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Strong convergence theorems for two-parameter
‘Walsh—-Fourier and trigonometric-Fourier series

by

FERENC WEISZ (Budapest)

Abstract. The martingale Hardy space Hp([0,1)%} and the classical Hardy space
Hyp(T?) are introduced. We prove that certain means of the partial sums of the two-
parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded op-
erators from Hp to Ly (0 < p £ 1). As a consequence we obtain strong convergence
theoremms for the partial sums. The classical Hardy-Littlewood inequality is extended to
two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequali-
ties are also verified and a Marcinklewicz—-Zygmund type inequality is obtained for BMO
gpaces.

1. Introduction. We introduce the martingale Hardy space H,([0,1)%)
by the L, norm of the diagonal maximal function of a two-parameter mar-
tingale, and the classical Hardy space H,(T?) by the L, norm of the non-
tangential maximal function of a distribution. It is known that neither the
Walsh nor the trigonometric system is a basis in L;. Moreover, there exist
functions in H) whose partial sums are not bounded in L. Smith [19] and
Simon [17] proved the following strong convergence result for one-parameter
trigonometric-Fourier and Walsh-Fourier series, respectively:

lirn Z “Skf AR =0,

N 00 log )

where f ¢ H; and s;,f denotes the kth partial sum of the Fourier series.
We generalize these results to two-parameter trigonometric-Fourier and
Walsh--Fourier series and verify that there exists a constant C), depending
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only on p and o such that

1
log nlogm Z

gee <k /12
(kD)< (nom)

bestlls < 0, i,

where o > 0 and Hy is either H; (T?) or H1{[0,1)?). The two-parameter ana-
logues of the previous convergence resulits follow easily from this. For Walsh-
Fourier series the previous inequality is extended to the spaces Hp([0,1)%)
(0<p<1)as well

The dual to the previous inequality gives a Marcinkiewicz-Zygmund
type inequality. Finally, the classical Hardy-Littlewood inequality ([12]) is
extended to two-parameter Walsh-Fourier and trigonometric-Fourier coeffi-
cients and the dual inequality is also proved. Another version of the Hardy-
Littlewood inequality for two-parameter Walsh~Fourier series was shown by
the author in [24], [25].

2. The martingale Hardy space H,([0,1)?). In this and the next
section the unit square [0,1)% and the two-dimensional Lebesgue measure
are considered. We also use the notation |I| for the Lebesgue measure of the
set 1.

By a dyadic interval we mean one of the form {k2™7",(k + 1)27™) for
some k,n € N, 0 < k < 2" Given n € N and z € [0,1) let I(x) denote
the dyadic interval of length 2~™ which contains z. If I} and I are dyadic
intervals and |I3| = |/2| then the set I = I x I is a dyadic square. Clearly,
the dyadic square of area 27%" containing (2,y) € [0,1)? is I,(z) X I, ().
We also write I, ,(z,y) for this set.

The o-algebra generated by the dyadic squares {Inn(xz) :
will be dencted by F, n (n € N), more precisely,

Fom = o{[k27" (k+ 127"y x 127", 1+ 1)27") : 0< k< 2", 0 < 1< 2",

The expectation operator and the conditional expectation operator rel-
ative to Fy,,, {n € N) are denoted by E and E, ,, respectively. We briefly
write L, for the real L,([0,1)%, X} space; the norm {or quasinorm) of this
space is defined by Hf||p = (BlfP)Y? (0 < p £ oo) For simplicity, we
assume that Ef = 0 for f € L.

'We investigate one-parameter martingales of the form f = (fnn,n € N)
with respect to (Fnn,n & N) and suppose that foo = 0. The martingale

= (fan,n € N) is said to be Ly-bounded (0 < p < 00} if frn € Ly (R EN)
and

z € [0,1)%}

1 fllp = SU—P an nlls < o0

O If f € L1 then it is easy to show that the sequence f (Bonfin € N)
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is a martingale. Moreover, f 1 < p < oo and f € L, then f is Ly-bounded
and

nl}_?go ”En,nf - f“P =

consequently, || fl, = || flip (see Neveu [15]). The converse of this result also
holds for 1 < p < oo (see Neveu [15]): if f = (f.n,n € N) is a martingale,
then there exists a function g € L, for which f , = E, g if and only if f
is Lp-bounded. If p = 1 then there exists ¢ € Ly as above if and only if f is
uniformly integrable (Neveu [15]), i.e., if

lim sup f

o N ‘fnﬂ@'d.x =0.
ne {|fnn|>al

Thus the map f = f = (E..f,n € N) is isometric from L, onto the
space of Ly-bounded martingales when 1 < p < oco. Consequently, the two
spaces can be identified. Similarly, the L space can be identified with the
space of uniformly integrable martingales. For this reason a function f € L,
and the corresponding martingale (Ey . f,n € N) will be denoted by the
same symbol f.

