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On Gateaux differentiable bump functions
by

FRANSISCO L. HERNANDEZ (Madrid)
and STANIMIR L. TROYANSKI (Sofia and Valéncia)

Abstract. It is shown that the order of Gateaux smoothness of bump functions on
a wide class of Banach spaces with unconditional basis is not better than that of Fréchet
differentiability. It is proved as well that in the separable case this order for Banach lattices
satisfying a lower p-estimate for 1 £ p < 2 can be only slightly better.

1. Introduction. It is well known (cf. [DGZ, p. 184]) that the norm in
Ly, p > 1, p not an even integer, is E(p) times uniformly Fréchet differen-
tiable and the Taylor remainder term is of order p, where

B(p) = p—1 if pisan odd integer,
[p] if p is not an integer.

This order cannot be improved by equivalent renorming; moreover, there
is no bump function in £, with Fréchet remainder better than p ([BF|, cf.
also [DGZ, p. 222]). A few years ago, R. Deville (cf. [DGZ, Chapt. V])
obtained deep results concerning the existence of Fréchet differentiable bump
functions in a Banach space with nontrivial cotype. Some generalization of
Deville’s results was obtained in [FPWZ] and [GJ].

This paper is devoted to the existence of Gateaux differentiable bump
functions,

We start with some definitions. Let ¥ € N and w : RY — R* be such
that

Jlim sup t~kw(t) < oo (resp. }l’_ﬂ!{l}t—kw@) =0).

Let U be an open subset of a Banach space X and ¢ be a continuous function
from U to R. We shall say that ¢ € Gy (U) (resp. G%, ,(U)) if for = € U,
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¥ € X and £ in R we have the representation

k ,
v ;
plo+y) = pla) + 3 76D @) W) + rnle,b),
=1
where o (z)(y") = ¢ (2)(y,...,y) are i-linear bounded symmetric forms
on X and

lim sup [ 4 (2, 1, 2)| /() < e(a,) < o0
(resp. Jim (2., 2)/w([t]) = O)

It w(t) = ¢° we shall write Gp(U) (resp. GO(U)) instead of G, (V)
(resp. Gg’[p](U)). If p € GY(U), k € N, we shall say that ¢ is k fimes
Gateauz differentiable on U.

In [DGZ, p. 60] it is proved by using the Ekeland variational principle
[E] that in £,(I") with I uncountable there are no continuous Gateaux dif-
ferentiable bump functions. Following the idea of that proof we can extend
this result to Banach spaces X with an uncountable unconditional basis
{ea}aca with conjugate system {fy}qea. For z € X, and given p > 1 we

define
lollp = (32 1£ata)r) .

acAd

'THEOREM 1. Let X be @ Banach space with an uncountable unconditional
basis {eq}taca. Assume that X does not contain any isomorphic copy of eg
and that there exist 1 < g < p < oo such that the interval [q,p] does not
contain any even integer and for every z € X and some positive constants

Cq, ¢p we have cpllzlly < 2] < eqfizllq. Then there is no bump function
beGYX).

B,emark 1. The requirement that [, ] does not contain an even inte-
ger 1s essential, since the norm in £o, (I'), n € N, is infinitely many times
uniformly Fréchet differentiable.

Remark 2. Theorem 1 obviously implies that in any Banach lattice
without weak unit that admits lower p- and upper g-estimates there is no
continuously Gateaux differentiable bump function of order of smoothuess
better than the best order of Fréchet differentiability of bump functions in
X. We note that in the special case of £,(I") space, for p odd and I' un-
countable, the above mentioned result has also been obtained independently
by D. McLaughlin and .J. Vanderwerff [MV].

'Let us recall that a Banach lattice X satisfies a lower (resp. upper) p-
estimate if there exists a constant ¢ > 0 such that for EVEry Ty,...,%Tn € X
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with |;| A |£5] = 0 for i 5 j, we have

[z (Stmr)™ (oo | o] < Shaarr) ™)

The case of £, and more generally L, (S, I, 1) for a o-finite positive mea-
sure p is slightly different. In [T] it is proved implicitly that in L, (S, 2, 1)
for a o-finite measure p there exists an equivalent norm, and of course a
bump function, from the class G(L,(S, X, u)). In [M] this result has been
generalized to the case of uniform Gateaux differentiability.

We shall show that the above result is sharp for £, when 1 <p < 2.

THEOREM 2. Let X be an infinite Banach lattice satisfying o lower p-
estimate for 1 < p < 2 and liminf, _,ot™Pw(t} = 0. Then there is no bump
function b € G, 1(X).

COROLLARY 1. In £y, for 1 <p < 2, there is no continuous bumyp function
b such that for every z,y € £, the real function Y(t) = b(z + ty) is twice
differentiable.

Remark 3. Vanderwerff [V] proved that X is isomorphic to a Hilbert
space provided both X and X™* admit continuous bump functions that are
twice Gateaux differentiable. Since the norm in £, ¢ > 2, is twice uniformly
Fréchet differentiable and of course twice Gateaux differentiable, it follows
from the above result of J. Vanderwerff that £,, 1 < p < 2, does not admit a
twice Gateaux differentiable bump function. The fact that in £,, 1 < p < 2,
there is no equivalent twice Gateaux differentiable norm was obtained earlier
in [FWZ].

