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Jordan polynomials can be analytically recognized
Ty

M. CABRERA GARCIA (Granada),
AL MORENQ GALINDO (Granada),
A. RODRIGUEZ PALACIOS (Granada) and
E. I ZEL'MANOV (Chicago, T11.)

Abstract. We prove that there exists a real or complex central simple associative
algebra M with minimal one-sided ideals such that, for every mon-Jordan associative
polynomial p, a Jordan-algebra norm can be given on M in such a way that the action
of p on M becomes discontinuous.

1. Introduction. Among the associative polynoiials (elements in the
free associative algebra on a countably infinite set of indeterminates) the
so-called “Jordan polynomials” are of special interest in Jordan theory. Jor-
dan polynomials are those associative polynomials that can be expressed
through the indeterminates by means of the sumn and the Jordan product.
Well-known examples of Jordan polynomials are x* and xyx, whereas the as-
sociative product xy and the tetrad xyzt-+tzyx are examples of non-Jordan
polynomials.

Let A be an associative algebra over K (== R or C), and |- | be a Jordan-
algebra norm on A. Then obviously every Jordan polynomial acts | |-
continuously on A. If either A is semiprime and |- | is complete or A is simple
and has a unit element, then the associative product of A is |+ }-continuous
([14], [13], [4]), hence every assoclative polynomial acts |- feontinuously on
A. An example of |+ |-discontinuity of the associative product of A with
b-| complete (hence A not semiprime) is given in {14]. The first example of
| |-discontinuity of the associative product of A with A semiprime (hence
|| not complete) appears in 2] (see also [17]), but the algebra A in this
example is very far from being simple (and even prime): it is an infinite
direct sum of finite-dirmensional simple ideals. Very recently an example of
|f|~discontinuity of the associative product of 4 with 4 simple (hence nei-
ther || can be complete nor A can have a unit) has been provided in [4],
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A being nothing but the algebra M. (K} of all countably infinite matrices
over K with a finite number of non-zero entries.

The continuity of the action of the tetrad on associative algebras en-
dowed with Jordan-algebra norms has also been discussed in the literature
because of its close relation to the so-called “norm-extension problem” [17].
The norm-extension problem, together with the above problem on the conti-
nuity of the action of the associative product, becomes of capital importance
in the search for normed versions of the Zel'manov prime theorem for Jordan
algebras [18] (see [3], [5], [6], 7], and [16]). Let A be an associative algebra
over K (= R or C) with an involution *, assume that A is & “+tight enve-
lope” of its hermitian part H(A4,*), and let |- | be an algebra norm on the
Jordan algebra H (4, +). Clearly H(A, %) is invariant under the tetrad and,
if the action of the tetrad on H(A,*) is |- |-discontinuous, then there is no
(associative-) algebra norm on A whose topology extends the one of |- | on
H{A,*). The converse is also true [17]: if the tetrad acts |- |-continuously
on H{A,+), then there is an algebra norm on 4 whose topology coincides on
H(A,«) with that of |- |. If either H (A, +) is semiprime and |- | is complete
or H(A, «) is simple and has a unit element, then the action of the tetrad
on H(A,x) is | |-continuous ([17], [4]), hence the norm-extension problem
has an affirmative answer in this case.

In a common context, the associative-product-continnity problem and
the norm-extension problem are related in the following way. Let A be an
associative algebra over K (=R or C) with an involution *, assume that
A is a “s-tight envelope” of its hermitian part H(A4,«), and let || be a
Jordan-algebra norm on A. If the action of the tetrad on H(A,«) is |- |-
discontinuous, then the associative product of A is indeed |- J-discontinuous.
Therefore the best negative answers to the norm-extension problem (imply-
ing negative answers to the associative-product-continuity problem) arise
when in the above context, for algebraically “good enough” A, one is able
to show the |- |-discontinuity of the action of the tetrad on H (A, x). Exam-
ples of such a situation are provided in [17] with A semiprime but not prime
and, more-recently, in [4] with A simple (actually A = M, (K)).

