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Comparing gaussian and Rademacher cotype
for operators on the space of continuous functions

by
MARIUS JUNGE (Kiel}
Abstract. We prove an abstract comparison principle which translates gausstan co-

type into Rademacher cotype conditions and vice versa. More precisely, let 2 < ¢ < o0
and T : C{K) — F a continuous linear operator.

(1) T is of gaussian cotype ¢ if and only if

q\ 1/q
(Z( | Tas]r )) <d| T cuc
Kk log(k + 1) k
for all sequences {wy)xen C C(K) with (| Tey||)i=, decreasing.
(2) T is of Rademacher cotype q if and only if

/g
(S (el voelE T 1 N < S
k k

for all sequences (zg)ren < C(K) with (||Tzg||)f=, decreasing.

L2(C(K))

La(C(KY)

Our method allows a restriction to a fixed number of vectors and complements the
corresponding results of Talagrand. :

Introduction. A problem in the local theory of Banach spaces consists
in the description of Rademacher cotype and gaussian cotype for operators
on C(K) spaces. A quite satisfactory answer for the Rademacher cotype was
given by Maurey. He connected cotype conditions with summing conditions
(see [MAU)):

THEOREM 0.1 (Maurey). Let 2 < ¢ < 00 and T': C(K) — F. Then the
following are equivalent:

(1) T is absolutely (g,2)-summing, i.e. for all (zi)ren C C(K) we have

(; ”kaHlI)lfq <ep f:}lg (;!mk(t)lz)l/z.

1991 Mathematics Subject Classification: 47B38, 47A10, 46B07.



102 M. Junge
(2) T has Rademacher cotype g, i.e. for all (xx)rex C C(K) we have
/4
(Z ||T$k}|q) < 60” > exay
k k
(8) T is absolutely (¢, 1)-summing, i.e. for all (zx)peny C C(K) we have

/
(Size) " < cosmp Tlenol

L2(C(K))

Later on, Pisier gave another approach to this type of results via factor-
ization theorems. This way was pursued by Montgomery-Smith [MSM] and
Talagrand [TAL] to give a characterization of gaussian cotype g.

TueOREM 0.2 (Talagrand). Let 2 < g < oo and T : C(K) — F. Then
the following are equivalent:

(1) T has gaussian cotype ¢, t.e. for all (zx)ren C C(K) we have
/9
(ZHT%H") <e ng-’ﬂk‘
k k

(2) T satisfies the following summing condition: for all (zx)xen C C(K)
such that (||Tzx|)r., is decreasing we have

(; (%) q> T<a sup > lzx(0)}

(3) T factors through an Orlicz space Lta(ragt)as2,1 () for some probability
measure i on K.

La(C(K))

The main new ingredient of this theorem is a factorization theorem
for gaussian processes derived from the existence of majorizing measures
{see [TAL]).

We will give a more abstract approach to gaussian cotype conditions
which can be considered as a complement to Talagrand’s results. Indepen-
dently of him we discovered the connection between gaussian cotype and
summing properties with the modified ¢, space in condition (2) of Theo-
rem 2. Indeed, we reprove the equivalence of (1) and (2) with the help of
factorization properties. This leads merely to a calculus comparing gaussian
and Rademacher conditions, provided we are in the case ¢ > 2. In this det-
ting it is helpful to formulate cotype summing properties in the framework
of maximal sequence spaces; see the preliminaries for a short introduction.
We will use the following notation for such a (maximal) symmetric sequence
space X and an operator T : E — I
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sup (; i(:nk,a)fq)l/q < 1},

X

n
7% oT) = sup { | 31T zwlres
k_l EEBE-

ek (T) == sup{ i |Txxllr ex lx } ” iskmk ) < 1},
k=1 k=1
o3 = |5 et || S 52}

An operator is said to be (absolutely) (X, q)-summing, of Rademacher
cotype X, of gaussian cotype X if wx,q := SUPen T g ICX == 8UDpeN rc’y,
gCx 1= SUP,cy 8C% is finite, respectively. In contrast to Talagrand we follow
Maurey’s approach and prove

TaeorEM 0.3, Let 2 < g < 0o, X @ g-conver mazimal symmetric se-
quence space and T : C(K) — F. Then the following are equivalent:

(1) T is (X, 2)-summing.

(2) T is of Rademacher cotype X.

(3) T is (X,1)-summing.

Furthermore, there ezists a constant ¢ only depending on ¢ and X such that
oralln e N
’ | FalT) < o (7).

