\tilde{A}cc(A) - (B^+ + iC)$ is included in the set

$$\{P'+iD': P' \in \mathcal{B}(\mathcal{H}) \text{ positive with } \overline{\operatorname{ran}}P' \subset \mathcal{H}_2 \text{ and } D' \in \mathcal{B}(\mathcal{H}) \text{ self-adjoint with } \overline{\operatorname{ran}}D' \subset \mathcal{H}_2\},$$

which has real dimension $2 \cdot (\dim_{\mathbb{C}} \mathcal{H}_2)^2$.

THEOREM 3.3. Let $A=B+iC\in\mathcal{B}(\mathcal{H})$ with B,C self-adjoint and let $\mathcal{H}_2=\mathcal{H}_2(B)$. Then

$$\dim_{\mathbb{R}} Acc(A) = \dim_{\mathbb{R}} \tilde{A}cc(A) = 2 \cdot (\dim_{\mathbb{C}} \mathcal{H}_2)^2.$$

Proof. In view of the previous lemma it suffices to prove that $\dim_{\mathbb{R}} Acc(A) \geq 2 \cdot (\dim_{\mathbb{C}} \mathcal{H}_2)^2$. Fix $n \in \mathbb{N}$ and define the subspace M_n by $M_n := \operatorname{ran} E(D_n)$, where E denotes the spectral measure for B and $D_n := \{\lambda \in \sigma(B) : \operatorname{dist}(\lambda, \mathbb{R}^{\geq 0}) < \operatorname{d}(\sigma(B), \mathbb{R}^{\geq 0}) - 2/n\}$. Here $\operatorname{d}(\sigma(B), \mathbb{R}^{\geq 0})$ denotes the one-sided Hausdorff distance from $\sigma(B)$ to $\mathbb{R}^{\geq 0}$. Then M_n is a B-reducing subspace of $\mathcal{H}_2 = \mathcal{H}_2(B)$ since $\mathcal{H}_2(B) = \mathcal{H}_0(\mathbb{R}^{\geq 0}, B) = \operatorname{ran} E(\{\lambda \in \sigma(B) : \operatorname{dist}(\lambda, \mathbb{R}^{\geq 0}) < \operatorname{d}(\sigma(B), \mathbb{R}^{\geq 0})\}$.

For every positive operator $P' \in \mathcal{B}(\mathcal{H})$ with ran $P' \subset M_n$ and $\|P'\| \leq 1/n$ and for every self-adjoint operator $D' \in \mathcal{B}(\mathcal{H})$ with ran $D' \subset M_n$ and $\|D'\| \leq 1/n$ the operator $T = (B^+ + P') + i(C + D')$ is accretive. Moreover,

$$\begin{split} \|A - T\| &= \|(B + iC) - (B^+ + P') - i(C + D')\| \\ &= \|B - (B^+ + P') - iD'\| \\ &= \max\{\|(B - (B^+ + P') - iD')|_{M_n}\|, \|(B - (B^+ + P') - iD')|_{M_n^{\perp}}\|\} \\ &\leq \max\{\|(B - B^+)|_{M_n}\| + \|P'|_{M_n}\| + \|D'|_{M_n}\|, \|(B - B^+)|_{M_n^{\perp}}\|\} \\ &\leq \max\{\|B^-|_{\text{ran } E(D_n)}\| + 2/n, \|B - B^+\|\} \\ &\leq \mathrm{d}(\sigma(B), \mathbb{R}^{\geq 0}) = \mathrm{dist}(B, \mathcal{P}_{\mathcal{A}}) \end{split}$$

by the spectral theorem and by the distance formula 1.4 of [Be 1]. Hence T is an accretive approximant of A. Thus the set $Acc(A) - (B^+ + iC)$ includes the set

 $\{P'+iD': P' \in \mathcal{B}(\mathcal{H}) \text{ positive with } \overline{\operatorname{ran}} P' \subset M_n \text{ and } \|P'\| \leq 1/n \text{ and } D' \in \mathcal{B}(\mathcal{H}) \text{ self-adjoint with } \overline{\operatorname{ran}} D' \subset M_n \text{ and } \|D'\| \leq 1/n\},$

which has real dimension $2 \cdot (\dim_{\mathbb{C}} M_n)^2$. Since $\mathcal{H}_2 = \mathcal{H}_2(B) = \overline{\bigcup_{n \in \mathbb{N}} M_n}$, one has $\lim_{n \to \infty} \dim_{\mathbb{C}} M_n = \dim_{\mathbb{C}} \mathcal{H}_2$, so that

$$\dim_{\mathbb{R}} Acc(A) \geq 2 \cdot (\dim_{\mathbb{C}} \mathcal{H}_2)^2$$
.

This completes the proof.

4. Extreme points in the set of approximants. In this section the extreme points of the convex sets $\mathcal{A}cc_{\mathcal{A}}(a)$ and $\tilde{\mathcal{A}}cc_{\mathcal{A}}(a)$ are studied for every element a of the unital C^* -algebra \mathcal{A} .

First, sufficient conditions are specified for an approximant to be such an extreme point:

PROPOSITION 4.1. Let A be a unital C^* -algebra and let $a \in A$.