The mazimal funclion of a martingale f =

I* = sup [ funl-
nel

(fann €N) is defined by

It is eagy to see that, in case f € Lj, the maximal function can alsc be
given by

o 1
fH@y) = sup s y)l‘ f fd)\{

N
n& Lnm!

For 0 < p < oo the martingale Hardy space Hp([ﬂ,l) ) consists of all
martingales for which '

1z, 0,12y 2= F7llp < o
(frnin € N,
(L<p<oo),

It is well known that for all martingales f =

% P
1f*]lp < "”:_“"'."”.f”?

hence H,([0,1)?) ~ L, wheuever 1 < p £ oo (see Neveu [15]), where ~
denotes the equw&lcnce of the norms and spaces. Note that H,([0,1)%) (0 <
p < 00) can also be defined by the norm

LA = 115(F) e
where
oo i/2
S(F) = (X fan = FrrnmaP)
n=l

For this and other equivalent definitions see Weisz [26].
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Atomic decomposition provides a useful characterization of Hardy spaces.
A bounded measurable function ais a p-atom if there exists a dyadic square
R such that

(i) Jpedr =0,
i) all,. < |RI72,

(i) {a #0} C R.
The basic result on atomic decomposition is as follows (see Weisz [25]).

THEOREM A. 4 martingale f = (fan,n € N) s in H, (0 <p < 1) if
and only if there exist o sequence (¥, k € N) of p-atoms and a sequence
(px, k € N) of real numbers such that

o0 o0
(1) N i Bngat = frn forallne N, Y {mf? < oo.
k=0 k=0

Moreover, the following equivalence of norms holds:

@ |15, ~ int (Dmp) "

where the infimum is taken over all decompositions of f of the form (1).

Tt is proved in Garsia [10] (see also Weisz [25]) that the dual of H1([0, 1)%)
is the BMO([0,1)?) space, where BMO([0,1)?) consists of all functions f €
L for which ' '

Hf“BMO([G,l)Z) = S'ég |(Ban!f — En,nﬂz)l/znco < 00
n

It is easy to see that

1 1
(3) I llBmogo,1y2) = sup (E g ‘f "R j! fdx

where the supremum is taken over all dyadic cubes.

2 1/2
dA) )

3. Inequalities concerning two-parameter Walsh—Fourier series.
First we introduce the Walsh system. Every point € [0, 1) can be written
in the following way:

o0
5
s oL
In case there are two different forms, we choose the one for which
limk_.w T = 0.
The functions

0Lz, <2, iichN.

rn(m) = exxp (120 —1)

are called Rademacher functions.

(n € N)
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The product system generated by these functions is the one-dimensional

Walsh system:
== H Tk (.’L’)nk,
k=0

where n = 3 oo k2", 0 < my < 2 and ny € N,

The Kronecker product (wym;n,m € N) of two Walsh systems is sajd
to be the two-dimensional Walsh system. Thus

Wy, 'm.(m y) = wn( )wm(y)'
Recall that the Walsh Dmchlet kernels

'n V= Z W 'n, = N

k=0
satisfy

M if g € I(0)
4 Dan = n !
W () {0 if 2 € [0,1)\ I (0),
and
(6) Dy = w, Z Nyt Dax

k=0

for n € N (see Fine [8] and Schipp, Wade, Simon and P4l [16]).
If f € Ly then the number

f('n, m) = E(fwn,m)
is said to be the (n,m)th Walsh-Fourier coefficient of f (n,m € N). Let

us extend this definition to martingales as well. If f = (fi 4,k € N) is a
martingale then let

fln,m) = lim Blfijwam) (nmeN).

Since wy, 4, is Fp p-measurable for n,m < 2%, it can immediately be seen
that this limit does exist. Note that if f € Ly then Ej4xf — f in Ly norm
as k — o¢, hence

Flnm) = Tim B((Bupfhonm)
Thus the Walsh-Fourier coefficients of f € L; are the same as the ones of
the martingale (Ey i f, & € N) obtained from f,

Denote by sy, 4, f the (n,m)th partial sum of the Walsh-Fourier series of
a martingale f,

(n,m, k € N).