The main idea of the proof of the theorem above is a reduction to Mau-
rey’s result via quotient formulas. These formulas are contained in Section 2
and have already proved to be helpful in the theory of summing operators.
Their proof goes back to a joint work of Martin Defant and the author
(see [DJ]). For the comparison principle between gaussian and Rademacher
cotype we consider the maximal symmetric sequence space £oo,00,1/2 COD-
sisting of all bounded sequences T € £ such that

7]/ 00,00,1/2 1= sgp log(k+ 1) 78 < o0,

where (7}) denotes the non-increasing rearrangement of 7. This space ap-
pears more or less naturally in the context of gaussian processes due to
Talagrand’s characterization theorem. Bounded gaussian processes are in
some sense induced by diagonal operators D, on £, where 7 lies in the
8Pace Loo o0,1/2- FOr Operators acting on C(K) spaces we obtain

THEOREM 0.4. Let 2 < ¢ < oo, X a g-convex mazimal symmetric se-
quence space. If ¥ denotes the space of diagonal operators between £oo co,1/2
and X, then for all operators T : C(K) — F and n € N we have

% el (T) < ge%(T) < erc3(T),

where ¢ is & constant depending on ¢ and X only.
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The philosophy is quite simple. The difference between gaussian and
Rademacher cotype has to be corrected in the summing property with
the factor /log(k + 1). Applying this theorem to X = £, we obtain the
equivalence between (1) and (2) in Theorem 0.2. In order to characterize
Rademacher cotype g one has to solve the equation

Dﬁ(eoo,oo,l/fh X) = Eqa

where D denotes the continuous diagonal operators. The solution of this
equation is the Lorentz—Zygmund space £, , _1/2. In other terms, T is of
Rademacher cotype ¢ if and only if

(S (radeviog® T D))" < o Y auan]
k k

holds for all sequences {zx)ken With (|| Tzx]|)5—; decreasing. Let us also note
that our approach enables us to fix the number of vectors under considera-
tion. For example, this restriction to n vectors can be used to prove that for
an operator of rank n the gaussian cotype g-norm is attained on n disjoint
functions in C{K). Another application is given in the study of weak cotype
operators.

La(C(K)}

Preliminaries. We use standard Banach space notations. In particular,
g, c1, - .. will denote different absolute constants and they can vary within
the text. The symbols X, Y, Z are reserved for sequence spaces. Standard
references on sequence spaces and Banach lattices are the monographs of
Lindenstrauss and Tzafriri [LTT, LTII]. The symbols E, F will always denote
Banach spaces with unit balls Bg, Br and duals E*, F'*. Basic information
on operator ideals and s-numbers can be found in the monograph [PIE] of
Pietsch. The ideal of linear operators is denoted by L.

The classical sequence spaces co, £, and £, 1 < p S oo, n € N, are
defined in the usual way. From the context it will be clear whether we mean
the space ¢ or the absolute constant co. A generalization of the classical £,
spaces is the class of Lorentz—Marcinkiewicz spaces. For a given continuous
function f : N — Ry with f(1) = 1 the following two indices are defined:

ay = inf{a | IM < oo Vi, s > L: f(ts) < Mt™f(s)},
B = sup{B | >0Vt s >1: f(ts) > ct? f(s)}.

These two indices play an important role in the study of the space £5.q45
1 < ¢ € o0, consisting of all sequences o € £q, such that

loilf.q == (Z(f(n)a;)qn‘l)l/q < co.

n

icm
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For g = oo the needed modification is given by
o]l £,00 := sup f{n)oy < oco.
neEN

Here and in the following ¢* = (o) )nen denotes the non-increasing rear-
rangement of o.

In the introduction the notions of (X, q)-summing, Rademacher cotype
X and gaussian cotype X are already defined. If X = £, we will briefly speak
of (p, ¢)-summing operators or norms, Rademacher cotype p, etc. (possibly
restricted to n vectors). In this context it is convenient to use an abbreviation
for the right hand side of the definition of summing operators. For a sequence
(zx)p_; in a Banach space E we write

o= s (Sliaal?)
k=1

aEBgs

Let us note that this expression coincides with the operator nerm of

T
ui=Y e ®zx € LI, B),
k=1
where ¢’ is the conjugate index of ¢, i.e. 1/¢g+ 1/¢' = 1.

In the following (€4 )}nen, (gn)nen will denote a sequence of independent
normalized Bernoulli (Rademacher) variables or gaussian variables respec-

tively. They are defined on a probability space (2, ). Here a Bernoulli
variable means

plen = +1) = plen = —1) = 1/2.