The main tool in the present paper is the following

STRGALL VARIATIONAL PRINCIPLE. Let X be a Banach space with the
Radon-Nikodym property. Let e > 0 and ¢ : X — R U {oc0} be a lower
semicontinuous function which is bounded below. Assume that D(p) ={z &

X p(z) < 0o} # 0 and there exist a > 0 and d € R such that for every
zeX,

() = 2al|z]| +a.

Then there exist xg € D(ip) and f € X™ with ||f]| < £ such that for every
ze X,

@(z) 2 ¢(z0) — flz — 20),
i.e w4+ f attaing its minimum at 2o,

Remark 4. This version of the Stegall variational principle is due to
Fabian (see [Ph, p. 88]). '

We would like to thank R. Deville for valuable discussions.
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2. This section is devoted to the proof of Theorem 1. The next assertion
is a slight generalization of a fact from [BF]. (We include the proof for
completeness. )

LeMMa 1. Let X be a Banach space with an unconditional basis {eq taca
and letc > 0 and g > 1 be such that for everyn € N and B C A with |B| < n,

@ | 3 eol| < en

BeB

Then for every polynomial P with deg P < q, and every sequence {a;}32, of
different elements of A,

lim P(ey,) =0.

i—oo

Proof. Let f € X*, ie. fis a polynomial of degree one. Assume that
flea;) = a>0forie N Set zn = (31 a;)/ || iy €cll- Then fizn|l = 1,

and
flzn) 2 cm/” Zea'

So we get a contradiction.
Assume now that we have proved that for every polynomial P with
deg P < k ~ 1 < ¢ and for every sequence {e;}52,, Pley,}) — 0.

Let k < g and P be a monomial with deg P = k. For every z,h € X we
have

>acnl Ve 00 asm — o0.

P(z + h) = P(z) + Q(z, h) + P(h),

where for fixed z, Q(z,h) is a polynomial of degree less than k.

Assume that P(e,,) 2 a > 0 for ¢ € N. Inductively we can find iy < ip
< ... such that

(2) P(iea‘.j) > 52’3

Indeed, put i; = 1 and suppose i1 < ... < i, are already chosen. Set

n

Un = Ze“i;i'

j=t
Then for A € X we have

P(yn + h) = P(yn) + Qn(h‘) + P(h),

where @, is a polynomial of degree less than k.
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We can find in4y such that Qn(ea,, )} < a/2. Then

(Z Ca;, ) Plya + ealn“) = P(yn) + Qn(emnﬂ) + P(Bai“+1)
an a(n+1)
> 5 T3 + 2 .

Hence (2) is proved.
Now set Zn = Yn/||9mll. From (1) and (2) we get

P(zn) 2 an/(2ljya]*) 2 an/(20*79) = an'~*/9/2 — oo

Since ||z || = 1 we have a contradiction.

as n — 00,

Proof of Theorem 1. Since X does not contain subspaces isomor-
phic to cp we deduce that the unconditional basis {eq}acs i5 Poundedly
complete. Hence X has the Radon-Nikodym property (see [DU, p. 64] for
the separable case, but the same proof holds in the general case). Assume
that there exists a bump function b € G3{X). Without loss of generality, we
may assume that b(z) = 0 for |[z|| > 1. Set §(z) = b(z)~2. Then for every

z,y € X with b{a) # 0 we have

(3 ;!EI%) t_p’i"a'[p] (z,y,t) = 0.

b6(x) —
p(z) "~={ (=) if B(z) = 0.

Since b{z) = 0 for |z|| = 1, we get p(z) > ||z] for all z € X. According
to the Stegall variational pr1nc1p1e there exist xgp € X with d(zo) # 0 and
f € X* such that for every z € X,

(4) e(2) 2 plwa) — flz — o).

Let m € N and 2m < q¢ € p < 2(m + 1). Since |4| > No, according to
Lemma 1 we can find 8 € A such that

59 (z)(eh) =0

Set
|z +e?+1 if b(z) # 0,

fori=1,...,2m.
Then

(5) 6(zo + teg) = (o) + T8,(p) (zo,e5,1)
and

ifp<2m+1

60 + teg) = 8(z0) + 6 (ao)(el) + rep(0,e0,t) P> 2mt 1.

[p]!
Let p > 2m + 1. Assume that
[pl—

- uan(mﬂ)(eg’])go for [¢| < to.

fleg) + = !
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Then
) o
tf(eg) + &(zo +teg) — 8(mo) = 1f(eg) + [?]!5 (mo)(eg") + 15, (20, ea,1)

L rg(p) (0. €8, )
for 0 < t < tp. Using (4) we get
7,15 (@0 €6, t) 2 tf{eg) + 8(zo + teg) — 8(xo)
= tf(es) + (zo + teg) — (o) + ||lzo +teglh — [loofl? = ¢
for 0 < ¢ <y, which contradicts (3). If

) [¢]
fleg) + [p]! 8PN (zg)(ef) =0 for |t < to

we also deduce that ’I"gg@](ﬂ?o,—&g,i’) 2‘ tP for 0 < t < ¢y, which gives a
contradiction. This finishes the proof in the case p > 2m + 1.
The case p < 2m + 1 can be proved in a similar way by using {4) and

(5).