8n, mf

'IE
=
iyl

-
Z k Z)wk.;.
=0
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It is easy to see that ggn an = fin (n € N). Obviously,

Sn mf(m y) (f* (D’ﬂ» x Dm))(m,y)

11
:=fff(t,u)Dn(m-ﬁ—t)Dm(y%u)dtdu
00

in case f € Ly, where + denotes dyadic addition (see e.g. Schipp, Wade,
Simon and P4l [16]). The nth partial sum in the first variable of the Walsh-
Fourier series of f € Ly is defined by

1
(6) shf(e,y) = [ f(t,y)Dale +t)dt.
0

The operator s2, is defined analogously. Of course, s, m =
also use the followmg notations for n,m € N:

sts2 . We shall

1
Safle,m) = [ s (@ u)wn(u) du
(") B
Enfny) = [ o f(ty)wn(t) dt.
[y

The main result of this section is the following

THEOREM 1. Assume that @ > 0, 0 < p < 1 and f s an arbitrary

martingale from Hy([0, 1)2). Then there exists a constant Cyp depending only
onp and o such that

: i )
1 [l sk, Ef“p
up (i) T <Ol e

2T g S5
(k)< (n,m)

where [p] denotes the integer part of p and (k,1) < (n,
and I < m,

m) means that k < n

We remark that for p > 1,

® Istatlls < Collflly (k1 € N).
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Note that the symbol C may denote different constants in different contexts.

In the proof we follow ba&.mally the idea of Simon [17] and verify first the
next lemma.

LPMMA L. If ais a p-atom (0 < p < 1) with support B = I x J and

[I| = |J| =275 (K € N) then

@) llsnmely < Cp+ C},K{f’] f|372n“(“; y)|P dy
o+ Cp K] f |Bralz, m)|? dz + C,K2F|G@(n, m)[?.

Proof. We may suppose that I = J =
definition of the atom,

00) [ [ louml xSRI [ [ ot an)”
00

(0,27%). By (8) and by the

rJ
Scp\ffl_p/zmlmpm(IIMIE‘D\) <0,
T

J
Let @ € [0,1)\ [ =: I°. In this case Dox(x + ¢)17(t) = 0 for k > K (see
(4)). Recall Lhat W (2 1) = wy (2)wn(t) and wor (2 + 1) = won(z) fort € I
and k < K — 1. Using (4) and (5) we obtain

S'ﬂ,ma(m: 'U) = j L2 (t y)D?'L(:‘U 4_ b} di
I

[0
= f wn (2 + ) Z s (2 ++ ) Dor (2 + t)s7,a(t, y) dt

I k=)
K1
= wy, (1 Z Nk (2 j Daow (4 )82, a(t, y)wn (t) dt
k() f
k()

(t, y)wn () dt,

!
-
=

—
=]
S
M= i
=
B
£
n
4

w(@)2" [ sha

Fesl} I

where k(z) devotes the maximwm of the indices & = 0,1,. — 1 for
which ng (x4t) =2 incawet € I.Ifz € [275,(j + 1)2* ) then
9~ h(z) > (j+1)27K. So

2K 1 (fa1)2m ¥

f|aﬂmam"t\pdm<§: f

F=1 32—4{

|Sn,'ma'($= y)|P dz
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2¥ 1

< G Z 2~ K QP 5E aln, )P

281

6 3 NP8 a(n, y)|”

<G Kp] iBma(n, y)I7.

Integrating over J we get the second term on the right hand side of (9).
Integrating |5y ma(z, y)[F over I x J¢ we obtain the third term.
We can show with the same method that
k(z) 1(y)

() = ol (y) 3 Y iy () ()2428(n, m)

k=0 1=0
and
.f f |Sn,ma(m,y)1p drdy < GTJKQ[M la(n, m)|*. -
IL‘ JC
Proof of Theorem 1. In addition to Theorem A one can prove that
o0
(11) Flk,1) = Z;,Ljﬁj(fc !
=0

(cf. Weisz [25], p. 86). From this it follows that

o0
[lseafPar €3 luglP [ lsipad [P

[0,1)2 J=0 [0,1)*

Because of this and Theorem A we only have to prove that

1 {») lskal?
{12) sup (—--———) Z =L <G
nom>2 \lognlogm g/ (ki)
(k) &{n,m)

for every p-atom a.
Let @ be an arbitrary p-atom with support I x J and |I| = |J| = 2~k
(K € N). We can suppose again that I = J = [0,27 Ky, Tt is easy to see that
Ak, 1) = 0 if k < 2% and I < 2%, so, in this case, ska = 0. Therefore we
can suppose that & > 2% or I > 2%, Choose r € N such that r —1 <o <7
It k > 2% then, by the hypothesis,