A very deep result in the theory of gaussian processes is Talagrand’s
factorization theorem (see [TAl]):

(¥)  There is an absolute constant ¢y such that for all sequences (zk)5_; C
' C(K) with

™
[$ e,
—1 Ly (X)

there are operators u : £f — cg, R : ¢o — C(K) with ||ul| - |R]l € &
such that
RD,'LL(EJ.,) = Tk,

where D, is the diagonal operator with

iog(k+1)

Finally, some s-numbers are needed. For an operator T € L(E, F) and
n € N the nth approzimation number is defined by

an(T) = inf{||T — || | rank(S5) < n},
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whereas the nth Weyl number is given by
2 (T) i=sup{an(Tu) | © € L(&, B) with |juf <1}

1. Maximal symmetric sequence spaces. In the following we will
denote the set of all finite sequences by ¢ and the sequence of unit vectors
in £o by (k). For every sequence o = (ok)s C loo, n € N, we set P(o) =
kw1 OkER:

A mazimal sequence space (X,|| - ||) is a Banach space satisfying the
following conditions:

(1) £, C X Clooand Jlegff =L forall ke N

() If 0 € X and & € £oo then the pointwise product oo belongs to X
and |jao|| < llo}x/|ollo-

(3) o € X if and only if (|| Pa]}» is bounded and in this case

lo]l = sup [| Pl
nel

For n € N and o = (0%)f.y C K" we set

ol = how)imnll = | 3 onen -
k=1
The sequence dual of X is defined by

Xt = {1‘ € boo ’ il ll+ = asGLng ’;akmi < oo}.

Then (X, |||+ ) is also a maximal sequence space. We observe that =
l|r|ly for all 7 € ¢. Thus X+ = X with equal norms. For two maximal se-
quence spaces X, Y we denote by DL(X,Y") the space of continuous diagonal
operators from X to V' with the operator norm. A maximal sequence space
is symmetric if in addition ¢ € X if and only if o* € X with [lo™||x = || x -

Essential for the following is the definition of p-convex sequence spaces.
Let 1 < p < co. A maximal sequence space is p-conver if there is a constant
¢ > 0 such that for all n € N and (2)p—; C X,

(S ) (X o)

k=1

The best constant ¢ satisfying the above condition will be denoted by M?(X ).

Using (2) it is obvious that every maximal sequence space is 1-convex. On
the other hand, we observe that

Xt =DL(X,8) andthus X =DL(XT,4).

More generally, we have

icm
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ProprosITION 1.1. Let 1 < p < oo and X a mazimal sequence space.
Then the following are equivalent:

(1) X is p-convez.
(2) The homogeneous expression || |o|'/?|[% is equivalent to & norm.
(8) There exists a mazimal sequence space Y such that

X =DL(Y, L)

Moreover, in this case we can choose Y = DL(X,{p) and have
1
WHU”X <D £ fiolix.

Proof. The equivalence between (1) and (2) is classical and can be found
for example in {LTII]. Now we prove (2)=(3). We can assume that there is
anorm | - || and a constant ¢ > 0 such that

1
“llollx <ol < liolx-

We denote by X, the maximal sequence space defined by this norm and set
Y :=DL(X,4,). Clearly, we have X € DL(Y,£,). Since || - || is a norm we

can use X = X for this maximal symmetric sequence space to deduce
that

1 i/p
“loll < e PI3? = |

sup | log|Pry
TEB a1+ g

< Hlollpegy,e) Sup 17 lpe e,

TEB i+

i/p
= lolloerreyy _swp  sup (3o iml-loxl?)
TEB(XP)+ ¢€EBx &

= lolloeerie,) sup [HePlE® < llollbeye)-
¢EBx

For the proof of (3)=>(1) we can assume that X = Dﬁ(Y, £,) with equal
norms. The definition of the norm implies for (z;)7=; C X that

()= g (T mrtnr)”
sup (35 tas 0 ””

T&By j=1 &

< (3 mp (Sles®nr)) = (Sianl) " o

j=1TEBY

I
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Remark 1.2. (i) An Orlicz sequence space

by = {a €l ‘ Zgb(ak) < oo}
k

is p-convex if and only if ¢(t)X) < eAPo(t).

