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Equiconvergence for Laguerre function series

by

KRZYBZTOF STEMPAK (Wroctaw)

Abstract. We prove an equiconvergence theorem for Laguerre expansions with partial
sums related to partial sums of the (non-modified) Hankel transform. Combined with an
equiconvergence theorem recently proved by Colzani, Crespi, Travaglini and Vignati this
gives, via the Carleson-Hunt theorem, a.e. convergence results for partial sums of Laguerre
function expansions.

1. Introduction. The equiconvergence theorem for Laguerre series, orig-
inally established by Swegd [Sz], has then been significantly improved by
Muckenhoupt [M2]. Hypotheses imposed on the absolute value of the func-
tion in Muckenhoupt’s theorem were shown to be the best possible condi-
tions of this type.

In both theorers, for a given function, equiconvergence holds for partial
sums of the Laguerre polynomial expansion and the {(almost) trigonometric
expansion of a properly agsociated function. An appeal to the Carleson—Hunt
theorem then gives a.e. convergence theorems.

In this paper we prove an equiconvergence theorem for Laguerre function
expansions with partial sums related to partial sums of the (non-modified)
Hankel transform of a given function. Apart from some changes of vari-
ables, the assumptions impoged on the given function f in our version of the
equiconvergence theorem are essentially those from Muckenhoupt’s theorem.
In consequence, the conclusions that are drawn from this version, concern-
ing a.e. convergence, are precisely those that could be obtained from the
original version of the theorem.

A primary goal of this paper, however, was to exhibit further connections
between Laguerre expansions and the Hankel transform. Such a connection
between varions sorts of Laguerre function expansions and both modified
and non-modified Hankel transforms has recently been investigated by the
author in [St1), [St2]. Tt was not a surprise that the main tool we used

1991 Mathematics Subject Classification: Primary 42C10; Secondary 42099.
Key words ond phrases: equiconvergence, Laguerre series, Hankel transform.
Research supported in part by KBN grant ¢ 2 PO3A 030 09.

rrasl



286 K. Stempak

there was Hilb’s asymptotic formula [Sz, 8.22.4] that asymptotically links
Laguerre and Bessel functions. The same tool is used here.

A possible connection between Laguerre and Hankel transforms is al-
ready signalized on the differential operator level. For the kernels of the
Hankel transform of order o > -1,

$%(y) = Jo(zy) (@)'/?, ¥ >0,

a2 14—« .
(5 2 Yot =~z
[Sz, (1.8.9)]. At the same time, the kernels P& (y) of the Laguerre transform
(cf. below for the definition) satisfy

(d2 1/4 - o?

Wt myz)w;:(y)m\n,aws(y), n=0,1,..,

where Apo = 2(2n + a + 1) [Sz, (5.1.2), fourth equation]. Actually, these
observations form a starting point of the proof of Hilb's asymptotic formula
[Sz, 8.64].

Close examination of Szegd’s proof of his equiconvergence theorem re-
veals that the estimates in the most critical range of integration are hased
upon the asymptotic formula [Sz, (8.8.3)]. This formula, in turn, is a con-
sequence of Hilb’s formula and the well-known asymptotics for Bessel func-
tions [Sz, (1.71.7)]. In our approach we stop on using Hill's formula only,
hence we do not involve the cosine function via the aforementioned formula
(1.71.7). Applications of that version of the theorem to a.e. couvergence
of Laguerre expansions are guaranteed by an equiconvergence theorem for
Fourier-Bessel expansions recently proved in [CCTV]. That result in some
sense complements the lack of trigonometric expansions in our version of
the equiconvergence theorem for Laguerre expansions.

we have

x>0

2. Main result. For a fixed o > —1 consider the Laguerre functions
P {3) = Y2 (z) = 2nl/M(n+ o -+ 'j))1/2e""”2N:r:""*‘*/zL;f(:1’:2),

This set of functions is a complete orthonormal basis in L2(R, ,da) and
was previously investigated in the literature for instance by Markett [Ma).
L%{x) denotes here the Laguerre polynomial of order ¢ [Sz, p. 96]. A func-
tion f, measurable on R.., is sald to have a Laguerre function expansion
with respect to {1} provided the integrals

no= 0,10,

ol

Uy, = ‘ Fl@)yn{x) dx

0
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exist. We then write f ~ fo:@ tn¥n. This happens, for instance, if f €
LP(R.Hdm), 1< p < oo, in the case o 2 —1/2, or, in the remaining case
“l<a<—1/2,i f e LP(Ry,de), 2/(20- 3) < p < oo. For a function f
that has a Laguerre expansion its partial sums are then defined by

