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On the type constants with respect to
systems of characters of a compact abelian group

by

AICKE HINRICHS (Jena)

Abstract. We prove that there exists an absolute constant ¢ such that for any positive
integer n and any system & of 2™ characters of a compact abelian group,

2T 245(T) < en~ V24, (T),

where T is an arbitrary operator between Banach spaces, tg{T) is the type norm of T with
respect to P and £n(T) is the usual Rademacher type-2 norm computed with n vectors.
For the system of the first 2" Walsh functions this is even true with ¢ == 1. This result
combined with known properties of such type norms provides easy access to quantitative
versions of the fact that a nontrivial type of a Banach space implies finite cotype and
nontrivial type with respect to the Walsh system or the trigonometric system.

1. Introduction. Let r1,7o,. .. be the orthonormal system of the Rade-
macher functions. The Rademacher type-2 norm of a bounded linear oper-
ator T' between Banach spaces X and Y is the infimoum over all ¢ > 0 such
that

1

i 2 4 1/2 n 1/2
(1) (1 “ ST dt) ” < (3 o) /
0 i=1 g
for all #1,...,2, € X. If n is fixed we get the Rademacher type-2 norm
computed with n vectors which we denote by t,(T"). These notions play an
important role in the local theory of Banach spaces.
We study relations of type norms defined with systems of characters of
a compact abelian group with the quantities ¢, (7).
Let & = (¢y,...,¢,) be an orthonormal system in Ly(M, ) for some
measure space (M, 1), In analogy to (1) we define the type norm tg(7T") with
respect to @ as the infimum over all ¢ > 0 such that

(§HZ¢, v dut ) <C(Z||x,_||)
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for all z1,...,2, € X. If T is the identity of a Banach space X we simply
write tg(X) and £,(X).
The main result of this paper is that there exists a constant ¢ such that

(2) 27244(T) < en™ 24, (T)

whenever 7 is a positive integer, $ is a system of 2" characters of a compact
abelian group and T is a bounded linear operator between Banach spaces.

Some of the statements of our results become more pleasant looking if
we use instead of the type norms ¢4(7") the normalized quantities

Mg (T) = |81 2t5(T).

This corresponds to Pisier’s notation A, (T) = n~*/2¢,(T) from [14]. Then
inequality {2) can be restated as follows.

THEOREM 1.1. There ezists o constant ¢ such that for any positive inte-
ger m, any system @ of 2™ characters of a compact abelian group and any
bounded linear operator T' between Banach spaces,

Ag (T) < ¢An (T)

Section 3 deals with the system of the first 2* Walsh functions. Because
of its special structure we may then even take ¢ = 1 in (2). Since the Walsh
type norms dominate the Rademacher cotype-2 norms we also get estimates
of the cotype-2 norms in terms of type-2 norms, in fact

Kon (T) S AH(T).
Here & (T) = m™Y2¢,(T) and ¢ (T) is defined as the infimum of ¢ > 0

such that
m 1/2 L m
(irad?) ™ < o f| e
dmml 0 i=1

for all z1,...,2., € X.

In Section 4 we prove Theorem 1.1.

Recall that a Banach space is B-conver if it does not contain the spaces
1 uniformly. In Section 5 we sketch how Theorem 1.1 leads via submulti-
plicativity arguments to easy proofs of the fact that B-convexity implies the
existence of ¢ > 0 and r > 2 such that tg, (X) < en?/" for any n, where &,
is the system of the first n trigonometric or Walsh fumctions. This provides
a new approach to the cotype estimates of B-convex Banach spaces in [6].
Actually, we obtain the same estimates already for the a priori bigger Walsh
type.

The last section deals with extremal cases in the following sense. It is
easy to prove that ts(X) < n%/? for any orthonormal gystem & containing
n functions. It is well known that t,(X) = n'/2 implies that X contains an
arbitrary good copy of IT (see Proposition 6.1 below). Our results now imply

2 dt)l/z
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that the same is true if ¢¢(X) = 2"/2, where & is the system of the first 27
Walsh functions. Moreover, we give an elementary proof that ¢, (X) = nl/2
implies that X contains an arbitrary good copy of I7..

We use standard Banach space notation. In particular, for Banach spaces
X and Y, the set of bounded linear operators from X into ¥ is denoted by
L(X,Y).

2. A lemma on type constants. Let us first prove a simple lemma on
type norms with respect to orthonormal systems which is nevertheless the
basis for all subsequent results.