(ii) The criterion above is very useful to study the p-convexity of a
Lorentz~Marcinkiewicz sequence space 5 4. It was observed in [COB] that
for p < g and 0 < By < oy < 1/p we have

(G
- a;) .
[ fra/p

Since the right hand side is a norm (see again [COB]) the conditions above
imply the p-convexity of £; .

o], ~ [

2. Quotient formulas for summing properties. We start with a
quotient formula for (X, g)-summing operators.

PROPOSITION 2.1. Let 1 < r € ¢ < 00, Y o maximal symmeiric sequence
space and X = DL(Y,4;). Then for alln € N and T € L(E, F') we have

7% (T = sup{7] (D RT) | R € L(F, L), Dy € L{foo,400),
with || B||, |lo|ly <1}

Proof “<” Let (xx)f.,; C E be such that for € > 0 there exists a
o € By with

|3 irmta, < 0o (S limate)
k=1 Pt

Let yi € Bp+ with (yf, Tax) = |Tzell. If we define R =3, vk ®ex €
L(F, £y ) we obtain

el et <
(Zsup] {y}, Tow)o;|? )

kel 7
< 7 (Do RT ) (24)fcs
“>" Let o € By and R € L(F, ) with ||R|| < 1. By the maximality of
(X, r)-summing operators there is no restriction in assuming R € L(F,£3)

for some m € N, Now we use a duality argument. Following the proof of
Theorem 1 in [DJ] there is an operator S € L{£7, E) with

Ty (Do RT) = trace(SD,RT) and S = BD,P,

1/q
(v, Tanyornl?)

s E‘M=

icm
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where B € L(£%,E) with ||B|| € 1, 7 € Ben, and there is an increasing
q
sequence (Ix)p.; C {1,...,m} such that

P=>3 e, ®e € LD, ).
k=1

Hence we deduce that
trace(SD,RI) = trace(D,PD,RTE)

(7 n
= 3 (e, DoRTB(ex)) < Y Imeou | - [|RTB(ex)||

k=1 k=1

< (el IRTBER))
k=1

< lolly 7k, (RD)IB|| € 7% ,(T). =
We can now prove the generalized Maurey theorem.

THEOREM 2.2, Let 1 < r < g < o0, X a g-conver mazimal symmetric
sequence space and n € N. Then for oll operators T € L(C(K), F)) we have

171 1\
% <2 (2-2) T ma
r\r ¢
Proof. By Proposition 1.1 we can assume that there exists a maximal
symmetric sequence space ¥ with X = DL(Y, £,). By the classical Maurey
theorem (for the constants see [TJM]) we deduce from Proposition 2.1 that

Tk, (T) £ MU(X)x

sup{n} (DsRT) | R € L(F,{x), Do € Lo, £ss), with ||R|, |lolly <1}

-1/q

< MU(X)eo (3 - %) <

sup{ng1(DsRT) | R € L(F,5), Do € L{loos¥0), with { Rl [lo]ly < 1}
— o MI(X)r, (). »

Remark 2.3. Now, it is again well known (see [MAU]) how to derive
from the above theorem the equivalence between Rademacher cotype condi-

tions and summing properties as stated in the introduction as Theorem 0.3,
namely,

1 1\ve
7 1(T) < 1eke(T) < VEnG o(T) < coMQ(X)(— - a) % 1 (T).

To end this section we prove ancther quotient formula which is better
adapted for operators on C(K) spaces.
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PROPOSITION 2.4, Let Y and Z be mazimal symmetric sequence spaces
and X = DL(Y, Z). Then for all T € L(E,F) and n € N we have
% 1(T) = sup{n%,(TRD;) | R € L{¢os, F), Dy € L{£xg,€cxa),
with || ||, |lofly <1}.

Proof “<” can be proved exactly as in Proposition 2.1.

“>" Again by maximality we can assume R € L({,E) and D, €
L, ) with ||R], |lo|ly € 1. We must show that for all § € L{£L,,£%)
with ||S}| £ 1 we have

” i |TRDgS(ex)l|lF ekHZ < %1 (T).
k=1

By a lemma of Maurey, calculating essentially the extreme points of opera-
tors from £7 to £7 (see [MAU]) and using the convexity of Z we can assume

that S has the form
n
S= Z er ® g~
k=1

Here the g*’s have disjoint supports and satisfy 0 < “ng,ggé < 1. Now we
define

J:=R( e®—-—-°—-m)€££”,E
2@ i gh; ) € £ B)
and 7 := (|| Dsg*||co)F_;. We observe that ||R|| < 1 and there is a subse-
quence (I5)F_; C {1,...,m} such that [|Dog"|lec = |{e1,, Dog®}|. From the
rearrangement invariance of ¥ we deduce that