[>2~0f > ol

We can assume the same for n and m. Hence

T . ,
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1 [p]
(13) (log nlogm) Z

(kI)2-—r
2-0 g o/l
(k)< (n,m)

1L\ s ns ally
< u
- (10g nlog m) Z Z 2=p "

L=l - r,;gl(r

|55

We use Lemma 1 to estimate the right hand side of (13). First we consider
the second term ou the right hand side of (9). Since 25~" < n, we have

[p] n .
Fal fJ |‘gl alk,y)|P dy
C (logn log m) Z Z K (kl)2-»

R U e

1 o] m 1
SGP(IOgm) Z 72—p Z k2--p f|3£‘1 (k)P dy

lawQ K =1 b= K —r

c 1 (o] m 1
p(logm) ]Z 2—r

fom QI 1

n L-p/2 n
(2 H) (S ([ a)”)"

howa Q- ke K -1

IA

By Hilder’s and Parseval’s inequalities,

n ., 1 T
Z (f|‘§;za(,ﬂ,y)|pdy)2”’52~K(1wp/2>2/pf Z 3Pak,v)|* dy

kesf-r F 0 k=mokK-r

11
< o 2K eHE [ [ 52a(z,y)? do dy.
0 0
Applying (8) for one dimension and for a fixed = and the definition of the
atom we can couclude that
n

>

k=Ko

ot ‘ iy
SPath,y) " dy)

11
< g /ptK f f |a(m,y)}2dmdy§22""/p“x.
a0

The inequality
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implies that

(14) C(lognlogm)m Zn: Z

k= 2!& el 21’(—7"

1 o] m™m i
[P
< Cp(logm) [“2};’ Ja-p = Cy

fJ |3t y 1;7 dy
(k)27

(14) can be proved similarly for the first and third term of the right hand
side of (9). For the fourth term we have

bl n (k, 1)|P
1 2fp JJ!‘C" 1)
— E E K (]

(15) Gp(lognlogm) o

2 —-p
=Rt QK-

( DI )1 m( ﬁj ;illfi(k,ﬂ)\z)”/z

=K = =g K-

< 0,27 0-p/2) f j la(a, y)|* de dy < C).
00

Combining (14) and (15) we have verified (12) and also Theorem 1. =

In the one-dimensional case the following corollary was shown by Simon
[17] for the Walsh system and recently by Gét [11] for the Vilenkin system.

COROLLARY 1. If f € Hy([0,1)?) then

__....]:......._._ Z M —_ 0 as n, T —r oo,
lognlogm kl

2oL 142

(k) s(n,m)

Proof Forevery £ > 0 there exists N &€ N such that | f— fvw | mo.0%)
<. Since fi,n is a Walsh polynomial, sy fv v = fvn if k and { are large
enough. Theorem 1 implies

1 sk f = £l
logn logm Z ki
el /g2t
(k)< (nym)
1 3 sk f = anufun
~ lognlogm ki
gLk /g2
(kg (nom)
o+ 1__._1_____ T sy fan = Fvnls
ognlogm kl
2" <k /l€2*

(k)= (nym)
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1 > [fxy = £l
lognlogm k!
2L /142"
(k,t)&{n,m)
‘B ) +e< GpE

if n and m are large enough. =

Another version of the following Hardy-Littlewood type inequality is
given in Weisz [24] for two-parameter Vilenkin-Fourier coefficients.

THEOREM 2. For every martingale f € Hy([0,1)%) (0 < p < 2) we have

k1
> <t

g R/l
where Cp depends only on p and a.
Proof For 0 < p < 1 the inequality can be proved with the same

method as Theorem 1. For p = 2 it is the Parseval inequality while for
1 < p < 2 we obtain it by interpolation (cf. Weisz [25]). n

We now formulate the dual inequalities to Theorems 1 and 2. The first
one is a Marcinkiewics-Zygmund type inequality for the BMO{[0, 1)) space.
The Marcinkiewicz Zygmund inequality for Ly(l.) spaces can be found in
Zygmund [30] (Volume 2, p. 225), Garcia-Cuerva and Rubio de Francia [9]
(p. 496) and also in Weisz [27].