S‘n Za'kll/}k n=0,1,...
k=0
Given f, a suitable finction on Ry, its Hankel tronsform is defined by
(=)
Hf(z) = Hof(z) = S f(y)']a(my)(my)l/z dy.
0

Here Jy(z) denotes the Bessel function of the first kind of order o [Sz,
(1.17.1})]. The Hankel integral partial sums, if exist, are then given by

oo

SR.f(‘T’) = _\ Sfi(may)f(y) dy, T > 07 R> 0:
0
where
R
Su(w,y) = ()" | Jalat)Julyt)tdt.
0

In the case o > —1/2 the integral defining Srf exists, for instance, for every
f € LRy, ghda ). In the remaining case, ~1 < o < —1/2, this happens
if, in addition, {7 |/ (z)]z*+"/? dz < oo.

Our main result is the following theorem.

THEOREM 2.1. Assume o > —1 and f(z) satisfies

Vi -
(2.1) | (V:L/L:fim‘)lm 2274 dz =o(l), v— o,

i

de
(2.2) Sk()|w~<oo
1

and
(2.8) i |f(5u)|a:“’ dx < o0, = min{0, o + 1/2}.

0
Then, for every x > 0,

(24) i (onf (@) — S (@) =0,
and this holds uniformly for every fived interval [¢,w] C Ry
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Note that the hypotheses (2.2) and (2.3) automatically imply the exis-
tence of both the Laguerre series expansion and the Hankel integral partial
sums of f. In the proof of Theorem 2.1 we closely follow Szegd’s argument
{Sz, Chapter 9, §9.5] taking also into account, at appropriate places, Muck-
enhoupt’s improvement [M2]. To make the paper self-contained we include
a large part of details.

Proof of Theorem 1. To show (2.4) it suffices to check that

1 2
~ Sop1af(2) = O(1 )SI F@W)y" dy + O(1) S If ()] fi!fl +o(1)
0 1

s f(2)

as n — oo, with O(1} and o(1) both uniform in € £ # < w. The argu-
ment for this is the following: (2.4) bolds for functions of the type P(z) =
p(x)e=="/2z2+1/2 p(z) a polynomial (clearly s,P(z) = P(z) for large n
and Hmp. .o SgP(z) = P(z) uniformly on [g,w]; the second identity fol-
lows, for instance, from Theoren 3.3 and an additional simple argument).
On the other hand, these functions are dense in L!((0, o), mq(y)dy), where
ma(y) = y7 for 0 <y < 1 and m,(y) = y~* for y > 1 (here a variation
of Thecrem 5.7.3 of [Sz] is needed). Hence, approximating an arbitrary f
satisfying (2.2) and (2.3) by a suitable sequence Py, k= 1,2, ..., and using
the above formula for the difference f ~ Fj in place of f gives (2.4).
We have

(2.5) snf(z) = ﬁ Sn

0

(e, ) f(y) dy

with
Sp(z,y) = 2(wy)°‘+1/2 _(”’2+ya}/21{,l(x,y)

and K, (z (22, 4%) where K{* is the kernel in (9.5.

Explicitly,
Sn (ms y)

__20(n+2) /2 (g2
= Tmtarnow) e

y L (e )L:h %(yz) - Lg,{,i(m?)L”' 1(*)
— 2

_ 2['(7'!. -+ 2) at1/2 —(m"’-i~y2)/2
= Tnratou e

Lﬁl(y) Lazi(=?) L (y®) — L (o
X(Lﬁﬂ( ) +1 ,,_y 1 —L%+% -H( )Wyz—il( ))

) = 2) of [Sz].
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In what follows we assume 0 < € < 1 < w < 00 to be fixed and consider
the interval [e*/%,w'/2] rather than [¢,w]. The following two estimates will
be uged:

apoy | @R (pe/2=1/4)
(2.6) Li(x) = { e
(27) L;i(a’:) = ()(7‘),“’/2—1/4),

(cf. [Sz, (7.6.9) and (7.6.10))).
We first counsider the contribution of the interval 0 < y < \/— to

the integral in (2.5). We use the first representation of Sy (,z: ¥) to get the
estimate

o 0<z<w, a2z -1/2,

0<z<fw a<g-1/2

VTR
O~y | |fy)ly>r2

i}
x {[Ln-il )| iLn.—ll(?'J )|+ |L'n l—l( )| EL'n—|~1( 2)|}dy'

Consideration of consecutive cases: o > 1/2, —1/2 < o < 1/2 and -1 <
a < —=1/2 together with an application of {2.6) and (2.7) then produces the
bound

o) §1£w)ly” dy.
1]

Estimating the contribution of the interval [v2w, 00) to the integral in (2.5)
we first consider [v/2w, v/3n]. Here, for arbitrary a,

e—-y/2yca/2+1/4Lg(y) — O(na/2—1/4)

