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Abstract. The malp result says that nondiscrete, weakly closed, containing no
nontrivial linear subspaces, additive subgroups in separable reflexive Banach spaces are
homeomorphic to the complete Frdds space. Two examples of such subgroups in £7 which
are interssting [rom the Banach space theory polnt of view are discussed.

1. Introduction. By the complele Frdds space £ we mean the following
dense subspace of £2:

& = {(ty) € 6% | Vi (b is irrational)}

(see [E] for a description and properties of the original (incomplete) Erd8s
space). It is known that the space £ is totally discomnected, completely
metrizable, one-dimensional and homogeneous. As observed in [DG] and
[ADG{, these properties are shared by some nondiscrete, weakly closed,
line-free subgroups G in Banach spaces F. Let us recall that the standard
examples of such groups in £2 are

Lym {(G) € 8 | Vi [(tfad) € 2]},

where @ == () 18 & sequence of positive reals which converges to 0. However,
there are exarples of nondiscrete, weakly closed, line-free subgroups in the
space ¢ which are zero-dimensional, Moreaver, & result of [ADG] states that
E admits such an example if and only if B contains a copy of o, It is then
reasonable to propose the following:
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CONJECTURE. Bvery separable, nondiscrete, weakly closed, one-dimen-
sional, line-free subgroup G of a Banach space B is homeomorphic to £.

On the other hand, it is known that the topological properties of £ listed
above are common for sets of endpoints of certain dendroids. In particular,
the set £ of endpoints of the so-called Lelek fan [Le] shares these properties
(for more information on Lelek’s fan see [BO] and [Ch]). In [KOT}, Kawa-
mura, Oversteegen and Tymchatyn have recently developed an important
characterization of the space £. Moreover, they have shown that the space
£ fulfills the conditions of their Characterization Theorem (see Section 3),
and consequently, £ is homeomorphic to £.

In the present paper we show that some nondiscrete, weakly closed, line-
free subgroups in Banach spaces also satisfy the conditions of the Character-
ization Theorem, and hence are homeomorphic to £ (or, equivalently, to £).
Our argument works for all nondiscrete, weakly closed, line-free subgroups
@ in separable reflexive Banach spaces. Consequently, every such ¢ is home-
omorphic to £. This provides an affirmative answer to Problem 3.4 in [DG]
and shows that the above subgroups I, are mutually homeomorphic.

We provide two examples of subgroups G in £' which show shortcomings
of our method; yet, using other means, we verify the homeomorphy of G and
£. Though the way of obtaining these subgroups is simple, the groups seem
to be interesting on their own. They show bhow complicated the structure
(from the Banach space theory point of view) of weakly closed, line-free
subgroups can be even in such a simple space as £°,

For the sake of completeness, let us say that the topological structure
of nondiscrete, closed, line-free subgroups dramatically changes when com-
pared to the structure of such weakly closed subgroups. Let us recall (see,
e.g., [DG]) that the group L2 = {z € L%(0,1) | z(¢) € Z a.c.}, the standard
example of an infinite-dimensional such group, is weakly dense in L?(0, 1),
actually, it is homeomorphic to €% (see [D, Theorem 3|}. That is the weak
closedness of a line-free subgroup in a separable Banach space which makes
the dimension of that subgroup <1 (see [ADG]).

- We are grateful to the referce for his excellent job; his critical report
allowed us to remove many inaccuracies from the previous version of the
paper,

2. Main Theorem and corollaries. Let (F, £') be a dual pair of real
vector spaces with the pairing
ExE' > (z,¢) — (z,¢6) € R
For nonempty subsets ¢ C E and I" ¢ E' define
T={zeE|V($el) ((z,$) € Z)}
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and
G = (¢ B |Y@eE) (z¢) e ).
We shall need the following stronger version of Theoremn 2.1 of [DG].

PROPOSITION 1, Let (B, E') be a dual pair of real vector spaces.

1) For any nonempty set G C E the set G* 49 an additive subgroup of E'
that 4 closed with respect to the E-topology. Moreover, G* is line-free (thot
is, O* contains no nontriviel linear subspaces) if and only if the family G
is total,

2) In cose G is an additive subgroup of B, the subgroup *(G*) is the
closure of G with respect to the E'-topology. In particular, *(G*) = G if and
only if G iy closed in the E'-topology, and G is dense in the F'-topology
provided *G = {0}.

