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RNP and KMP are equivalent for some
Banach. spaces with shrinking basis

by

GINES LOPEZ and JUAN F. MENA (Granada)

Abstract. We get a characterization of PCP in Banach spaces with shrinking basis.
Also, we prove that the Radon—Nikodym and Krein-Milman properties are eguivalent for
closed, convex and hounded subsets of some Bénach spaces with shrinking basis.

Introduction. We begin by recalling some geometrical properties in
Banach spaces (see [3]-[5]).

Let X be a Banach space and let C be a closed, bounded convex and
nonempty subset of X. _

C is said to have the point of continuity property (PCP) if for every
closed, bounded and nonempty subset F of C, the 1dent1ty map from (F
weak) into (F, || ||) has some point of continuity.

' is sald to have the convez point of continuity property (CPCP) if for
every closed, bounded, convex and nonempty subset F' of C, the identity
map from (F, weak) into (F,| ||) has some point of continuity.

C is said to have the Radon-Nikodym property (RNP) if for every mea-
sure space (2, X, 1) and for every H- -continuous vector measure F : 2 — X
guch that

F(A)/u(d) € O VA€ D, u(d) >0,
there is f: £2 — X Bochner integrable with

ffd;,a VA € L.

C' is said 1o have the Krein-Milman property (KMP) if for every closed,
hounded, convex and nonempty subset F' of C, we have

= To(Ext F),
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12 G. Lépez and J. F. Mena

where To denotes the closed convex hull and Ext F denotes the set of extreme
points of F'.

Finally, we will say that X has one of the properties above if By, the
closed unit ball of X, has it.

Lindenstrauss showed in [11] that RNP implies KMP for every closed,
convex and hounded subset C, and the converse is an open problem, There
is an affirmative answer in some particular cases (see [4], [5], [8] and [12]).

Recent papers in this direction work with some decomposition in the
Banach space, as Schauder basis, finite Schauder decomposition, ete. (see
[8] and [12]). Furthermore, these decompositions are unconditional. For ex-
ample, Schachermayer showed in [12] that RNP and KMP are equivalent
for Banach spaces with an unconditional basig. This is deduced from the
equivalence of RNP with KMP and CPCP.

It is known that PCP and CPCP are not equivalent. An example of this
can be seen in [1], where it is shown that a convex, bounded, closed and
nonempty subset of ¢y (sequences with limit zero) has CPCP but not PCP,
Furthermore, this subset is “universal”, in the sense that it is contained in
every closed, convex, bounded and nonempty subset in ¢ failing PCP.

This note is inspired by the aforementioned paper by Argyros, Odell
and Rosenthal [1}. In fact, we will construct a family of closed, convex and
bounded subsets in any Banach space with a Schauder basis; the family is
defined in the same way as the “universal” subset of ¢y failing PCP in [1]. As
a consequence we get the equivalence of RINP and KMP in a class of Banach
spaces X with shrinking basis {e, fn}, which share with ¢; the following
property: _ ' '

Az e X :.limb.ﬂs’“f(fﬂ =0} C X.

In fact, this condition only depends on the basis of the space and it can be
stated in the foilowmg way:

Whenever ¢;’s are such that

™ .
chﬁj“ < o0 with¢; — 0, then Zajej Converges.

In the sequel, X will denote a Banach space w1th a Schauder basis {e,}
and associated functionals {f,} (see [10]).
Let I' = N™ U {ap}. That is, an elerent of I is a finite sequence of

natural nurobers. and ap denotes the empty sequence. |a| will be the length
of o € I and we put |ap| = 0.

We define an order in I” by
a8 i o <|fland oy =65, 1<i<]al, |
for all &, 8 € I'\ {a}, atid o < afor all o € I Then I is a countable set
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with a partial order and a minimum element, o, and so there is a bijective
order-preserving map 7 from I into N.

For every « € I, lat &, be the element of X given by

o b EvSe,
f2(za) = { 0 otherwise,

where fo = fr(q) for @ € I'. Define A =@0{z, : & € I'}. Then 4 is a closed,
convex and nonempty subset of X. This construction is analogous to that
of [1] for cp.

If {wn} is & basic block of {e,}, with the same construction we obtain
a new cloged, convex and nonempty subset of X which we will denote by
Ay, 3 Thus, we have a family of convex, closed and nonempty subsets of X

Finally, it is easy to see that

A= {2 e X" fuyle) =1, 3 fra(®) < fulo) Vo€ T},
i=1

where Xt ={ze X : fo(r) 20Va e I'}.