3. This section is devoted to the proof of Theorem 2.

LEMMA 2. Let 1 < p < o0, and w be a positive function on Rt such
that liminf, g t™Pw(t) = 0. Let X be a Banach lattice with respect to its
unconditional basis {ex}2, satisfying o lower p-estimate. Then there exists
in X x X an equivalent norm |- |xxx with the following property: for every
z € X xX there eristy € X x X and sequences {tn}30_;, {Tm )., tending
to O such that

(6) lim w(tm) /T = 0
and
(7 |+t x 2 |25 ux +7™m  formeN

Proof. Let {fc}32, be the conjugate system to the basis {ex}52,. For

z € X we define suppz = {k € N : fi(z) # 0}. In X we introduce an
equivalent norm by

1/p
lz|x = sup{(z l|x¢||p) i = Za:z-, Supp x; N supp x; == @ if ¢ #j}.
Obviously for #,y € X with suppz M suppy # § we have
(8) =+ ylx 2 (ol + 5 )P,

Assume that |ey|x = 1 for k € N. For z = (z1,22) € X x X and 5,k €N
we set

(@) = | fe(o)| + | fu(z)l, T=) g(a)ex and &; =% — g;(v)e;.
k=1
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We now define an equivalent norm in X x X by the formula
{9) | x % x =15|x-

Since lim infs .o t™Pw(t) = 0 we can find a sequence {f,}35_; of positive
numbers tending to zero such that ¢ Pw(tm) < 47™™. Set 7 = 2™ w(lm ).
Evidently (6) is satisfied, 7, — 0 and
(10) > TP ft < 0.

Fix ¢ = (21,22) € X X X with |z|xxx = 1. We can find an increasing
sequence {km }%5_, of positive integers such that

(11) Gl () < T

For m € N we set

if fip, (1) fiem (22) 2 0,

if fi,, (1) frn (:Ug) < 0.

G = —02m =1
Qim = Q2m = 1
Finally, we set
[ ]
-1_1
Yi = Z 20imln, 7'-m/:pei'ﬂrr»
ma=1

for ¢ = 1,2. From (10) we get 31,12 € X and y = (y1,72) € X x X. For
t €R and k,m € N we have

ox(z +ty) = gi(z),
(12 Gk (2 £ tmY) 2 Gk (Em¥) — Ghn (B) 2 ATMP — 7 > 3T
Using (9), (12), (8) and (11) we get, for m € N,
2 £ tmilyx = |2 ﬁmmg{ > [Ty + G (T tml) Ry, %
> |z, B + 05 (@ % tmy) 2 (12]x = Ghn (€))7 + 377m
= (1~ oy (&) + 8T 2 1 — PGk () + 3T
214+ (3 ~p)tm 2 1+ T,
which concludes the proof.

Proof of Theorem 2. Without loss of generality we roay assuorjle
that X is a Banach lattice with respect to its unconditional basis {ex}he;
satisfying a lower p-estimate. Let b be a bump function from Gua(X {5’ and
lim inf; g t~Pw(t) = 0. For z = (21, ) € X X X we put B(z) = bz1)b{za}-
It is easy to see that 8 is a bump function from Gm,l(J‘XI x X).

 Set 8(z) = B(x)~2. Then for every 2,5 € X x X with 3{z) 5 0 we have

(13) lim sup ,1(z, 4, 1) /w([t]) < oz, y) < oo
t—0
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In X x X we consider the norm |- |xxx from Lemma 2. Without loss of
generality we may assume that 3(z) =0 for |z|xxx > 1. Set

_ (@) — |zl x +2 if B(z) #0,
‘P(‘B)”{oo X B 2o,

Evidently ¢(z) > |2|xxx for every ¢ € X x X.

Since X x X is a Banach space with a boundedly complete basis we
deduce that X x X is a dual separable Banach space [LT, p. 9]. Therefore
X x X has the Radon-Nikodym property [Ph, p. 72]. According to the
Stegall variational principle there exist zo € X x X with 8(zg) # 0 and
f € (X x X)* such that

¢(z) 2 (z0) — fla — o).
For zy we can find y € X x X and sequences {tm}55_ 1, {Tm }5°_ satisfying

the conditions of Lemma 2. Assume that §'(zo)(y) + F(y) < 0. Then for
t > 0 we have

r5,1(20,y, t} = 6{zq + ty) ~ 8(wo) — t& (o) (v)
= p(z0 +ty) — p(@0) + [mo + tylk . x — |Tolfx — 16" (20)(y)
Z |0+ tyliwx — |zolxxx — t(E' (za)(y) + f(y))
> |zo + tylgfxx - |m0|J)JC><X'
From (7} we get 75,1 (%0,¥, tm) > T and using (6) we have
liﬂrlnrg,l(mg,y,tm)/w(tm) = 00,

which contradicts (13).
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