The question of the continuity of the action of general associative poly-
nomials on associative algebras endowed with Jordan-algebra (semi-) norms
has been first considered in [1]. It is proved there that, for every associative
polynomial p.over K (= R or C} which is “very non-Jordan” (in a sense
that will not be specified here), there exists a prime associative algebra A,
together -with a Jordan-algebra seminorm |-} on A, such that the action of
p on A béecomes |- |-discontinuous. Actually, the pair (4, |-]) depends only
on the degree of p and the number of indeterminates involved in P, but the
algebra A is not simple and the seminorm |- | is far from being a norm: its
kernel is a finite-codimensional subspace of A..
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By putting together and refining the arguments in [1] and [4], we prove in
the present paper that, for every non-Jordan associative polynomial p over K
(= R or C), there exists a Jordan-algebra norm | - | on the simple associative
algebra M (K) such that the action of p on M (K) is |- |-discontinuous.
In fact, the norm |- | depends only on the degree of p and the number of in-
determinates involved in p, and the |- |-discontinuity of the action of p can
be centered in H (M (K), ») for a suitable K-linear involution * on M, (K)
of arbitrarily prefixed type (hermitian or alternate). This improves in sev-
eral directions the above-cited result in (1], refines all previously known
non-complete negative answers to the associative-product-continuity and
norm-extension problems, and has the following nice consequence: Jordan
polyncmials are precisely those associative polynomials which act continu-
ously on every associative algebra endowed with a Jordan-algebra norm.

2. The main result. Let 4 be an associative algebra (with product
denoted by juxtaposition) over a field F (which will be always assumed to
be of characteristic not 2). Then the vector space of A with the so-called
Jordan product of A, defined by :

a.b = L(ab+ ba),

becomes a Jordan algebra, usually denoted by A*. The subalgebras of A™
are called Jordan subalgebras of A. If A has a (linear algebra) involution =,
then the set H (A4, %), of all -invariant elements in 4, is a Jordan subalgebra
of A. For real or complex A, a Jordan-algebre norm on A is nothing but an
algebra norm on AT, i.e. a norm || - || on the vector space of A satisfying
|a.b| <lal||b] for all a,b in A.

Fix a fleld F. Given a non-empty set X, we denote by A(X) the free asso-
clative algebra over F on X. When X is a countably infinite set, the elements
in A(X) are called associative polynomials over I, and such a polynomial
will be written p(xy,...,X,) when we are interested in pointing out that
X1, --., Xy are the indeterminates involved in p. Given an associative poly-
nomial p = p(x1,...,X,) and elements ay,...,a, in an associative algebra
A, we denote by play,...,a,) the image of p in A4 under the unique ho-
momorphism from A(X) into A sending x; to a; (for ¢ = 1,...,n) and the
other elements of X to zero. In this way we can consider the action of p on
A, namely the mapping (a1,...,an) — pay,...,a,) from Ax 7. x4 into
A. The action of p on a subset § of A will mean the restriction of the above
mapping to 5% .%. x 8, We will say that a subset S of A is invariant under
p if the action of p on § is actually valued in S,

Given an algebra B, we denote by My (B) the algebra of all countably
infinite matrices over B with a finite number of non-zero entries. If B has an
involution *, them Me(B) has a “canonical” invelution (also denoted by *)
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consisting in transposing a given matrix and applying the original involution
to each entry. The proof of our main theorem consists of two independent
results, interesting in their own right (Propositions 1 and 2 below). The first
one is a greatly improved version of Proposition 3 of [4].

PROPOSITION 1. Let n be a natural number, (B,| - |) an associative
normed algebra over K (=R or C), and J be a closed Jordan subalgebra of
B, Then there exisis o Jordan-algebra norm || on M (B) making discon-
tinuous the action on Mu.(B) of every associative polynomial p of degree
< n such that J is not invariont under p. Moreover, if B hag an involution
*, and if J is contained in H(B, %), then the norm |- | can be chosen in such
& way that the action on H{M(B),*) of every polynomial p as above is
|- |-discontinuous.