LEMMA 2.1. Fiz a finile orthonormal system &, positive integers m and
k and a k-covering & = |Ji-, ®;, i.e. every ¢ € S belongs to ezactly k
different ®;. Then, for T € L(X,Y),

ta(T) < (m/k)/? max ts,(T).

Proof Choose (zy)gce C X and estimate

(1] S soreaun)” = (133 ¥ oteizas|| autn)
pED i=1 pEd,
<32 (I = otoree| aue)™
i=1 $c;
<A@ ( S )
i=l PES;
< (E @) (L Ieal?)”
=1 i=1 $ed;
1/2 Y
(%) mmem(Tier)”

By definition of ¢¢(T"), this implies the claim.

The following corollary is an immediate consequence of the preceding
lemma.

COROLLARY 2.2. Let & and ®; be as in Lemma 2.1. Assume that all &,
have equal cardinality. Then, for T € L(X,Y),

A2(T) < max Mg, (T).

3. The Walsh system. In the next section we deal with type constants
with respect to arbitrary sets of characters of a compact abelian group.
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Because of the special structure of the Walsh functions it is possible to get
sharper estimates by a separate treatment.
So, let us now consider the system of the first 2" Walsh functions

& = {ﬂ’r‘fi ae o),

i=1
where r; are again the Rademacher functions. Let us fix the notations
wan (T) = te(T) and wes (T) = As(T) for T € L(X,Y). The following fact is
taken from [11]. The sequence (won(1")) dominates the sequences of type-2
and cotype-2 norms:

(3) tg'n (T) S Wan (T)
The type inequality is easily verified. For the convenience of the reader
we include the argument for the cotype inequality.

The following duality relation between cotype and type norms is well
known (see [16], Prop. 3.2):

and Can (T) < Wan (T)

(4) ea(T) < ta(T").
Moreover, waa is a self-dual quantity:
(5) Wan (T) = Wnyn (T’)

To show this let us use the discrete version of the Walsh functions given by
the Hadamard—Walsh matrices Wan = ('LUij).?,T:;:l defined inductively by

WZ" Wzn )

— _9-1/2
W]_ - (1), W2n+1 2 (Wgn ——Wzn

Then we have

2
H

1 2" 2 2" an
S H Z i) dt = Z H Z Wi L1
0 i=1 i=1 =1

where & = {¢1,..., ¢} is an enumeration of the first 2" Walsh functions
and 7 is a suitable permutation of {1,...,2"}.
Therefore, war(T') is the infimum of ¢ > 0 such that

(S Swurs) <o Slaat?)”
J=1 =1 i=]

forall z1,...,29n € X. Then (5) can be shown using the proof of Proposition
3.4 in [12] together with the symmetry of the Hadamard~Walsh matrices,
ie. Wzn = W;n

The claimed inequality is now an immediate consequence of (4), the first
inequality of (3) and (5).
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THEOREM 3.1. For T € L(X,Y) and n > 1,
wan (T) < A, (T).
In particular,
kan (T) < An(T).

Proof. Look at the sets {¢r; : i =1,...,n}, ¢ € & These are subsets
of & and form an n-covering, so that the theorem follows immediately from
Corollary 2.2.

Remark. These estimates are tight in the following sense. If for some
function f and some constant ¢ > 0,

f‘if(.n) (T) S C)\n(T)
for any 1" and n, then there exist K > 1 and o > 0 such that
fin) 2 aK™.

This follows by considering the identity I, of 1™ for which Kpmy(In) = 1

and A (1) < ¢/((1 + log f(n))/n)*/? for some constant ¢ > 0 independent
of n.

4. Characters of a compact abelian group. The abstract reason why
we can find n-coverings of the first 2™ Walsh functions is that they can be
viewed as the elements of the dual group of a finite Cantor group {1, ~1}".
This enables us to extend the method to arbitrary systems of characters of
a compact abelian group.

To this end, let I" be the dual group of a finite abelian group G. If we
fix a subset A C I', then the sets vA, v € I', produce a |A}-covering of I'.
So we can formulate the next consequence of Lemma 2.1.

ProPOSITION 4.1. Let I' be the dual group of a finite abelian group and
let AC T, Then for T € L(X,Y),

Ar(T) < Aa(T).