THEOREM 3. If ¢&* (27¢ < k/1 < 2, k,1 € N) are uniformly bounded

then
1 Z s;c,gg"‘”!
log nlogm kl

-y <'r"/‘)<2cx
(k N<(n,m)

Proof. The duality of Hy([0,1)?) and BMO([0,1)*) yields that

1y sg9™"
logn logm il
g7 08 PREPIYIE e

<C s e

sup
n,m>2 el flCan

BMO([0,1)%)

BMO([0,1)%)

(ko) (nam)

1 seag™t L
< B T F AL
=¢ T flognlogm Z !

a0 =t Dy g3 2o k/Ign®
J&ly (.)€ (nym)

Since

Jooragtran=" [ suafo*da

[0,1)* [0,1)2
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Theorem 1 implies

1 sk},tgk,t
lognlogm Z kl

2Tk /ig2® BMO([o,1)%)
(k)< (nym)
<C sup 15‘—510——7,; > %Hsk,lfﬂlngk’”ho
191 2z, go,3, 51 1OBTHIOBTE o i ene
Fela (k) < ()

<€ swp g

2-e <k /I<2e

TeEOREM 4. If kllagy| (27% < k/1 < 2%, k,1 € N) are uniformly
bounded real numbers then

Z ﬂk,lwk,l‘
B

e <kl

<C  sup  kllag,l
MO([0,1)2) PREP A YIRS a1

Proof. Similarly to the previous proof,

Qp W
> kil k’IHBMO([O,l)E)

2= k1< 2n
<C  sup ‘ ff >

ok, 1 Wk, X

e o1y 2-e gk /12
}’ELz [0 b? SHAS
<C sup Z |fgil|kl|
ey o, 2y2y <3 2-e Lk /I<o
eLy
<C  sup £y sap Kllag,| =
15 5 o, 1y S mesk/igan
Jely

Note that this theorem was shown by Ladhawala [13] for one dimension.

4. The classical Hardy space H,(T?). Set T := [~, ). In this and
the next section we denote L,(T?, A) also by L, and we assume again that
Jp Fdx=0for f € Ly.

Let f be a distribution on C°°(T?) (briefly f € D/(T?) = D'). The
(n,m)th Fourier coefficient is defined by f(n, m) 1= fle™*™®e™"™¥), where
1=+/~1 and n,m € Z. In particular, if f is an integrable function then

fln,m fff( TINT VY dr dy.
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Denote by $n,mf the (n,m)th partial sum of the Fourier series of a distri-
bution f,

Ty

dn, mf Z Z fkl ke gily ('T?;,’TTLGN).

fen lm—m

For f € D and t > 0 let

w(@, y,t) = (f * P)(2,y),
where * denotes convolution and

o O
‘ i/EITT e
Pyle,y) = Z Z ¢~ tVRTETT prhly (z,yeT)

Rzme o) (=t

ia the Poisson kernel, It is easy to show that u(z, y, t) is a harmonic function
and

o2} (=0
w(zy,t)= Y flk e VFRghetdy (45 )

fomm 0 Lm0

with absolute and uniform convergence (see e.g. Stein and Weiss [21] and
Edwards {5]).

Let I'; be a cone with vertex at the origin, i.e.
Ty o= {(2,9,0) : Va2 + 12 < at}.
We denote by I, (,y) (2,y € T) the translate of I, with vertex (,v). Set
To(z,y) U Il (% + k2, y + 127) N (T2 % (0, 00)).
kIEE
The non-tangential maximal function is defined by

iz y) = sup u(z', v ) (a>0).
{z" ' )€l ()

Now we define the Hardy space analogous to H,([0,1)%). The space

H,(T%) (0 < p < o) consists of all distributions f for W‘hlch up € Ly;
we sel;

Hf“n,,('n‘ﬂ) P H"‘l"“'p‘
For 0 < p < oo Fefferman and Stein [7] proved the equivalence
g llp ~ lutlly ~ ¥ fls (o> 0),
where
w2, y) 1= sup fu(z, v, t)].
>0

It is known that if f € I, (0 < p < 00) then f(z,y) = limyp u(z, y, 1) in the
sense of distributions (see Fefferman and Stein [7]). Recall that H,(T?) ~
Ly for 1 < p < 00 (see Fefferman and Stein [7]). The space H,(T?) was
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investigated by Stein and Weiss [21] (p. 283), Sledd and Stegenga [18] and
recently by the author [23].

A generalized interval on T is either an interval IcTorI=[-mz)U
[y, 7). A generalized cube on. T is the Cartesian product I x J of two gen-
eralized intervals with |[I| = |J}. In this case a bounded measurable function
a is called a p-atom if there exists a generalized cube K such that (i) and
(iii) hold and, morecver,

i alz, y)e™y® dudy = 0, where o, f € Nand a + £ < [2(1/p~ 1},
the integer part of 2(1/p — 1).