Also, we define (X**)t = {z** € X*™* : 2™*(fn) = 0 VYn € N}.

In general, Ay} is not bounded (for example if X = ly).

Without loss of generality we can suppose that the basis {e,} is mono-
tone and normalized.

Main results. The following theorem is a generahzatlon of Proposi-
tion 2.3 of [1] with an analogous proof.

THEGREM 1. Let X be a Banach space with ¢ Schauder basis and let K be
o closed, convex, bounded and nonemply subset of X failing PCP. Then there
is a semi-normalized basic block {v,} (i.e. O < inf ||vn|| < sup [[un]| < 00),
closed subspace Y of X, a subset F' of K with F CY and an isomorphism
T:Y — X onto its image such that T(F) = A, - .

Proof. By [3], we can find a nonempty subset A of K and & > 0 such
that every w-neighborhood of A has diameter at least &.

Let ug show that there is a subset {ar : m € N} of 4 such that {u; :
7 & N} is a basic sequence of X equwalent to some basic block of {e,} (the
basis of X)), where

Uj = 05~ Gr(rei()=) Y > |
) € 1\ {ag} and n > 1, while

Ul = a1,
and a— = (..., 0p-1) if a'= (al,..
o— = ¢ otherwise.

For this, lot g; = 62~ (41} for 5 @ N, We construct by induction, mtegers

g = (< 1y <:'rn2,< cand v v, nguah that. .. . o
lug|l > 6/2, |lvy - uﬂ|<83, v,éhu{e; T — 1<z<m3} VyveN
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(see [B]). We know that diam(A) > 6, and so there is o3 € A such that
lay|| > 6/2. Let mq € N with [ ay1)(m,,+00)|| < €1 and define v1 == ay|{1,m,]-
Now, suppose n > 1 and ag,...,0, and m, have already been con-
structed. Set ¢ = 7(t7" (n+1)-), « =77 (n+ 1)~ and § = 77 (n + 1).
Then o < A, and so ¢ < n + 1 because T is order-preserving. Thus, g, is
constructed.
Let &€ = gp41/2 and

V={acA:|filai—0a)| <e/mu, 1 <7< my}.
Then V' is a w-neighborhood of a; in A and diam(V') 2 §. Therefore there

18 ant1 € V with |ang1 — il > 6/2 and Un41 = O — a4
If now M1 > My and {[Un g [imeg40,400) || < & We put

Un+l = un+1|(mn1mrl+1]'
Then ||uns1i > 6/2 and '

l|ltnas — 'Un+1H = ” Zf.? (tn+1)ej + Z Ji (un+l)33”

J=mpgy 41

<E“‘+’"Z“'—‘—‘ ~2;‘.’.'——5'37-,,4..1
j=1
and the inductive construction is complete. _
Define F' =to{a, : n € N}, ¥ =lin{uy, : n € N} and

o = Ur(a), Oo = Gr(a); Vo= Ur(a) Vo€l

By the above construction there is an onto isomorphism T : ¥ — X such
that T'(T.) = Ty for e € I'. By definition, Ty, = Goy and Ty = By = Gge
for all @ € I" with & # op. Thus, @, = Zwsaﬁy forall eI and F CY.

Furthermore,
=3 I(@) =Y 7,

| y<e TEe
But by the definition of Ay, 1,

.’Eg.‘ = Z'@Y € A,y Yaell
Yo
Thus T'(F) =

A{Un} and, in fact, F' C €0(A) C K, and the proof is com-
plete. w .

COROLLARY 2. Let X have a shmnkmg basis {en}, and suppose X fails
PCP. Then there exists a semi-normalized basic block {vn} so that A{u } is
bounded and fazls PCP.
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Proof. In Theorem 1 we obtain

Bl < 22

V1< i<, neEN,

i
and {u,} is bounded 5o {u,} — 0 weakly because the basis is shrinking.
But @(q,i) = La + U(a,) for all @ € I' and ¢ € N, therefore

o) = o+ TUasy Vo€l Vig N

and {fge} converges weakly to @, as ¢ — oo for all @ € I,

Furthermore, [[@(q,s) = @al = ||u{ﬂ ol 2 6/2foralle € I'and i € N, and
we conclude that {@, : @ € I'} is a nonempty, closed and bounded subset
without points of w-|| ||-continuity. Then {zs : &« € I'} is a nonempty, closed
and bounded subset of Ay, } without points of w-|| |-continuity, and A,y
fails PCP. =

CoroLtary 3. (1) Let X be a Banach space with o Schauder basis. If X
fails PCP, then there is a semi- normalized basic block {vn} such that Agy,}

13 bounded.