To get an estimate in terms of type-2 constants we have to look for
large subsets A of I' that behave—at least for the involved quantities—like
Rademacher functions. Such subsets are provided- by subaets with small
Sidon constants.

Let us recall the definition. The Sidon constant S(A) is defined as the
smallest constant ¢ such that

Z oy | < csup‘ Za,,”y(t)|
veA G ea
for all complex numbers a.,. We need the following result of [15):
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THEOREM 4.2. There exists a constent ¢ > 0 such that for any compact
abelian group G with Haar measure p and any system A = (y1,...,v,) of
choracters of G,

1 =
cS}A) ([S]H ;m(t)ﬂ%‘

2d,t)1/2 < (S “ i’m(t)wi
€]

forall 2y,...,2, € X.
COROLLARY 4.3. For T € L(X,Y),
t4(T) < cS(A)t(T).

We want to find large subsets with small Sidon constants. This can be
done with the help of a special class of character sets. A subset A of I' is
called dissociate if an equation

[T+ =1
yEA

with e, € {—1,0, 1} implies £, = 0. Ohserve that we implicitly assume that
A does not contain the trivial character. The next proposition on the Sidon
constants of dissociate sets is proved in [4] (Prop. 1, p. 100).

PROPOSITION 4.4. There exists an absolute constant ¢ such that S(4) <
¢ for any dissociate set A.

We can find large dissociate subsets in any set of characters:

ProprOSITION 4.5. Let Iy be a finite set of characters of a compact
abelian group. Then there exists a dissociate subset A C Iy with

|4 = logg |Tol-

Proof. Choose a maximal dissociate subset A ¢ I'y. Then Iy must be
contained in the set

(4] = { II~ ey € {-10, 1}}.
A

Otherwise we could add any v € Ip \ [4] to A without changing the disso-
ciation property. Thus
[To| < |{4]) < 314,
which proves the claim.
Remark. The estimate in Proposition 4.5 is sharp, as the example

of the n-fold product of the cyclic group of order 3 shows. In this group,
which has cardinality 3", a subset is dissociate if and only if it is a linear
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independent system viewed as a subset in the n-dimensional vector space
over the field defined by the cyclic group of order 3.

I would like to thank J. Seigner for the hint to use dissociate sets.
Combining all these observations gives

PRrROPOSITION 4.6. There exists an absolute constant ¢ such that for the
dual group I' of any finite abelian group,

Ar(T) £ eAptiog, |y (T)-

However, with a little more work we can do better. We want to prove the
estimate of the preceding proposition for arbitrary finite sets of characters
of a compact abelian group. This is done by exhausting the given set with
not too many dissociate subsets.

Let A be a nonernpty finite set, 0 < ¢ < 1 and consider the following
procedure. Set A; = A. In the ith step we remove a subset B; C A; of at
least clog|A;| elements and let A;;; be the remaining set. This procedure
eventually stops, possibly leaving over a singleton. If this is the case we take
it in the last step. Let m be the number of steps. Then we have got a disjoint
partition

me
A=|]B:
t=1
LeMMA 4.7. The number of steps in the described procedure satisfies
314
m < .
= (1 +log |A])
Proof. Since m < ||, the assertion is certainly true for [4| < e*. For
{A| > e* we proceed by induction on |A].
If m = 1 we have nothing to prove. Otherwise we apply the induction
hypothesis to the set Ap and get
3| 42|
1€ —r— e,
~ ¢(1 +log|Az2])

Now let us consider the function

m —

T
flz) = 1+logz’
Then
log 1-loga
! —_— o e~ Seg
=)= (1 + log z)? z(1 +logz)3
Therefore f is increasing for z > 1 and f’ is decreasing for = 2 e.

and f"(z) =
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If |Aa| > €, we conclude by log |A] > 2 that
FUAD = f(142]) = F(OUAl - |42]) = f(|Al)clog | A]
2
=c —-——-—~log 4 ) > %,
1+logld|/] — 9
where £ is some number in the interval [| 4|, |A[]. Therefore,
3 3 314]
<= 1€ -flA]) = ——=
m_cf(!A2|)+ --cf(l ') C(1+10g‘AD
If |Az| < e, since |A] > e” we get
314]
< <3 L ——
7S el S8 S G ATy
which completes the induction and the proof.
THEOREM 4.8. There exists an absolute constant ¢ such that if A is a
finite set of characters of @ compact abelian group then for any T € L(X,Y),
A4(T) < eXarog 4 (T):

Proof. We use Proposition 4.5 to apply the preceding procedwre to
A = A with ¢ = 1/log 3 such that all the B; are dissociate, except possibly
the last singleton which may be the trivial character. We may assume that
no B; has cardinality greater than [1 + logs |A]].