The proof of this proposition follows essentially the lines of that of (4,
Proposition 3]. Some extra difficulties are, however, to be overcome, and this
is done in the next lemmas.

LemMMA 1. Let E and F be normed spaces over K (= R or C) and f be
a mapping from E to F. Assume that f is continuous at zero and that there
is ¢ natural number k such that f(Az) = A f(z) for all X in K and z in E.
" Then there exists a non-negative real number M such that || f(z)| < M{z||*
for el x in E.

Proof. Let Bg and B denote the closed unit balls of £ and F, respec-
tively. Since f{0) = 0, the continuity of f at zero implies the existence of a
positive number R such that f(RBg) C Bp. Therefore ||f(z}]| £ R7%|z{*
forall z in E. =

LemMMA 2. Let E and F be topological vector spaces over K (= R or
C) and fi,..., fn be mappings from E to F. Assume that, for all A in K,
xinE, and k£ = 1,...,n, the equality fr(Az) = A" fiu(x) holds. Then the
miapping ¥ u_, fr 15 continuous at zero if and only if all the mappings fi
{(k=1,...,n) are. :

‘Proof. Writing f := Y i, fr and choosing pairwise different non-zero
elements. A1,..., A, in K, for allz in F and i = 1,...n we have

Fhim) = Mfa (@) + A fale) + .. + AP fula),
which can be rewritten matricially as

flaz) fu(z)

= A . )

A ) Fal2)
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where A4 denotes the n x n matrix over K given by

AL A AT
Az A3 . AP
A A2 oopm
Since the Vandermonde type determinant of A is non-zero, we obtain
fi(z) f(z)
. = A—l .

hence there are i in K such that, for all z in £ and k= 1,...,n, we have

ful@) =D parf(Nis).
fe=1

Now clearly all f) are continuous at zero whenever so is f. »

We recall that an associative polynomial is said to be homogeneous of
degree k if all the monomials involved in its essentially unigue decomposition
as alinear combination of pairwise different words are of degree k. In general,
if we group together the monomials of degree k of a given polynomial p, then
we obtain a homogeneous polynomial pg, called the homogeneous component
of degree k of p, and we have p = szl Pk, where n denotes the degree of p.

Proof of Proposition 1, Let |- || be an algebra norm on My, (B)
satisfying '

) max{[bsl i€ N} < (i) < Y

(i,7)eNxN

for all {b;;) in Moo(B) (e.g., we may take [|(bij)[l = 3o nenxn [bigl]). For
an element ¢ in My (B) and a (not necessarily || - ||-closed) subspace § of
M (B), let us write |lov -+ S| 1= inf{||ex + 8| : # € 5}, so that the mapping
o = ||a + S} is a seminorm on the vector space of M, (B). Regarding the
algebra Mo, (B) as the algebraic tensor product Mo, (K)®x B-and identifying
for each & in N the algebra My(K) of all k x k matrices over K with the
subalgebra of M (K) of those matrices (A;j) in My (K) satisfying Aj; = 0
whenever either i > k or § > k, we may consider the Jordan subalgebra J
of Mo (B) given by Ji 1= My-1(K) ® B + e ® J, where Mp(K) := & and
e denotes the element (Asy)(yyenxn in Moo (K) given by Ay; = 0 whenever
(1,5) # (k, k), and Agx = 1. '

b5l
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Finally, we may define a norm |- | on the vector space of My (B) by

o0
lal = [la + D, 2 o+ 7]
i1
for all & in Moo (B) (note that, for sach o in My (B), the series appearing
above has only a finite number of non-zero terms). As in the proof of [4,
Proposition 3], Lemma 3 of [17] shows that |- | is a Jordan-algebra norm
on My (B). From the property ($) of the norm || - || on My (B) we easily
deduce that, if k and ¢ are in N and if b is in B, then

I if k> 4,
lex@b+Till =< b+ J|| k=1,
0 if kb < 4.