{il) Let X be o Banach space with o shrinking basis. If there is o semi-
normalized basic block {vyn} such that Ag, y is bounded, then X fails PCP.

Proof (i} This is a very easy consequence of Theorem 1.

(ii) Set @(a) = o -+ V(a,) for @ € I' and 4 € N. Then {Z(a,n} converges
weakly to To as i — oo for all & € I" because the ‘basis is shrinking.

Now we normalize the basic block and obtain a subset without PCP
isomorphic to A, 3. m ‘

Remark 1. As a consequence we obtain a characterization of PCP in
Banach spaces with shrinking basis in terms of the basis. The foilowmg are
equivalent: :

(I) X has PCP.

(I1) {3,<a ¥y t @ € I'} is unbounded for every serni-normalized basic

block {vn,}, where v = vr(y) for a € I'.

COROLLARY 4. Let X be a Banach space with a semi-normalized shrink-
ing basis {en} Suppose that whenever ¢;’s are such that

eJH < oo withe; — 0, then Zc:,e, converges

7.
Then I?NP am,d' KMP are equivalent. for nonempty, closed convex and
bounded subsets of X.

Proof. Let C be a nonempty, closed, convex and bounded subset of
X with KMP and suppose that ¢ fails PCP. By Theorem 1, there is a
semi-normalized basic block {vn} such that “dgy, € C™ Furthermore, as
in Corollary 2, Agy,) fails PCP; so Ay fails RNP:- A
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Now, let us show that Ay, ; is a face of /T{'”%} in X,
Let m**,'y** € ﬂv“}, te }0,1[ and
t™ + (1 - thy™ =z € Agy,).

We must prove that o™, y** € Ay, }-

Let {gy}, {fn} be the sequences of functionals associated with {v,} and
{er}, respectively. Then, by the definition of Ay}, we have x**(gn) 2 0
and y**(g,,) = 0 for n € N. Now we obtain lim, **(g,) = lm, y**{g.) == 0,
because limy, gn(z) = 0, and s0 limy, £**(fn) = lmy, y**(fr) = 0 since {v,}
is a basic block generated by a bounded sequence of scalars. Applying our
hypothesis with ¢, = 2**(f,) and ¢, = y**(fn) we obtain

o,y e ./I?Jn} nNX= A{vn}-
By 2] (p. 16, Cor. 6), Ay, } fails KMP and this is a contradiction because

“Agy,3 © C” and C has KMP,
Thus C' has KMP and CPCP, and so it has RNP, by [12]. =

Examples. Some examples of Banach spaces satisfying the hypotheses
of Corollary 4 are ¢ (null sequences), ¢ (convergent sequences) and J (James
space; see [6], p. 80). '

In. these three examples the conclusion of the above corollary s well
known. However, J is not a subspace of a Banach space with an uncondi-
tional basis. _ ' '

We finish this paper by exhibiting an example of a Banach space B which
satisfies our hypotheses and it has no unconditionally basic skipped-blocking
finite-dimensional decomposition (UBSBFDDY) (see (8]), so the equivalence
of RNP and KMP for every closed, convex, bounded and nonempty subset
of B cannot be obtained from [8, Th. 1.5] nor from [12, Cor. 2.11].

Qur starting point is the James tree space JT' (see [9] and [7]). This
space has a monotone, normalized and boundedly complete basis {e, }, with
associated functionals {f.}, so the closed linear span of {f,} in JT™* is a
Banach space, B, whose dual is JT', with a shrinking basis {#.}. The fact
that B satisfies the conditions of Corollary 4 is a consequence of [9, Th. 1]. It
only remains to prove that B has no UBSBFDD and for this, by [8, Th. 1.2],
it suffices to show that B fails to have RNP and that ¢y does not immbed in B.

The first assertion is in [9, Cor. 4] and the second one is an easy congequence
of {9, Cor. 1]. : ’
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