Proof. The fact that G* is a closed subgroup in the E-topclogy is obvi-
ous. Since the largest linear subspace contained in G* is clearly ), ¢ o Ker(z),
G* is line-free if and only if G is a total family of functionals on E’. This
shows 1).

To show 2), first notice that *(G*) is a closed subgroup of F in the
E'-topology. Suppose now that « € E ia not in the closure of G with respect
to the F'-topology. There are ¢y,...,¢, € E' such that, if we write $ =
b1y Pu) t B — R, then ¢(z) is not an element of the closed subgroup
A(P(E)) of B™. It is well known that closed subgroups in R* are products
of linear spaces and discrete groups. Thus there exists f € (R™)* such that
F(@(z)) & cl(f((F))). Then, since f($(G)) is a discrete subgroup of R, we
may assume that f(P(G)) € Z and f(H(x)) ¢ Z. Now, for ¢ = f o B, we
have ¢ € G™ and ¢ () ¢ Z. This shows that z € *(G*). »

LemmaA L. Let F be o sepurable Banach space and let-E* be its dual.

) If G is a weakly closed, line-free subgroup in B, then there exists a
total sequence F' G G aueh that "F = G, '

2) If G is o weak® closed, line-frec subgroup in E*, then there exists o
total sequence F ¢ O C B such that F* = @,

Proofl, 1} It i enough to Aind a sequence &' C G* which is weak* dense
in G*. (This easily implies that F is total, and that *F = *(G*) =.G.)
The existence of such an I follows from. the separability of G* in the weak*
topology. Tn [act, G* is a countable union of the sets n.B*NG*, n=1,2,...,
where B* s the closed unit ball in the dual E*. The separability of E
implies that B* (and hence each n3*) is a metrizable compactum in the
weak™ topology.
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2) Set B! = E*, and consider (£, F) with the obvious pairing. According
to Proposition 1, G = (*G)* and *G is total. Since F is separable we can
choose a sequence F' in *G which is dense in the norm (and hence weak)
topology. =

If F = {¢:}2, is a total sequence of functionals, then z —~ (¢(z)) de-
termines a one-to-one, continuous, linear operator T of E into the countable
product of lines R*. The pull-back topology (via T 1Y on B will be called
the F-topology; clearly, this topology coincides with the wealk topology on
E generated by F. It is evident that the F-topology is metrizable, and
dz,y) = S, min(27%, |¢i(z) ~ d:(y)]) defines an admissible and transla-
tion invariant metric, We shall say that a subset A of E is relatively complete
{in E) with respect to the F-topology if every d-Cauchy sequence (@) in
A converges to some element x of F in the F-topology. To be precise, the
latter means that, if for a sequence (zn) C A, (¢i(zn)), as a sequence of
reals, converges to a real number a; for every i, then there exists x € £
such that ¢;(z) = @; for all 4. Observe that this notion actually does not
depend on the particular cheice of a total sequence {@;}52, 1 of functionals
which span the space span(F) (nor even on the metric d); it is a notion asso-
ciated with the uniformity determined by the F-topology (which obviously
is a linear topology on E). If we now consider the subgroup & = "F in E,
then G = T~*(Z°). Consequently, G is closed in the F-topology. It follows
that, in the F-topology, relatively complete (in E) subsets of G are actually
relatively complete in' G (with a definition of the relative completeness in G
sirilar to the above definition in ).

Here is our main theorem which confirms the Conjecture in case the balls
in €7 are relatively complete in the F-topology.

THEOREM. Let E be a Banach space and suppose we are given o total
sequence F of functionals from E*. Write G = “F for the subgroup gener-
ated by F in E, and assume thot norm bounded subsets of G are relatively
complete in the F-topology. If G is separable and nondiscrete (in the norm
topology), then G is homeomorphic to the complete Erdés space £,

Remarlk. If norm balls in & (ie., intersections of balls in B with G)
are relatively compact subsets of E in the F-topology, thew norm bounded
subsets of G are relatively complete in the F-topology. In particular, the
assertion of our Theorem holds if the unit ball in E ig relatively compact in
the F-topology.