I7lly = ot fers DEally < | Y onen,
k=1

< <L
, <loly <

Hence we abtain

| I7RD, Sl es], = | 0TI 0P IDoHlecler],
k=1 k=1

< mxa(@lrlly < 7%, (7). =

3. Gaussian cotype conditions. As a consequence of Talagrand’s fac-
torization theorem for gaussian processes, cotype conditions on C(X) spaces
can be restated using a quotient formula. This was remarked by Pisier and
Montgomery-Smith (see [MSM)). We will give a proof for an arbitrary max-
imal symmetric sequence space. Let us recall that £ o, 1/2 is the space of

icm
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sequences ¢ € £y, with
ol oo ja = SUP log(k + 1) o} < oo,
kEN
LEmMMa 3.1. Let X be o mazimal symmetric sequence space,
T € LIC(K), F) and n € N. Then for an absolute constant c1 we have
g’CSL((T) ey Sup{w?(,z(TRDa) | R S L(CO)E)v Do‘ € E(C0=CO)
with “R“’ ”a“em,w,l/Z < 1}'

Proof “>" Without loss of generality we can assume that op =
(log(k 4 1))~%/2. Then it follows from [LIP| that for all u € L£(£3,co) we
have

| ’GZ:;QI:RDUU(%)HLZ ooy < Al Il

With a glance on the definition of gc; we see that the desired inequality is
proved.
“<? Let (zx)p, C C(K) with

ke
H ngﬂ?k
k=1

By Talagrand's factorization theorem (see (*) in the preliminaries) there are
u € L(£2,co) and R € L{co, C(K)) with ||u|| < e1, [|R|| £ 1 such that

RD,u(ek) = Lk,
and oy, = (log(k + 1)) /2. Hence we deduce that

<1
La(C(K))

|3 irsslie | = | SSITRD utesdle er], < wka(TRD )l
k=1 k=1

i
ngﬂ?k
k=1

Taking the supremum over all sequences (z#)P=, vields the assertion. m

< ey o(TRD,)

La(C(K))

Now we are able to prove the comparison theorem for gaussian and
Rademacher cotype.

THEOREM 3.2. Let 2 < q < oo and X o g-convex maximal symrnetric
sequence space. Set Y = DL(f 00,172, X). Then for all T € L(C(K),F)
end n € N we have

(1) 71 (T) < e (T) < VB, (T) < MUX)(1/2-1/q)~ /7 ng (T).

(2) g% (T) ~e, rop (T)-

Proof. First we note that the ¢g-convexity of X implies the g-convexity
of the maximal symmetric sequence space ¥. This can be seen exactly as



icm
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in the proof of Proposition 1.1. Therefore the first assertion follows from
Theorem 2.2, more precisely Remark 2.3, applied to Y. With the help of
Lemma 3.1, applying Theorem 2.2 to X and using the second quotient for-
mula (Proposition 2.4) we obtain
gc% (T) ~e, sup{nk o(TRD,) | R € L{co, E), D, € £L(co, <o)
with ”R”? “o-nﬂm,m‘l/z S 1}
g (X) Sup{'fr?'(’l(TRDo-) | Re ,C(CD,E), D, e [—(CQ,CQ)

with || B[, |||l <1}

: oc,00,1/8

= W?,l(T)-

By the first assertion, the proof of the second is complete. »
Remark 3.3. Probably the most important applications of the above

theorem concern gaussian cotype g and Rademacher cotype g operators

when g > 2.

(1) In the case when X = {; it turns out that Y is in fact the Lorentz—
Marcinkiewicz space £44 _1/2. This space consists of all sequences ¢ € foo

such that
(5 (i)
(=) ) <
= log(k + 1)

(2) If we want to calculate the cotype conditions for (g, 1)-summing op-
erators or Rademacher cotype g operators we have to solve the equation

by =DL(Loo,ca,1/2:Y)-

Again this is easy with the help of Lorentz-Marcinkiewicz spaces. The space
£4,q,—1/2 With the norm

ol tgarons = ( D (eilog(k T 1))2) 1/g

k

solves the problem up to some constant. In order t¢ apply Theorem 3.2 we
have to check the r-convexity of £, 1/ for some r > 2. If we identify
£4,0,~1/2 With a space £y, this easily follows from Remark 1.2. Indeed, [ is

given by
F(t) = t1/9/log(t + 1),

which satisfies By =0y =1/q.
In the following we will state further applications of Theorem 3.2.