Then by Lemma 2.1 with ¥ = 1, Proposition 4.4 and Corcllary 4.3 we
get

tA(T) < em*Phy 1, |4 (T) < €M Pt 1g 1 (T).
The estimate for m in Lemma 4.7 proves the theorem.

Now Theorem 1.1 is an immediate consequence of the preceding theorem
applied to || = 2" and the monotonicity of £,,(1").

5. Applications. In this section we indicate how estimates of the form
agm(T) < e (T)

may be used in presence of submultiplicativity to derive power type esti-
mates of a,(X) for a B-convex Banach space X, Since the methods and
results are essentially known (see the remarks following Theorem 5.2) we do
not go into details.

Applications of submultiplicativity rest on the next lemma.

LEMMA 5.1, Let (an}n>1 be a sequence of nonnegative real numbers sai-
isfying the following conditions:
(i) there emist ¢,s > 1 such that az= < en~Y* for any n,
(i) (n'/20p)ns1 48 nondecreasing,
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(i) the subsequence (oran )n>1 is submultiplicative, i.e. Ggmin < Gpmoign
for any m,n.

Then (n/ "0y )n> 48 bounded, where r is given by r=(1+ec’)slog2.

Proof. Choose ng such that ec® < ny < ec®+1. Then by the assumptions
on o, we get

2“0/1‘&2“0 S 21’10/1‘0”'5“1/8 < 1'

For given n. choose k such that 270% < n < 2ne(k+1) Since the assumptions
on ¢ and s imply r > 2, we can estimate

,nl/r-an < 2n0/22n0k/ra2n0(k+l) < 2n0/22nuk/1~(a2ﬂu)k+1

_ 2no(1/2—1/r)(2n0/1"a2nn)k+l < gnol1/2-1/r)
This finishes the proof.

If X is a fixed Banach space, condition (iii) is in particular satisfied for
the cotype numbers ., (X) (see [10], Lemma 13.4) and for A, (X), where &,,
is the system of the first n Walsh functions in the natural order. Moreover,
for the system @, = {ex : k=1,...,n} C Ly[0, 1] of the first » trigonometric
functions

ek(t) — e21rikt,
there exists an equivalent submultiplicative sequence (an(X))n>1, in fact
30an(X) € Ap,(X) < an(X) for any n > 1. This is proved in {13]. Conditions
(i) and (i) are also satisfied in all these cases.
Then using Theorems 3.1 and 4.8 the following can be shown.

THEOREM 5.2. Let X be a B-convex Banach space so that for some ¢ > 2
and K > 0,

(6) A(X) < En~YT  for any n.

Let (0 (X))nz1 be the sequence (kn(X))nz1 or (Ae, (X))nz1 with &, the
system of the first n Walsh or trigonometric functions. Then there exist
L>0 ond r > 2 depending only on g and K such that

(7) o (X) < Ln=7

Remarks. (i) Condition (6) means that X is of weak type ¢’ (if g > 2)
or of type 2 (if ¢ = 2). Here ¢’ is the conjugate number of ¢ given by
1/g+1/g" = 1. Then K may be taken as the weak type ¢’ constant and type
2 constant, respectively. For a,(X) = &,(X), (7) says that X is of weak
cotype 7. For the concepts of weak type and weak cotype see [8].

(ii) For the cotype and the Walsh functions it follows from Theorem 3.1
that we can take r = (14 eK%)qlog 2. The cotype case is already contained
in [6] with exactly this r. Power type estimates in the Walsh and cotype case

for any n.
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may also be proved with Propositions 6.2 and 6.3 using again submultiplica-
tivity (e.g. [10], Lemma 13.5). But this does not give quantitative estimates
of 7. According to a remark of Bourgain in [2] the Walsh function part was
proved by Pisier.

(iii) The results for the Walsh and trigonometric functions are particular
cases of Bourgain’s result [3] up to the constants.

(iv) For a Banach space X, let

B (X) = sup{d(Xn, (57 %) : X, C X, dim X, < n}

and
tn (X)) = sup{ts(X)
where d denotes the Banach—Mazur distance. These sequences are equiva-
lent, more precisely we have
E295(X) < ha(X) € 25°%(X).