CoROLLARY 1, Let B* be the dual of o separable Banach space and let
G be a separable, nondiscrete, weak* closed, line-free subgroup in E*. Then
G is homeomorphic te £.
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Proof. According to Lemma 1, there exists a total sequence F in E
such that G = F*. Regarding F' as a family of functionals from (E*)*, we
can write G = "F. Since B*, the dual ball of the unit ball B of E, is weak*
compact, it is also compact in the F-topology. m

Consider a simple example showing that the separability of G is essential.
Namely, it is easily seen that the group {(t;) € £° | ¥i (it; € Z)} is a
nondiserete, weak” closed, line-free subgroup of £ = (£*)*, Since this group
contains all {0, 1}-valued sequences, it is nonseparable and consequently not
homeomorphic to £.

COROLLARY 2. Let G be o nondiscrete, weakly closed, line-free subgroup
in o separable reflexive Banach space. Then G 18 homeomorphic to £,

Proof Here G is weak” closed if we canonically identify B with (E*)*. w

Given two nondiscrete, weakly ¢losed, line-free subgroups Gy and Gz in
a separable, reflexive Banach space E, by Corollary 2, there exists a homeo-
morphism h of Gy onto (g, Our method does not give any information how
“nice” h can be. As shown in (DG, the groups I, and I, (described in
the introduction) are topological-group isomorphic very rarely. So, h hap-
pens to be an algebraic hotnomorphism very seldom. It is reasonable to ask
whether one can find such an A to be a uniform homeomorphism, or a Lip-
schitz homeomorphism (with respect to the norm of ). Another intriguing
question is whether one can find a diffeomorphism H of E whose restric-
tion H|G; sends (Y1 onto G, Below, we show that one can always ﬁnd a
homeomorphism H with this property.

PROPOSITION 2. Ewery hormeomorphism between closed, line-free sub-
groups of an infinite-dimensional, separable Banach space B extends to a
selfhomeomorphism of E.

This follows from the fact that £ is homeomorphic to £2, the homeomor-
phism extension theorem for so-called Z-gets in £2 (see [BP]) and Lemma 2
below,

Let us recall that a closed subset 4 of E is a Z-sef if avery map of the
n~dimensional cube [™ into B can be arbitrarily c,losely apprommatecl by
maps into B\ A, no=1,2,,,,

LemMa 2. Bvery closed, line-free subgroup @ of an infindte-dimensional
Banach space F is a Z-set.

Proof Let f: I" — K be amap. Approximate f by amap g : I" — Ep,
where By is & finite-dimensional linear subspace of E. Assume dim(Hp) >
n+1, and use a generval position argument to approximate g by a map
whose image misses the discrete set (N Fo (hero we use the fact that & is
line-free), w
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COROLLARY 3. Gliven two sequences ay and @y of positive reals such thot
a1, 04 & Co, there exists & homeomorphism h of £2 sending Iy, onto I'y,. m

3. Two examples. In this section we want to point out some shortcom-
ings of our approach. Dealing with the space ¢} led us to the discovery of two
weakly closed, line-free subgroups in this space with somewhat surprising
properties. These interesting subgroups are described in Examples 1 and 2
below.

Let us start with the following obgervation which was pointed out by
N. Kalton. Tt shows that the requirement in the antecedent of the “partic-
ular” part of the Remark (which follows the Theorem) restricts the class of
Banach spaces to dual spaces only.

PROPOSITION 3. Let B be a Banach space with o totol sequence F of
functionals from E* such the unit ball B is relatively compact in the F-
topology. Then E is o dual space, i.e., there exists a Banach space X such
that E is isomorphic to X*.

Proof Since the weak topologies generated by F and span{F) are the
same, we may assume that F is a linear space. Let X be the closure of F in
E*. We show that the obvious formula #(z)(4) = ¢(z) (z € B, ¢ € X) yields
the required isomorphism of B onto X*. Since ¢ : E — X" is continuous
and injective, by the Open Mapping Principle, it is enough to show that

B(E) = X*.
Let C be the closure of B in the F-topology. The convex, symmetric set
O determines a norm || - ||; on E. Clearly, || + ||1 is weaker than the original

norm. We will show that || - |1 is complete on E. To this end, first we claim
that C equals D = {z € E | ¥(¢ € F) |¢(z)| < [l¢]}. Clearly, B (and its
F-closure C) is contained in D. If now z € D\ C, then x can be separated
by some ¢ € F from the compact convex set C. It follows that [¢(z)] > [|4].
This shows that C = D, and consequently,
|2lly = inf{t > 0| ¥(¢ & F) |é(x)] < t][4[}