COROLLARY 3.4. Let 2 < ¢ < o0 and X a g-conver mazimal symmetric
sequence space. Then there is a constant ¢ depending on ¢ and X only such
that for allm € N and T € L(C(K), F) with rank(T) < n we have

gex (T) < cgck(T).
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Moreover, the gaussian cotype constant is, up to ¢, ottained on n disjoint
functions in C(K).

Proof Weset Y = IDL(£x,00,1/2, X ). By Theorem 3.2 we have

gex (T) ~e myn(T).

Therefore it remains to show that the (Y, 1)-summing norm is attained on n
vectors. Using Maurey’s lemma about the extreme points of operators from
£ to C(K) (already used in the proof of Proposition 2.4; see [MAU), it is
then clear that restriction to n disjoint blocks is possible.

In Theorem 3.2 it was also observed that ¥ is ¢-convex. By Proposi-
tion 1.1 there is a maximal symmetric sequence space Z with Y = IDL(Z, £, ).
Furthermore, it is known that for the computation of the (g,2)-summing
norm of an operator with rank n only n vectors are needed (see for ex-
ample [DJ]). Hence we can deduce from Proposition 2.1 and Theorem 2.2
that

7va(T) < sup{ry2(DoRT) | R € L(F,e0), Do € Llkoos boc),
with |||, o ]lz < 1}
< V2sup{r?y(DoRT) | R € L{F, L), Do € L{Loo, o),
with [R|, iz < 1}
= V3TE(T) £ VEegrha(T). »
In particular, the corollary works for X = £,. For the .so—called “weak”
theory it is natural to replace £; by weak-£,. More precisely, an operator

T € L(E, F) is said to be a weak cotype q operator if there exists a constant
¢ > 0 such that for all u € L{£3, E) we have

k=1,..n

cup K/ (Tu) < | 3 gl
k=1

The best such constant ¢ will be denoted by weg(T). It was essentially re-
marked by Mascioni (see [MAS]) that for ¢ >» 2 another definition would
have been possible. An operator T € L(F, F) is of weak cotype g if and only
if there exists a constant ¢ > 0 such that

YT <GH . 3:|
ilég Tz p < ;Qk k‘Lz(E)

for each sequence (2 )y C B such that ||[Tzx| is non-increasing (for further
information see also [DJ1]). The next proposition gives a characterization
of weak cotype operators on C(K) spaces in terms of Weyl numbers.
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COROLLARY 3.5. Let 2 < g < 00. An operator T' € L{C(K),F) is of
weak (gaussian) cotype q if and only if
kl/e

SUp ————=2 (1) < 00.
keg log(k -+ 1) «(T)

Proof. By Remark 1.2, the space X 1= £y o = €00 With f(t) = t/¢
is r-convex for all 2 < r < ¢. We observe that ¥ = DL({eo,00,1/2,X)

coincides with £y ., where g(t) = t'/9/+/log(t + 1). Using Mascioni’s obser-
vation above we deduce from Theorem 3.2 that 7" is of weak cotype ¢ if and
only if T' is (Y, 2)-summing.

If T is (Y, 2)-summing and u € L{£3, C(K)) we can apply a lemma due
to Lewis (see [PIE]) which guarantees for all ¢ > 0 the existence of an
orthonormal system (ox)x C €2 with (||Tu(or)||7)x decreasing and

ax(Tu) < (1 +€)[|Tu(ow)fip-

Hence we deduce that
e ah(T0) < (14 &) up ——r
SUP ~—mmmmmmem g (T0) < (1 4 £) sup ———
keN 1/log(k + 1) keg lo g(k +1) Ir
< (1 + e)my2(T)wa(ulox))w
< (1 +e)mya(T)|ul.
Taking the infimum over all ¢ and the supremum over all u € £(£;, C(K))
with norm less than 1 we obtain
klie
p ——————n
keN /log(k + 1)
Vice versa, assume that the sequence of Weyl numbers is in Y. Let
(r)r € C(K) with wa(xy)r < 1. There is no restriction in assuming that

|Tax|| 7 is decreasing. If we define u, := Y ,_, ex ® xx we can deduce from
an inequality of Kénig (see [PIE]) that

1/2 . 2\ /2 - ok (Tun)
V2| Tz, < (anu ) S mlTun) e ) ST
k=1

log(k + 1))1/2
a3 LN Sl

< clmhu Ek:mk(T)ek ‘Y

Taking the supremum over all n € N we see that T is (Y, 2)-surnming. w

u(ox) |

T (T) S ’n’ylz(T).

icm
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