Therefore, for all £ in N and b in B, we obtain
lep @bl = (1+ 2™+ . 4 20 FD Ty ) 4 2D g 4 )|

Let g = g{x3,...,X;s) be a homogeneous associative polynomial of degree
m < n such that J is not invariant under q. Since J is closed in (B, i),
we can choose 2y, ...,%, in J such that ||q{z1,..., %)+ J|| % 0, and so, for

kin N, .
C laler @@y, e @ 24 _ lex @ aler, .- -, 24)]
max{|ex @ 1],...,|ex @ 2|} max{ler @ z1]™, ..., [er ® z:]™}

(L4 20 42000 Y gy g+ 20 g, ) +
L+ 27+ 20 maxd ™, [l ™)

20000 gy, - ., 25) + J |
= gm0 max (™ |7

B 2(ﬂ+1)'°'1(n+1‘m)Hq(w1,- -, %s) +
k™ max{ ||z ™, . . s |7}

2D g ay, . ,Ts) + J||
kT ma»x{“ml“mz R H%Hm}

Now we may apply Lemma 1, with E equal to the fe-sum of s copies
of (Mo (B),}']) and F equal to (Mu(B),]-]), to deduce that the action
of q on My (B) is not | |-continuous at zero. Finally, every associative
polynomial p of degree € n such that J is not invariant under p has a
homogeneous component q. (obviously of degree £ n) such that J is not
invariant.under q..It follows from the above and Lemma 2 that the action
of such a polynomial p on M. (B) is not |- |-continuous.

o Assume in addition that B has an involution % and J is contained in
H(B,*). Then, for q and %1,...,%, as above and for all k in N, e, ® 21,

—t

— 00 as k — 00,
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..., ex®z, lie in H (Moo (B), %), and therefore the preceding argument shows
that the action of g on H(Mu,(B), ) is discontinuous at zero for the topol-
ogy of the norm | - |. Again Lemma 2 allows us to obtain the |- |-discontinuity
of the action on H (M (B),*) of every associative polynomial p of degree
< n such that J is not invariant under p. m

Remark 1. We began the proof of Proposition 1 by choosing an algebra
norm || - || on Mo (B) satisfying
3 Iyl

max{|[by| : i € N} < [|(bi5)]| €

(i) ENXN
for all {b;;) in Moo (B), and remarked that a simple example of such a norm
is the one given by ||(bs;)l := Z(i,j)eNxN llbsj||. For later applications it is

interesting to point out that many other examples of such norms on M, (B)
can be given. Precisely, imbedding B isometrically into the normed algebra
BL(X) of all bounded linear operators on a suitable normed space X [13,
p. 4], we can convert the vector space ¥ of all quasi-null sequences in X
into a normed space by fixing 1 < » < co and defining, for y = {z,} in
Y, gl = (e 2P} i p < oo and [ly] = max{lla| : n & N} if
p = co. Then the imbedding B «— BL(X) induces naturally an algebraic
imbedding M, (B) «— BL(Y), and it is enough to restrict to M (B) the
norm of BL(Y) to obtain an algebra norm on My (B) with the property
mentioned above.

The second step for the proof of our main result is of a purely algebraic
nature. We recall that the free special Jordan algebra 7(X) on a set of
indeterminates X is nothing but the Jordan subalgebra of .A(X) generated
by X. A(X) has a standard (or main) involution * defined as the only
involution on A(X) fixing the elements of X. It follows immediately that
J(X) € H(A(X), »). This inclusion is strict unless card(X} < 3 (if x,y,2,t
are pairwise different elements in X, then xyzt + tzyx is in H(A(X), *) but
not in J(X)). Elements in J(X), for a countably infinite set X, are called
Jordan polynomials. :

Given a fleld F and a natural number n, the involution * on My, (IF)

defined by a* := s 'a's, where a* denotes the transpose of a and s :=
diag{g,.%., ¢} with ¢ = (f]) é), will be called the symmelric involution on

Mo, (F). Since the symmefric involution is of hermitian type, it is cogredi-
ent to the transposition whenever IF is algebraically closed [8, Theorem 4,
p. 156]. In the case F = R the symmetric involution is mot cogredient to
the transposition, ag one can see by realizing that the matrix s above has
zero signature and applying [8, Theorem 6, p. 158]. We also recall the fa-
miliar symplectic involution * on My, (F) defined by ¢* = s~'as, where

now s := diag{q,.%.,q} with ¢ := (%% ). It is the standard representative
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of the unique cogredience class of involutions on My, (F) of alternate type
8, Theorem 7, p. 161].