for every z € E. Let (z,,) be a || - ||1--Cauchy sequence. Then () is bounded
‘with respect to || - |j1; hence, (z,) C kC for some k > 0. Since €' I8 compach
in the F-topology, there exists a subsequetce (y,) of (wy) which converges
in the F-topology to some 2q € E. Since (z,,,) 18 || - |[1-Cauchy, for e > 0, we
have |@(n, ) — ¢{wn, )| < €]|#} for all large enough p and ¢ and all ¢ € F.
Letting ¢ — oo, we infer that |¢(zn,) — dlx)| < €@ for every ¢ € I,
Applying the above description of | - ||, shows that ||@n, — 2ol < & We
finally conclude that (e, ) converges to @ in ||+ [};. Now, it is clear that (zn)
converges to 2o in ||  |l1. By an application of the Open Mapping Principle,
we infer that the original norm and | - |1 are equivalent on E. Therefore, we
can now assume that B = C.
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Write O* for the dual hall in E*. Let D = C* N X be the unit ball
for X, and let D" be the unit ball in X*, dual to D. It is clear that &
establishes a homeomorphism of ¢ with the F-topelogy onto #(C) ¢ D*
with the topology generated by F. Repeating an argument from the proof
of the Goldstine theorem [Da, p. 47, Theorem 4] for the topology on X™
generated by F', we conclude that ¢(C) is dense in D* in this topology.
Since ¢(C) is compact in that topology, we infer that $(C) = D*. This
yields $(F) = X", m

It is shown in [ADG] that every infinite-dimensional Banach space E
contains & nondiscrete, wenkly closed, one-dimensional, line-free subgroup
G. In particular, this is true for £ = ¢, Since ¢y is not a dual space,
Proposition 3 shows that Corollary 1 is not applicable in this case. As a
test for validity of our Conjecture, it would be interesting to show that the
subgroup G of ¢ described on p. 289 of [ADG] is homeomorphic to £. Here,
either & new approach to verifying the conditions of the Characterization
Theorem or a new characterization of the space £ is needed.

Qur approach fails to work for some subgroups & described in the Con-
jecture even if E is a dual space. For one thing, though it is obvious that
every weak™ closed subgroup & in a dual space E* is weakly closed, Examn-
ple 1 below shows that the converse statement i not true in general. On
the other hand, in Example 2 below we construct a group G such that, for
every total sequence F' ¢ G with *F = @, the lutersection of the unit ball
with G is not relatively complete in the F-topology. (Notice that Lemma 1
shows that one can always find F' such that *F = G.)

We will exaunine the subgroups in Examples 1 and 2 in detail because we
believe that they reveal typical complications which one may encounter when
trying to understand the structure of weakly closed subgroups in Banach
spaces.

ExamprLe 1, There cwists @ nondiscrete, weakly cloged, line-freé subgroup
G of the space £* such thot G i3 not weak™ closed, Moreover, the group G sot-
isfies the hypothesis of the Theorem, and conseguently, it 19 hormeomorphic
fo £, -

Proof. First we describe n subgroup I' of £, and then we let G =T,
whicl:h, by an application of Proposition 1, will be a weakly closed subgroup
of £,

Fix a transcendeutal real nuraber b with 0 < b < 1, Write e, n =
1,2,..., for the standard nth unlt vector in €29, and put g == (1,1,...). De-
fine gy, = ney, +nbteq. Finally, let I" be the closure of the additive subgroup
of £ generated by the vectors g, n = 1,2,... It s easy to see that the
sequence F' = {g, }2%., (consideved as functionals from (£1)* = £°°) is total
for £*. This shows that G is line-free. Lot 2, be an element of £' whose nth
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coordinate equals 1/n, and the n’th coordinate is ~1/n. Clearly, z, is in G,
and 2, — 0. Hence, G is nondiserete. To conclude our proof we must show
that G is not weak® closed. We need the following fact:

CraM 1. ("I)* N = {0}.

Postponing the proof of Claim. 1, we now see that the only element o € ¢
(treated as a functional from £°°) that takes integer values on "I" is 0. This
shows that *@ = {0} and therefore, by Proposition 1, G is weak" dense in
£*. Obviously, & # £*, and hence G is not weak™ closed.

Proof of Claim 1. It is evident that e, —e,41 € Glorn=1,2..,
This shows that if y = (yx) € (*I")*, then g — yr+1 i an integer for every k.
If, additionally, ¥ € co then there exists kg such that yp = 0 for k > ko,
and yr € Z for all k = 1,..., ko. We need to make sure that the fact that
y(x) € Z for every z € G implies that yx =0 for k=1,..., ko.