186 F. Weisz

In this case the atomic decomposition was proved by Latter [14] and
Wilson {28].

THEOREM B. A distribution fis in Hy (0 < p < 1) if and only if there
exist a sequence (ay, k € N) of p-atomns and o sequence (jx, k € N) of real
numbers such that

o0
(16) Z ppar = [ in the sense of distributions
k=0

and the second inequality of (1) holds. Moreover, the equivalence (2) is also
true.

5. Inequalities concerning two-parameter trigonometric-Fourier
series. In this section we show the analogues of the results of Section 3.

THEOREM 5. If @ > 0 and f € Hy(T?) then there exists a constant C
depending only on o such that '

1
S —_  ———
ngg lognlogm

suflis

Z '“—"Wi‘ £ Clfll aaerey-
27 Lk L2

(Rhi)S(n,’m)

Asg in the proof of Theorem 1 we again need a lemma.
LeMMA 2. If a is a 1-atom with support R=Tx J and 72~ E-1 < || =
|7| € #27% (K € N) then

A7) [snmels <O+ CK( [ (Ghalnv)|+ [8hal-n1)]) dy
2J

+ [ (1Fha(z, m)| + [Baale, —m)!) da
21

+ [ (3(n,9)] + [@(-n,y)1) dy
2J

Walsh-Fourier and trigonomelric-Fourier series

+ [ (@@, m)| +

2

- CE([a(n, m)] + [i(~n, m)

187

(e, ~m)|) dz )

+ [@{n, —m}| + [@(~n, —m)],

2., 2l - - -

At yale,m), §2a(n, y), @(z,m) and &(n,y) are defined analo-
gously to (6) and (7), and 21 is the generalized interval with the same center
ws I and with length 2|1].

where sLa,

Prool The integral of [s,,ma| over 21 x 2J is bounded by C as we have
geen in (10).

We can suppose that the center of R is zero. Again,
8 -
(1 ) Sn,'m,f"(w: y) = ;r“ j sm.a(t:y)pn(m - t) dt,
I

where the Dirichlet kernels D, are given by

g N)

(see e.g. Torchinsky [22] or Zygmund [30]). First we investigate the integral

f a2 alt,y)Dh(x — 1) dt

7

sinn(z ~ t)
x -t

oy i
I

. . 1 1
-+ s.‘",a tyy)sinn(z~t -
}f 2 ( ) 2tan(z ~1)/2  x~t

dt = (4) + (B),

where the modified Dirichlel kernels D} are defined by

o (f) =] Dy ([’) + Dﬂ(t) o= sinnd
2 Ttan(t/2)

{(n € N).
Since CETO I L € Lo and (8) also holds in this case, we conclude that

w0 [ fumase ff

(2e 2 20 r

502”’*’( [/ |a(t,y)|2dtdy)l/2_<_,6'.
™ T

s2.a(t, )| dt dy

Fort e I and « & 21 we have [t/z| < 1/2, so
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o0 k
sinn(z —t) ¢
() = [ shalty) =, 2(5) @
; k=0
) sinn{z —t) " 1 f 2 a(t, y)t" sin n(w —t) dt
=f Sma:( ,J) . d +Z$k/+1 T ¥ 5
7 k=1 I
=(C)+ (D)
Hence
@ [ [uolas [ j‘T—w [ Shatty)e ds| du dy
(2I)" 2J (21)% 2J 1
j‘ t f alt,y)e™ clf‘ dr dy
()" 2J I

n,y)ldy+ CK [ [82,a(~n,y)|dy.
2.7

Ift e I and z ¢ 2T then |z] > |7} and |¢] £ |I|/2. Consequently,

@) [iDNa

(2I)° 27
o I T
< S EHE 11t laa
k=1 2 r

Oii(ff |s2,a(t )|2dtdy>1/2|”1/2u‘1/2<C‘
k*Ika o I mah Y =

Since Dy (t) — D (t) = 3 cos(nt), we have

J shalt.v)[Dale — 1) - D}z — )] dt

<CK [ [8nal
2J

IA

A

I
____}i fanﬂ(ﬁ,y)[(’,m(m*'ﬁ)-{-Bmin(m’t)}dt.
I
Therefore
(22 f f‘fs a(t,)[Dn(z ~ 1) ~ D (@ — )] ds de dy
(21)¢ 2.7

<Ofws a(n ,y)\dy+oj| 2 a(—n,y)|dy.