(cf. [Sz, (9.5.8)]). Also (2.6) and (2.7) give, for arbitrary a and £ < 22 < w,

(2.8) LA () = O(n®/2~1/4),
Hence, using the first representation of S, (z,y) gives the estimate

\/'fn

O(nt=no/ 234 1| () =292 127 ()| dy
o
. m 2
+ O(nl-~¢¥)n(ﬂ”1)/2"‘1/4 S \f(y)|ya"3/26“y /2|L$:('9'2)| dy
VIS

v 3n 3n
d dr,
=0(nl““)'n”""1( WOEERNO] J)
W/ 2w V2w
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Hence the bound

s8]
o § Ifl =

1
follows. In the interval [v/3n, /3v/2), v = 4n + 2a -+ 2, we use the estimate
(2.5) from [M1]:

, 1
=/ 2g=1* /2| Lo ()| < C

(29) T o [ Y ya\Lﬂ(y )‘ icrjl/‘k(yl/ﬂ —|mEU%:I/‘2|)1/4,

v/2 <yt < 3u/2,

and the Darboux—Christoffel formula for Ko™ (z,y) (cf. [z, (5.1.11)]). As
in the case just discussed, by enlarging slightly the region of integration we
arrive at the estimate

iy
O )/ M4 { | f(y)|y®3/2e ™V /|18 ()] + LS ()} dy
2
and (2.9) bounds the term resulting from considering L$(y?), say, by
By
it § R Py ALl dy
N

vav 1 dy

<Cn*l*ME T ()| .
M ylffl(,/l/3_|,1y,_y2|)1/4 \/th

This, by (2.1), gives the o{1) term. In the remaining interval [/31/2, 00) we
again use the estimate (2.5) from [M1]:

(2.10) n=e/ 2V Ay La ) < Ce, Y 2 Bu)2,

~ > 0. As above we first arrive at

o0
ity f oy S S
4§ Ry e PRI )]y dy
£/ 3L /2
and then (2.10) gives

o
w4 )y dy,
A3 /2
and hence the O(1) {77 |7 (y)| %ﬂ bound.

o2
=
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We now consider the contribution of the interval +/e/2 < y < /2w to
the integral in (2.5). Hence, at this point we can assume that supp f C

[v/€/2,v2w]. We will use the representation

1 JC\,_. R’l J R — Ja-—- R Jc! R
(2.11)  Salny) = R{ay)/2Y 1 (By)Ja 2_32 1(Rz)J&(Ry)

that follows, for instance, from [COTV, (2.2)] by (3.1) and the identity
. ‘ 20x
J:.ya-l‘l(‘ﬂ) + J, u._;;('[;) = T.]ﬂ(t).
We recall Hill''s asymptotic formula [Sz, (8.22.4)]:
(2.12) o MEOLE@W
. N-af? Din+a+1)
I'(n+1)
N =n+ {a-1)/2, £ > 0, the bound holding uniformly in 0 < # < w. As
one can note by checking the proof of Theorem 8.22.4 in [Sz}, (2.12) holds

for all real o with sufficiently large n (cf. also remarks in Problem 46 of [Sz,
p. 375)).

We postpone to the lagh section the proofs of the following two lemmas.

va(z(Nt)l/z) + O(n0/2_3/4):

LEMMA 2.2. Let & be an arbitrary real parameter and {an o}, {bno} be
sequences of positive numbers satisfying

/2
(2.13) (i'-T—L%-) =1+ 0(n~1/?)
and
(bra) /2 = 01/ 4 O(n=H12).
Then

(214) e MEHNRLO(E) = (g 0) 2T (20, o) E) + O(n2Y)
untformly in 0 <t < w.
Lemma 2.3, Lot o, {an,a} and {bn,q} be as in Lemma 2.2. Then
L (y*) — Ly (2?)
T

/2 Jﬂ(z bﬂ,C\: 1!) — Ju (2 bﬂ,‘a LL')
PR

gy E
e /Z,yw

+ O(na/2#1/4)

= (aﬂn,r):)

uniformly for z,y in every fived interval g,w], 0 < &8 <w < 00,
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Using the second representation of Sp(x,y) gives

Sn(-‘";ay)
—9 I'in+2)
= WWEL Tat D)

el 2y pex—Lro 2
X {y-E““g/z(mz)“/zLﬁm(mz) LTV (e )72 it ‘)mj;“(m i
(“32)}

. G L3 () — Le .
—-g® o (a=1)/2yo—Llr 2y L —u%/ 27, a2 Hn LA e ]
— e ) e VRLT (g?) - oV () o

_ IL(n+2)
2\/—1“(77 +a-+1)

We now take in the lemmas above the following sequences:

{y- AB ~z-CD}.