To this end, first notice that for every = (zx) in G we have g,(2) =
mn € Z. This implies that (zz) = (my/k) — a(b*), where a = eo{z). Since
(b*) € £, we see that (my/k) € £ as well. Now, adding up the terms,
we easily get @ = Yoy Bk = (O gy Mk/k) = ab/(1 — b). This shows that
a=(1—b)Y e, mg/k Since we can make a arbitrary, even if the first ko
terms of the sequence (my) are fixed, we see that

ko
y(@) =D wlma/k — ab®)
Je=1

is an integer for any my, ..., my, € Z and all ¢ € R Assume that y1,..., ¥k,
are not all 0. Then, since b is not algebraic, we infer that o = ';?:1 ypb® # 0.
Now, putting my = ... = mg, = 0, we obtain y(z) = e, which is not an
integer for most a. »

Cram 2. G is homeomorphic to £.

Proof According to our Theorem it is enough to check that the unit
ball B in £* = ¢} is relatively compact in the F-topology (vecall that F
denotes {gn}%.4)). Let (2,) be a sequence of eloments of B. Passing to a
subsequence, we can additionally assume that (z,,) wesk” couverges to some
s = (sg) € £, and that the sequence (ep(xm)) of reals converges to some real
d. Then, for every n, the sequence (gn{zn)) converges to n(b™*d-+s,) = nds.
It easily follows that the sequence (Ay) = (b%d + a3) s in £*. Morcover, for
z = (tx) € £, where ty = Ay ~ b¥(b ~ 1)(1 — b+ D2)~1 577 A;, we have
gn(x) = nA,. This shows that (gn(xm)) converges to gn(x); bence, the
sequence (z,) converges to z in the F-topology. w

EXAMPLE 2. There exists o nondiscrete, weakly closed, line-free subgroup
G of £* such that, for any choice of a total sequence F' of functionals from £
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such that G = "F, the set BN G is not relatively complete in the F-topology
(here B is the unit ball in £'). Moreover, the group G is homeomorphic to £.

 Proof. We follow the approach employed in Example 1. We let On =
n(en + eo) € £ and write I" for the additive subgroup of £ genetated
by the total sequence F' = {g,}°9 . Since I' is discrete, I' is closed in £°°.
Finally, we set 7 = *I". Applying Proposition 1, we see that & is weakly
closed and line-free. The group G is not discrete because (ey, — ean)/k € G,
ke=1,2,...

We sce that each unit vector e, € 3 € £ 18 an element of G, Moreover,
(em) 18 & Cauchy sequence in the F-topology. We claim that no ¢ = (1) € £
can be an accumulation point of this sequence in the F-topology. For, oth-
erwise gn{em) — gn(z) for every n. This would imply that n = n(z, +
Sore s k), which oasily gives a contradiction. To perform the above reason-
ing for an arbitrary tolal sequence F with G = *(F') (and also to justify
the “homeomorphy” part in Example 2) we need the following facts:

CrLam 3. ep € G*.

Craim 4. G* is the group generated by the vectors eq and nen, n =
L2,...

Let us postpone justifications of Claima 3 and 4, and continue with the
proof.

Let F' e any total sequence of functionals from £ such that *(F/) = G.
Since the F'-topology and the weak topology determined by the group (or
even the linear space) generated by F' coincide, we may assume that F' is a
group. By Proposition 1, F' is a weak” dense subgroup of (*(F))* = G*. In
particular, by an application of Claim 4, a general element f' of F' is of the
form f" = mgeg + ij Fmjeq, where (my) is a sequence of integers with
m; = 0 a.e, Notico that there exists an element of F' whose coefficient my is
not zero, Otherwise, we would have eq 4 e3/2 € *(F') \ G, Using the above
general form for f/, one casily sees that (em) & €' is a Cauchy sequence
in the I"-topology and moreover f'(em) ~+ mg. Assume (e,,) converges to
2= (my) € G in the F'etopology. Write Iy = kay = key(z), k = 1,2,...,
and notice (by Claim 4) that Iy € Z. To get a contradiction, it is enough
to show that lg = 0 for every k. For, if each oy = 0, then © = 0. Taking f*
whose coelficiont my 1% nonzero, we see that 0 = f/(0) = f/(i) = my.