Combining (18)-(22) we can estabhsh that the mtegml of |sn,mal over
(2I)® x 2J is bounded by the right hand side of {17). The same holds if
we integrate |snmaj over 21 x (2J)°.
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Ohviously,

a(t,u) Dy (z —t)D2 (v — u) di du

B

e

1
Sn,m“(xny) =3 f
I
1

+ a(t,u)[Du(z ~ t) — D} (2 — 1) D (y — u) dt du

T

"‘-1{__1
e

1
2

H-«;_:

f a(t, u) Dy (2 ~ ) [ Dy ~ u) — DX (y — u)] dt du
J

=

ffabu a{® ~t) = Di(x — )] [ Dy (y — 1)
Ly

Sy - )] dt du.

Now the integral of ].ﬂﬂ,ma| over (20)° x (2J)° can be calculated by the same
method as above. The details are left to the reader.

Proof of Theorem 5. In this case (11) follows from the L;-con-
vergence of the series in (16). So we have to prove the theorem only for
1-atoms.

Let a be an arbitrary l-atom with support R = I x J and 72~ %~1 <
[I| = [J] € 727 (K & N). We can suppose again that the center of R is
zero. The proof of Theorem b is more complicated than the one of Theorem 1
because, in this case, a0 % 0 if k < 2% and I < 2%, Clearly,

l|swal: HSLtaHl HSkraHl
2 WS 2 +ZZ :

2‘“5&/!52“ 2‘—&5;(:/‘!52:\ k=2K—7 [moK—r
(k)< (n,m} (#,0) (2% An, 27 Am)

Using Lemma 2 one can estimate the second term on the right hand side
divided by lognlogm by a constant depending only on « in the same way
as in Theorem 1. We will estimate the first term Wlth |8nually replaced by

K [, |8talk,y)| dy, K [, [k, y)| dy and EK*[a@(k,1)]. The other cases are
all similar,

Since | D] €1+ 1/2, we have

. 1 2.
2ol )] = = m —w)dt| < 21t
stato, )] = 2| [ ot Dily = < 2o

and so

[ 18%ak, )| dy = [ | I s?a(my)e“’“"“”d:u[dysczz"ff.
2J PF
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Hence
_____1 Z ng ’s.', (k,y)| dy
kll
lognlogm Ny I
UM:")S(QK/\‘H,EKATn)
OKQ"K 1
< .
~ logn Z %
ATEL /LR
(]k],l)ﬁ(QKAn,QKA,m)
As k2% <1 < k2%, we conclude that
. |3talk,y)| dy
ﬁwﬂ_ ) s #Ik(ll y)| dy
ognlogm ey
(I], < (25 An,25 Am)
CK2-—I{ 2% Am 1 . CKI- K(QK /\n)
< Zk(2¥—27%) <

If n > 2% then the last term is bounded by C. On the other hand, the

function z/ log z is increasing whenever & > e. Therefore n/logn < C2%/K

if n < 2%, which yields again that the corresponding term is bounded.
One can verify similarly to (23) below that

J 1@k, y)l dy < Clkj27
2J

So the proof for the expression [, [@(k, y)| dy is the same as above.
Finally, using (23) for p =1 and L = 0 we obtain

lognlogm | |2l
27 k| /1] g2™

(|B| DL (2™ An 2% Am)

CK?2 3 I I+ |

~ lognlogm [¢] \kl

)

=

2L k| /|1 2%
(RbiT<™ An2% Am)

CK? |
g —Z =i,
~ lognlogm Z k
27 <y 1435
(k)25 AR, 25 Am)

If m > n then this is bounded by
QKK T OR29-K(2K A p)

SR —— <
(logn)? kgl ¢= (logn)?

icm
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If n > 2% then this term 1s bounded by C. The function z/(logz)? is
increasing whenever = > e”. So n/(logn)? < C2%¥ /K2 in case n < 2%,
which shows the boundedness of the last term if m > n. I n > m then

L @k, 3}
[ — }'{'2 »
lognog 2 .

(kLI SEY An2% Am)

L CK?9X 22"”’ JQZ CK227K (25 A m)
= (logm)? = e k s (log m)?

The boundedness of this expression can be shown as above.

Note that Theorem 5 cannot be proved with the same method for 0 <
p<l1,

Since the trigonometric polynomials are dense in H 1{T?), one can show
the following result in the same way as Corollary 1. Corollary 2 was proved
by Smith [19] in the one-parameter case.