PROPOSITION 2. Let F be o field, n and m be natural numbers, and, for
every notural number p, let * denote either the symmetric or the symplectic
involution on May(F). Then there exists a natural number d, logether with
a Jordan subalgebra J of Mag(F) contained in H{Mqq(F),*), such that J is
not invarient under any non-Jordan associative polynomial of degree < n
involving at most m indeterminates.

Proof. Consider a set Y of cardinality m (say Y := {yy,...
write A(Y) = @,y Ax, where Ay is the vector space of all homogeneous
elements in A{Y) of degree k, so that, if * denotes the main involution on
A(Y), then all the Ay (k € N) are =-invariant finite-dimensional subspaces
of A(Y). Let I be the %-ideal of A(Y') defined by [ = (.., A, and write
A= AY)/T and J = #(J(Y)), where 7 denotes the quotient mapping
A(Y) — A(Y)/I. Then Ais a finite-dimensional associative algebra with an
involution (also denoted by =) and J is a Jordan subalgebra of A contained in
H(A,*). We claim that J is not invariant under any non-Jordan associative
polynomial of degree < n involving at most m indeterminates. Agsume on
the contrary that J is invariant under a non-Jordan associative polynomial

.Y )) and

p = p(x1,...,%,) of degree g with 1 < s < mand 1 < g < n. Then
p(r(yi},.. ., 7(ys)) = n{p{y1,...,¥s)) les in J, so there is q in F(Y) such
that p(y1,...,¥s) —q belongs to I, and therefore, if for k in N we denote by

4 the k-homogeneous component of g, we have p{y1,...,¥s) = di-+. . .+qq,.
Since g is in J{Y), every homogeneous component of q lies in J(Y) [9,
pp. 7-8] and therefore so does p(yi1,...,¥s). Now a standard universal-
algebra argument shows that p = p(x1,...,%,) is a Jordan polynomial,
contrary to the assumption.

The proof is completed by showing that, for some natural number d and
for both the symmetric and symplectic involution {say also *) on My (F),
there is a one-to-one #-homomorphism from A into Myy(F). To this end
we follow the lines of the proof of the main result in [12]. Denote by A;
the unital hull of 4, let A{ be the dual of the vector space of A, and, for
a in A, consider the linear mappings A, : Ay =+ Ay and Iy : 4] = A}
defined by A,(2) := ax for all 2 in Ay and Iy (f) := f o Ay for all fin AY.
Then a — A, and a — I, are faithful representations of A on the vector
spaces Ay and Af, respectwely, 50 that we can consider the (automatically
faithful) “direct sum” representation (say T : a = T, ), namely the one of
Aon V= A, @ Al given by Tu(z, f) = (Ay(x), [L(f)) for all a in 4 and
(m f) inV, Given ¢ = %1, the mappmg {+,+) from ¥V x V into F defined by

({2, f) (92 90) = f () + =9(x)
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is & non-degenerate e-hermitian form, i.e., a non-degenerate bilinear form
on V satisfying (vi,va) = e{vs,v1) for all v1, vy in V. Moreover, for all ¢ in
Aand (z,f),(y,9) in V, we have

<Tﬂ("‘cw .f)) (y)g» = ((IL‘, f)aTn"‘ (y Q))

so Ty is the adjoint operator of T, relative to {-,-}, and so T is actually a
«-representation of A on the e-self-paired vector space (V,(-,-)). Denoting
by d the dimension of Ay, taking a basis {e1,...,eq} for 43, considering the
corresponding dual basis {¢,..., @4} in A}, and choosing {¢1,e1,b9,63,...
.y Gdyeq} as a basis for V, linear operators on V are naturally identified
with elements in M3q(F) in such a way that, for € = 1 (respectively, -1)
taking the adjoint operator relative to (-} becomes the symmetric (respec-
tively, symplectic) involution on Moy (F). =