For a proof see {12], Theorem 5.6, and apply an obvious discretization proce-
dure. The basic remaining question in this context was asked by Pisier [17].
If X is B-convex, does there exist ¢ > 0 and r > 2 such that An{X) < en'/T
for any n?

(v) It follows from Theorem 27.7 of [18] that there exists a ¢ > 0 such that
for any positive integer n and any orthonormal system € of cardinality 27,

Xs(T) < e(An(TYTI)*
for all bounded linear operators T'. Actually, in [18] only the case of identi-

ties of Banach spaces is treated but the extension to arbitrary operators is
straightforward.

: & orthonormal system of n functions},

6. Extremal cases. For Banach spaces X and Y, let d(X,Y) be the
Banach—Mazur distance of X and Y. The starting point of this section is
the following result of Pisjer.

PROPOSITION 6.1. Let X be a real Banach space. If t,(X) = n*/? then,
for any £ > 0, X contains an n-dimensionol subspace X, with d(X,,1}) <
1+e.

This can be found in [14] or [1] and is used there together with sub-
multiplicativity of the sequence %, to show equivalence of B-convexity and
nontrivial type.

Then Theorem 3.1 implies immediately

PROPOSITION 6.2. Let X be o real Banach space and let & be the system
of the first 2% Walsh functions. If ts(X) = 2%/? then, for any ¢ > 0, X
contains an n-dimensional subspace X, with d(X,,1%) < 1-+e.
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It is also well known that the equivalence of uniform containment of i
and nontrivial type has a counterpart for uniform containment of n and
finite cotype. But to the best of my knowledge the published proofs (see e.g.

[5], [7], [9], [10]} are by no means easy. In fact, they show the more general
result that

px = sup{p: X has type p} = inf{r : X contains [ uniformly},
gx = inf{g : X has cotype ¢} = sup{r : X contains Iy uniformly}.

We give an elementary proof of the special case ¢ = oo by demonstrating
the following statement,

PROPOSITION 6.3. Let X be a real Banach space. If ¢,(X) = n*/? then,

for any & > 0, X coniains an n-dimensional subspace Xy, with d(X.,,1%) <
1+e.

Proof. We have to show that, given ¢ > 0, there exist 1, .

coyEp in X
such that

(1-¢) pax |a3| < ” Zamwz

By assumption, we can find .7:1, , Tn, such that

n

1
Z|\mi”2=n and o ’Zs,m,
i=1 =kl

Here 6 > 0 will be chosen later. We may assume |z.| > ...

conclude from
Tl = E &1 E £324
e,—-—:i:l i=1

1 3
= (2_11. Z H Zt‘—'z‘ﬂ?af
gi=%x1 i=1

(1+ e) max [ali

< (1+8)2

> ||zn|. We

that

L ol € o P> Hzm

:E‘m € R,

S e-or-mbe-a(Ee)

i=l f=1 i=1
we have furthermore

T T (3

:i:loi

oy 1/2
) <146

Since for arbitrary 51,

_ HZ y
$ e =5 X [ S

.—il g4=%1
< 22n+1[(1 + 5)2 _ 11 < 22n+35’

— 2n+1

)



242 A. Hinrichs
if we assume § < 1. Choose ! € {+1,—1},4=1,...,n, such that

n n
H E e?:ci =min{” E &5

Combining the above observations gives
|| iaimi < H Z ngi” + 2(?1.-}-3)/261/2 <14 2n+251/2’
fa=1 i=1

If we let § > 27T2§1/2, then

n
H ZEM@'
t=1
for all £; = 1. Now we conclude from |z;|| < ||z1] £ 1+ 6 that

el == 3 lesl? 2 n = (= 1)(1+8)? 21— 306,
ki

:ai=i1}§1+5.

<L+6

therefore also
[les] = 1—3né
Finally, we let £1,...,&, € R and supy, |€x] = 1. An extreme point argu-

ment shows
n
i=1
On the other hand, choosing 1 < ¢ < n such that |§;| = 1, we get
2‘&wgzmwm51&%+§2Q%“+‘&%—§:Q%H
3 i#

<[ S em

fori=1,...,n.

<1+4.

+ (14 8.

Hence
H

1—6n6— 8 < | S gz,
==l

which completes the proof with 6,6’ such that § < 1, 6nf + 6§ < ¢ and
/2 < § < g,
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