COROLLARY 2. If f € H(T?) then

L lI8%4f — fllx
lognlogm Z TR T — 0 asn,m — oo
2 L LD
("“J)S(n,m_)

Now the analogue of Theorem 2 is proved.

'THEOREM 6. For every distribution f € Hp(T?) (0 < p £ 2) we have

Flk, 0l
R Y ST

2o gkl /|| g2

where O, depends only on p and o,

Proof. First we show the inequality for 0 < p < 1. Since the series
in (18) converges in the sense of distributions, it is sufficient to show the
theorem for p-atoms.

Let @ be an arbitrary p-atom with support B = [ x J and #2-%¥-1 <
[l = |J| < m2-% (K ¢ N). We can suppose again that the center of R is
zero. Agaln,

atk, i’“ [atk, O = o Fﬂ [atk, HP
7 < Z | lzwp Z Z IR
2-e gk /|l S2e 27 <kl / (1) 59 {fe]m2Kr | Rmr

(&l Iy (2™,27%)

The second term on the right hand side can be majorized by a constant
depending only on « in the same way as in Theorem 1. To estimate the first
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term, observe that

Gk, )| (z, y)e "=+ dg dy

"HL__.‘
ML,_:

27r)

L
i -

J:

by (i'), where L < [2(1/p — 1)]. Therefore

. ka + ly| =1
Bk DI < C [ [ late,yEEti s
I J

T+ 1) dz dy,

which means that
(23)  [@(k, DP < CplRPEAD|I|PETD=2 4 @ P41 [pE+3)-2,

Consequently,

la(k, )P fp(Lt1) | |p(L+3) -2
e
2 wpr = 2. (k1)2-7
27 <{k|/|i|<2* 2= <k/1L2™
(k1< (2,25) (k1< (2% 2F)
Ep(L+1)
—-K(p(L+8
s C 2 i R Z fpd—2p
2T <k U2
(k1) £(2% 2%)
21’\'
< Cp2-Kplit3)- 2)ka(ns) <0,
k=1

whenever p(L + 3) — 2 > 0, but this is true if we choose L = [2(1/p — 1)].
The proof of Theorem 6 is finished if 0 < p < 1, For 1 < p < 2 we get the
theorem by interpolation (cf, Fefferman, Riviere and Sagher [6]). =

The BMO(T?) space is defined in this case also by (3), however, the
supremum is now taken over all generalized cubes. Fefferman and Stein [7]
verified that the dual of Hy[T?} is BMO(T?),

The dual inequalities to Theorems 5 and 6 are given without proofs since
they can be proved sirnilarly to Theorems 3 and 4.

THEOREM 7. If g™ (27 < k/1 < 2%, k,1 € N) are uniformly bounded

then
1 Sk lgk’!
SUp |} e e <C  sup oM
nm>2 || log nlogm Q_QSZk/:lSQQ kb ismoqms -0 <k /100 ®

(k< (n,m)
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THEOREM 8. If |kl| - lapa| (27 < |k|/|l] € 2%, k,1 € Z) are uniformly
bounded real numbers then

2-e <kl /|1 <2¢ BMO(T*) 2-a <[/l <2
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Hilbert space representations of the graded analogue of
the Lie algebra of the group of plane motions

by

SERGEI D. SILVESTROV (Umed)

Abstract. The irreducible Hilbert space representations of a #-algebra, the graded
analogue of the Lie algebra of the group of plane motions, are classified up to unitary
equivalence.

1. Introduction. In this article we will study representations, by self-
adjoint operators in a Hilbert space, of & certain generalized Lie algebra, the
graded analogue of the Lie algebra of the group of plane mations.

For the past twenty years, generalized (coloured) Lie algebras have been
an object of constant interest in both mathematics and physics (see for ex-
ample [2-5, 8-10] and references there), When such an algebra is endowed
with an involution. #, we get a *-algebra, and it is an important and inter-
esting problem to describe x-representations of this x-algebra.

It is well kmown that representations of three-dimensional Lie algebras
play an important role in the representation theory of general Lie alge-
bras and groups. Similarly, one would expect the same to be true for three-
dimensional coloured Lie algebras with respect to general coloured Lie alge-
bras.

The representations of non-isomorphic algebras have different structure.
It is a simple and attractive idea to start by classifying, up to isomorphism,
all coloured Tie algebras and then to describe representations of one rep-
resentative from each isomorphism class. Unfortunately, the clagsification,
up to isomorphism, of all coloured Lie algebras turns out to be a hopelessly
difficult tagk, in the same way as it is already for Lie algebras, Thus, the
idea does not work in the general case.
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