Assume that I, # 0 for some k. Take any integer p > 1 such that ply # k.
By Claim 4, key, is an olement of G*; moreover, key(z) =l and key(ep,) =
0. Make a close approximation of key, by some f' == myeg -+ 2?;1 Jjmge; € F !
in the woak* topology with respect to values on S = {z, €y, }. Since for
every 8 € 5, the values f/(s) and keyp(s) are integers, making the above
approximation fiue, we get () = kex(x) =l and f'(ept,) = kerlep, ) = 0.
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Now, f'(z) =lim F(en) = mq, and f’(ﬁplk) = My -+ plxmyy, = 0. It follows
that mg = Iy and mg + plempy, = 0. This yields [x = 0, a contradiction,

It remains to show that G is hormeomorphic to £, To this end, consider
the subgroup Go = G NKer(eg) in the space Fy = Ker(eg). As seen above,
Go = {(zx) € Ey | (vk) (kzx € Z)}. This shows that Go = *(Fy), where
the total sequence Fy consists of all functionals ne, from £°° (or, more
precisely, their restrictions to Eyg). Since the Fy-topology is weaker than the
weak* topology on £+ (determined by ¢g), and since the closed unit ball
in #' is compact in the weak* topology, the ball is also compact in the
F'-topology. It follows from our Theorem (see the Remark which follows
it) that Gy is homeomorphic to £. Using Claim 1, it i easy to see that
g + (g — eg(g)er, en(g)e1) defines a group-topological isomorphism of @
onto Gg x Z. This together with the fact that £ is homeomorphic to £ x 7
yields the homeomorphy of G and &, (The map (t, (z&)) = (f,21,22,...),
where £ is irrational and (zx) € £, establishes a homeomorphism of P x £
onto £, where P is the gpace of irrationals. Since P x Z is homeomorphic to
P, Z x £ is homeomorphic to £.)

Proof of Claim 3. It is clear that a general element ¢ = () of G
is of the form (z3) = (my/k — ), where my are integers and a = eg{g). In
what follows, we will show that the fact that (xg) = (my/k —a) € £* implies
that a can only be an integer.

For a real number z, it will be convenient to write d(z) for the distance
between z and Z. We claim that a = eg(g) for some g € @ if and only if
Y req d(ka)/k is finite. Clearly, if a = eg(g) for g € G then kay = my, ~ ka,
and we see that d{ka) < |kzg|. This shows that Y r; d(ke)/k is finite.
Conversely, suppose 3 o, d(ka)/k is finite. Then, for some integers my,
Soheq |a - my/k| is finite. Let @}, = a — my/k, and notice that ' = (z}) is
an element of 1. Set a' = ep(z'). We can pick a sequence (ly) of integers
so that Y 5o lg/k is absolutely convergent and its sum is ¢ — o/, It is now
clear that (zx) = (z}) + (Ix/k) is an element of 491 Moreover, for g = (%)
we have ep{g) = o and n(ep + en)(g) = na + nzl, + I, € Z; consequently,
g€ G,

Using the above description of reals a € ep(@), first we show that if a
is rational, that is, if a = p/q with p relatively prime to ¢, then actually o
is an integer. Suppose g > 1. Since p and ¢ are relatively prime, there are
integers m and n such that mp = ng + 1; hence, d{mp/q) = 1/g. Since

d(ka) d((m + kalp/q) 1~ 1
> it e
; Z m + kg q%m%—kq’

it follows that 3 ro 4 d(ka)/k is infinite, and hence a & ep(G).
For the case of irrational a we will use the following fact due to Sierpifiski
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[Sie] concerning uniform distribution of the fractional parts of {ka} over the
interval (0,1). For 0 < ¢ < d < 1 and a positive integer k, write
se(c,d) = #{j < k| {ja} € (¢,d)}.

Sierpifski’s theorem says that lim sk (¢, d)/k = d~c. Define ry, = s5,(1/4,3/4).
Since for sufficiently large n we have n/3 < r, < 2n/3, for sufficiently large
k we obtain

et L |
m;(: d(*rm.) - Tab+1 == Pyh N L L) I LA 1
n'r‘“'tlk’“lﬂl e 4 v 3Mn|“1 4 N 3}@,{”1‘ " 36 .

This shows that Z:}:‘;] d(ka)/k is divergent, and consequently a 5 eg(g) for
any g € G.