Both the symmetric and the symplectic involution pass from matrix al-
gebras of the form Mp,(F) (n € N) to M (F) by simply considering the
equa,lity Moo (F) = Un.EN -1M.2n (IF)

TupoREM. Let K be either R or C, n and m be notural numbers, and
denote by % either the symmetric or the symplectic involution on M, (K).
Then there exists a Jordan-algebra norm on M, (K) making discontinuous
the action on H (Moo (K), *} of every non-Jordan associative polynomial of
degree & n dnvoluing al most m indeterminales.

Proof. By Proposition 2, there exist a natural number d and a subalge-
bra J of the Jordan algebra H(Msy(K), *) such that J is not invariant under
any non-Jordan associative polynomial of degree < n involving at most m
indeterminates. Writing B := My4(K) and choosing an arbitrary algebra
norm | - || on B, the subalgebra J becomes closed in the normed associative
algebra (B, || - ||) because B is finite-dimensional. Now it is enough to apply
Proposition 1 to obtain the existence of a Jordan-algebra norm on Mo (B)
making discontinuous the action on H (Mo (B),*) of every non-Jordan as-
sociative polynomial of degree € n involving at most m indeterminates.
Finally, observe that (M (B), ) is *-isomorphic to (Meo(K), *). »

The next two corollaries are direct consequences of the Theorem. The
first one is & negative answer to the “norm-extension problem” for simple
algebras which improves Theorew 7 of [4], whereas the second one explains
how Jordan polynomials can be analytically recognized.

CorROLLARY 1. Let K be either R or C, and denote by % either the sym-
metric or the symplectic involution on My (K). Then there exists a Jordan-
algebra norm |- | on M (KK) such that there is no (associative-) algebra norm
on Moo (K) whose restriction to H (Mo (K), *} is equivalent to the restriction
of |-] to H (M (K), *). :
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COROLLARY 2. Let K be either R or C, and p be an associative polyno-
mial over K. Then the following assertions are equivalent:

(i) p is o Jordan polynomial.
(ii) For every associative algebra A over K, and for every Jordan-algebrg
norm |-| on A, the action of p on A is |-|-continuous.
(iii) For every Jordan-algebra norm |- | on Moo (K), the action of p on
Mo (K) is |- |-continuous.

Remark 2. Choose in the proof of the Theorem the algebra norm | - |
on B = Mjy(K) equal to the operator norm when B is regarded as the
algebra of all bounded linear operators on the Hilbert space X := K24,
and, according to Remark 1, choose in the proof of Proposition 1 the cor-
responding algebra norm | - || on Mo, (B) equal to the operator norm when
Mo(B) is regarded as the algebra of all bounded linear operators on the
space of quasi-null sequences in X endowed with the £3-norm. Then we can
argue as in Section 3 of [4] so that, if we denote by |- | the pathological
Jordan-aigebra norm on M = M. (K) & M. (B), then the Jordan—Banach
algebra completion J of the Jordan normed algebra (M*,|-|) is prime
non-degenerate and has non-zero socle [10]. Moreover, J can be viewed as
a Jordan subalgebra of the associative algebra KC(H) of all compact opera-
tors on the infinite-dimensional separable Hilbert space H over K, and the
socle of 7 is a central simple associative subalgehra of K(H) containing M.
Since also both the symmetric and the symplectic involution * on M can
be uniquely extended to involutions on /C(H) in such a way that 7 remains
*-invariant, it follows in particular that the Theorem remains true if M w(K)
is replaced by a suitable central simple associative algebra A over K such
that A% is algebraically isomorphic to the socle of a prime non-degenerate
Jordan-Banach algebra, and * is a suitable involution on A of arbitrary pre-
fixed type. We note that, in view of Baire’s theorem and results in [10] and
(11], Moo (K)* cannot be isomorphic to the socle of a prime non-degenerate
Jordan-Banach algebra.
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