- (a) If $t = p + id \in A$ is an accretive approximant of a with p positive and d self-adjoint such that $(a-t)^*(a-t)$ or $(a-t)(a-t)^*$ is a scalar, then $t \in \operatorname{ex} Acc_A(a)$.
- (b) If $t = p + id \in A$ is an accretive near-approximant of a with p positive and d self-adjoint such that $(a t)^*(a t) + (a t)(a t)^*$ is a scalar, then $t \in \exp \tilde{A}cc_A(a)$.
- Proof. (a) It is a well-known result that every element $x \in \mathcal{A}$ with $x^*x = e$ or $xx^* = e$ is an extreme point of the closed unit ball (see e.g. [Pe], Prop. 1.4.7). Hence the element a t is an extreme point of the closed ball with center 0 and radius ||a t||. Since the set $a \mathcal{A}cc_{\mathcal{A}}(a)$ is included in this ball, the element t is an extreme point of $\mathcal{A}cc_{\mathcal{A}}(a)$.

Similarly part (b) follows from the proposition below.

PROPOSITION 4.2. Let \mathcal{A} be a C^* -algebra with unit e and let $\mathcal{A}_1 := \{a \in \mathcal{A} : \|a\| \leq 1\}$ be the closed unit ball in \mathcal{A} for the norm $\|\cdot\|$. Then every element $x \in \mathcal{A}$ with $\frac{1}{2}(x^*x + xx^*) = e$ is an extreme point of \mathcal{A}_1 .

Proof. Using the Theorem of Gelfand-Neumark it suffices to prove the statement for $\mathcal{A} = \mathcal{B}(\mathcal{H})$.

Suppose $T \in \mathcal{B}(\mathcal{H})$ with $\frac{1}{2}(T^*T + TT^*) = \text{Id}$. Then ||T|| = ||Id|| = 1, i.e. $T \in \mathcal{B}(\mathcal{H})_1$. If $R \in \mathcal{B}(\mathcal{H})$ with $||T - R|| \le 1$ and $||T + R|| \le 1$, then Lemma 2.1(b) of [Be 2] implies that $\max(T^*T + TT^*) \subset \ker R$, which means that R = 0. Hence T is an extreme point of $\mathcal{B}(\mathcal{H})_1$.

As a consequence of Proposition 4.1 and Theorem 2.1 some extreme points of $Acc_A(a)$ and $\tilde{A}cc_A(a)$ can easily be constructed:

COROLLARY 4.3. Let \mathcal{A} be a unital C^* -algebra and let $a = b + ic \in \mathcal{A}$ with b, c self-adjoint. Furthermore, let $p \in \mathcal{P}_{\mathcal{A}}(b) = \tilde{\mathcal{P}}_{\mathcal{A}}(b)$. Then

$$k_p^{(+)} := p + i((\|b - p\|^2 - (b - p)^2)^{1/2} + c)$$

and

$$k_p^{(-)} := p - i((\|b - p\|^2 - (b - p)^2)^{1/2} + c)$$

are both extreme points of $Acc_{\mathcal{A}}(a)$ and $\tilde{A}cc_{\mathcal{A}}(a)$.

COROLLARY 4.4. Let A be a unital C^* -algebra and let $a \in A$. Then either a has a unique accretive approximant and near-approximant or $Acc_A(a)$ and $\tilde{A}cc_A(a)$ have uncountably many extreme points.

Proof. If a does not have a unique accretive approximant or near-approximant then $b := \operatorname{Re} a$ does not have a unique positive approximant by Corollary 2.3. This implies that b has uncountably many positive approximants since the set of all positive approximants is convex. Hence $\operatorname{Acc}_{\mathcal{A}}(a)$ and $\operatorname{\tilde{A}cc}_{\mathcal{A}}(a)$ have uncountably many extreme points by the previous corollary.

References

[Be 1] R. Berntzen, Normal spectral approximation in C*-algebras and in von Neumann algebras, Rend. Circ. Mat. Palermo, to appear.

[Be 2] —, Extreme points in the set of normal spectral approximants, Acta Sci. Math. (Szeged) 59 (1994), 143-160.

[Be 3] —, Spectral approximation of normal operators, ibid., to appear.

[Bo 1] R. Bouldin, Positive approximants, Trans. Amer. Math. Soc. 177 (1973), 391-403.

[Bo 2] —, Operators with a unique positive near-approximant, Indiana Univ. Math. J. 23 (1973), 421-427.

[Bo 3] —, Self-adjoint approximants, ibid. 27 (1978), 299-307.

[Ha] P. R. Halmos, Positive approximants of operators, ibid. 21 (1972), 951-960.

[Pe] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, London Math. Soc. Monographs 13, Academic Press, London, 1989.

[Val] F. A. Valentine, Convex Sets, McGraw-Hill, New York, 1964.

MATHEMATISCHES INSTITUT DER WWU MÜNSTER. EINSTEINSTR. 62 48149 MÜNSTER, GERMANY E-mail: BERNTZE@MATH.UNI-MUENSTER.DE