We see that every g in & is of the form g = (ny/k), where (ng) is a
sequence of integers so that the series 317, ny/k converges absolutely to
an integer, This concludes the proof. w

Proof of Claim 4. Let y = (yx) € G*. It easily follows that each Yk
is an integer. We first show that (y,) is eventually constant. Suppose this
is not the case. Since (yx) i8 bounded, there are two subsequences (k,) and
(k) of positive integers such that g, = p and yy,, = ¢ for all » and m, and
some distinct integers p and ¢. For every real number o, one can construct
sequences (g, ) and {qe, ) of integers such that the series Y oo ) pr, /kn and
Yoot Tk / im converge abgolutely to a and —a, respectively, For a positive
integer k, set my, to be py, ik = kn, gn,, if b = kp, and 0 otherwise. Notice
that z = (my/k) € £, and ey(x) = 0; hence 2 € G. Moreover, y(z) =
a(p — ¢). This vields a contradiction if only we pick @ so that a{p — ¢) € Z.

Now, we can assume that there exists n such that 4 = 0 for all & > n.
Since y is in the weak® closure of I', there exists f € I' such that f(e;)
is as close as we wish to y(e;) = y; for all j = 1,...,n,nl. Since all those
values are integers, makmg an approximation close, we can require that
fleg) = yle;) for all such §, Represent f in the form mpeg + Z ey ey
for some 11'1Leg,ors m, (the maquence (my) 18 eventually zero). We now infer
that yy = mg -+ myg for all § = 1, nl, This shows that mg = —mynl,
and we see that mg is divisible by emh 4=2,...,n It is now elementary to
find integers p(, ..., p, such that g = 2}"“1 pyie;. This concludes the proof
of Claim 4. w

4. A proof of Theorem, We will employ the following characteriza-
tion theorem due to Kawamura, Over&taegen and Tymchatyn (see [KOT,
Theorem 3).

CHARACTERIZATION THEOREM. Let X ¢ Y be separable metric spaces
with metric d, o € Y and (U,) be o sequence of fintte covers of X by clopen
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sets such that:

(1) For all n, the elements of Uy, are pairwise disjoint and Upy1 re-
fines Un,.

(2) For any descending sequence Uy o2 Uy D ..., where Uy, € U,
Mooy Un s at most one point and it is ezactly one point if d(xo,Uy) is
bounded.

(3) Forz € X, let Un () be the unique element of Uy containing x. Then

nll—l»lgo diam(B(zg, d(z, zo) + 1/n) N Up(2)) = 0,
where B(zo,r) 18 the closed ball with center xg and radius r.

(4) For each n, each U € Up, each R > d(xo,U), and each & > 0 there
arem > n and V € U, with V C U such that |d(zo, V) — R| < &.

Then X is homeomorphic to £. m

Proof of Theorem. Let Fy be aseparable, closed linear subspace of
F containing G. Write F = {#;}72,. Using the Kadec Renorming Theorem

(see [BP], p. 177), we can find a so-called Kadec norm || || on Ep with
respect to ' (more exactly, with respect to the sequence {¢;|Eo}), i.¢.,
(%) lim ¢i(zn) = ¢i(z) foralli=1,2,...
To— GO
implies

lim inf {jan| 2 2]

Moreover, the condition (%) (which is equivalent to (z,) converging to z in
the F-topology) implies

(+4) Im flan -3 =0 i Jim ] =z

We will assume that the original norm on Fy is the above Kadec norm ||+ ||.

In what follows, we check the conditions of the Characterization Theorem
for X = G, Y = E;, with the metric given by the norm | - ||, and z¢ = 0.
Let m; = ||¢4|| and construct a sequence (U, ) of finite covers of & consisting
of clopen sets as follows. We set Uy, = {U(a1,...,an) | & € Z}, where

Ular, ..., an)
= ﬂ{m € G| ¢ix) = ay if |ag| < nry and |¢i(2)] > nry if fas| > nry}
f=x] .

Elements of U, are clearly clopen subsets of (7. We shall verify that ()
satisfies the conditions (1)-(4) of the Characterization Theorem. Obgerve
that

CUplz) =2+ G, if |z <mn,
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where G, 18 the subgroup {z € G | ¢1(z) =
|di(2)| € rin, we have
Uﬂ.(m) ={yed | ¢:¢(y) = ¢1(-l7) fori==1,... ,n}‘

(1) is obvious: it immediately follows from the definition of i4,,.

(2) Let @,y € Uy for all m, so Uy = Up(x) = Uy (), Since for n > ||z|} we
have Uy () = & + Gy, it follows that @ —y € Gy, for all n; so @ = y because
Fig tobal. Assume now that we are given a sequence (z,,) with @, € U, and
|za|l € M for some M > 0. Tor n > M we have Uy, = Up () = 2n + Gn
and hence, for eachi i, ¢y(2,) = a; for n sufficiently large, It follows that the
sequence (2y) is Cauchy in the F-topology, By our completeness assumption,
(zn) converges to some & € ( in the F-topology. Clearly ¢;(x) = a; € Z,
and consequently z & ooy Un.

() Letw e Gandy, € U ( ) with |[yn|l € ||2[|+ 1/n. It suffices to show
that [lyn—2[| ~ 0. Since Uy, (z) = +G), forn 2 [[z]], we have ¢i(ym) = ¢s(x)
for each ¢ and n > [Jz||. Our norm is a Kadec norm, so liminf, |y.|| = |z|-
On the other hand, ||yn|| < [|2]+1/n implies lim inf,, |[ya]| < [, 50 [lys| —
|lzl|. Finally, applying (**), we see that |y, — x| — 0.

{4) Take a positive integer 1, € > 0, U = Up(%) € Un, and R > d(0,T).
For a set A ¢ @, write d(4) = d(0, A,) We can assume that ||z < R.
Since & is nondiscrate, we can ﬂucl y € Gy with 0 < ||y < &. Choose a
positive integer I such that ¢;(y) # 0 (of course, I > n and |¢1(y)] 2 1), and
a positive integer j such that J > 2Rr. Finally, take a positive integer m
satisfying m 2 ||z| + jlly|| and > [ Observe that

(a) Upnle+ky)=a2-+hky+Gn fork=01...,5

(b) M(m + ky + G‘m) - d(.‘ﬂ + (k + 1):‘1’ + Gm)l < ”yEI <z
fork=10,1,...,j—1,

(c) i(:f “+ jy + Gm) > R.

Item (a) follows from the f +kllyl £ m. Item (D) is
obvious. To prove (¢) notice Lhmt fm eac‘h zex —I— Y+ G we have

|6a(2)| = e (e Ja)| 2 Fla()] = ()] 22§ = m&e 2 m R
On the other hand, [¢(2)] < m]z||, so ||z = R.

By (a)-(c), we deduce that there is kg € {0,1,...,4} such that |[R —
AUz -+ kop))| < &, Clearly, we have Uz + koy) C Un(z). n

= ¢p{x) = 0}. Indeed, since
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Topologies of compact families
on the ideal space of a Banach algebra

hy
FERDINAND BECEKHOFF (Minster)

Abstract, Let K bae & family of compact sets in a Banach algebra 4 such that X is
gtable with respect to {inite unions and containg all finite sets. Then the sete U(K) =
{ITeld(A) : INK = B}, K € K, define a topology 7(X) on the space Id(A4) of closed
two-sided ideals of A. Kl called normal if I; — I in (Id(4), 7(K)) and w € A\ I imply
lUminfy |2 + L] = 0.

{1) If the family of finlte subsets of A is normal then 1d(A4) is locally compact in the
hull kernal topelogy and il moreover A iy separable then Id{A) is second countable.

(2) If the family of countable compact sets is normal and A4 is separable then there is
a countable subset § ¢ A such that Tor all closed two-sided ideals [ we have TA 8 = 1.

Examples are separable C¥-algebrag, the convolution algebras LP{(G) where 1 < p < 00
and G is a mebrizable compaet group, and others; but not all separable Banach algebras
share this property.

L Introduction. For a Banach algebra A let Id(A) denote the space of
closed two-sided ideals of A, One of the most famous topologies on Id(4) is
the so-called hull kernel topology or weak topology Ty, which is given by the
basic open sets

Uleryoopmg) i {f & Id{A) ray g 1,000, 00 €1},
where n & N, xy,..., @, ¢ A. We gencralize this as follows:

DEFINITION L. Let A be a Banach algehra. A compact family in A is by
definition a set K of corpact subsets of A such that

(1} K is stable with respect to finite nnions,
(i) X contains the family F of {inite subsets.
For a compact set K < I let
UK) = {I € 1d(4) : INK =}
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