1) In Lemma 2.2 when considering the term A:
Fn+o+1) ¢
Gntla = ”(“”fm—nl ”) v Dngte =0

2) In Lemma 2.2 when considering the term I:

Fn+o+1) . #/(am1)
Oppl,oml = n(*”(*j;@":"z—)"—)'nl a) v buptaer =N

3) In Lemma 2.3 when considering the term C:

Ol el = Bnglaml =7

4) In Lemma 2.3 when considering the term D:
On+1,0 = Dpgl,a = N

With the notation 7 = 2n'/? this produces

Sn(z,y) = 2\/@?%%

I'n+oa+l) L-ae/2 7 g2 Y (gt 28 4
P {y T2 n Jo(Tiw) 4 On )

(a—1)/2Joc I.(”'U) oo 1(%:{')
L z? — y?

—pp {P(” ot 1)n1/2“°‘/2Ja_1(ﬁm) n n(w-wzt)/z-—a/al{)(l)}

I'{n+2)
Ja(n"r) m/’2-1/40(1)} }

+ O(n(c\e-wl)/iim 1./41):|

a/? Ja (ﬂy)
z? — y?
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and we then conclude that

~ YR (J (7
(2.15)  Sul(z,y) Mz\/—( S (Fie){ ay}z(fy; s (7))
_ ¥ ac1(2) (To () - Ja(fiz))

4—0(1)).

Indeed, consider lor instance the main term from the first bracket and the
remainder from the second bracket, Using the estimate J,(t) = O(t“‘” 2), %
large, shows that this is O(1). Considering both remainders gives even the
petter estiate O /%), When it comes to the remainder from the frst
and the main tern from the second hracket we use the mean-value theorem
to obtain

y? - ?

Jot (202 — Jyg (201 22)

(2.16) —” =m 2 ()
with a € between 2nt/%y and 2n'/?z. Since

-1
(2.17) w1 (&) = ”“—‘E“Ja—l({f) + Ja—2(€)

it follows that (2.16) is O(n*/*) and the required bound, O(1), follows. Anal-
ogously we treat the torms resulting from the third and fourth brackets.
Using again the estimate J, (t) = O(t™/?), ¢ large, we find that

“(2n Y23) a1 (20 28) = O(1),

ant/2 u
1’:

hence Sy, (2, ¥) equals
(wy)*/
o (a2 (201/2) T (21 %) — a2 7)o (21 )
y2 - @t

+ 0(1)).

Finally, since supp f ¢ {\/2/2, V2] and « € [¢1/2,w'/?] we obtain
Vi
J Sulw)s ) dy
VETR
em
s Sguun flm) + O(1)a*? | |F )y 2 dy
JoTE

1

o) | Wy dy +0(1) | I£w)
1

0
This finighes the proof of Theorem 2.1

£ Sgnlfuf(.’ﬂ) |
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3. Hankel transform. In the recent paper [CCTV], Colzani, Crespi,
Travaglini and Vignati gave a very elegant proof of an equiconvergence theo-
rem for partial sums of the modified Hankel transform. Given e > —1 and f,
a suitable function on Ry, its modified Honkel transform H, f is defined by

T Tu(@Y) | 2011
Hf)= Hof(z) = \ fly)=—y* " dy.
The integral partial sums S f, R > 0, if exist, are then given by
o0

Srf(z) = | Srlz,v)f ) dy,
0

where
R
Sr(z,y) = e~ %> S Jo(t) Ja (yt)t di.
0
Clearly
(8.1) Sr(z,y) = (z/y)* T Sp(z,y)
and

Spf(@) = 22 5g(() @A () (@),
In [CCTV] the authors considered only the case e > —1/2. The statement
below is, for the indicated o’s, only a reformulation of the basic estimate in
Temma 2.4 of [CCTV]. For the remaining range of o’s, —~1 < o £ 1/2, we
provide a slight modification.
LemMMA 3.1. Leta > ~1 and e, n > 0 be fived.
{a) If 0 <y <e < then
[Sa(z,¥)] < Cy", v =mn{0,e+ 1/2},
with o constant C depending on £ and © but not depending ony and R > 1.
(b)) If 0 <z <n <y then
[Snla,y)| < Cy ',
with a constant C depending on n and & but not depending ony and > 1.
(¢} If e < @,y < then
1 sin R~ y) :
Sp (i, y) = o mrermetecssnemin | (]
R( 13!) - % — Ly
with o constant C depending on & and 1 but not depending on w,y ond
R>1
Proof. We consider only the case ~1 < o < ~1/2 modilying, al ap-
propriate places, the argument from [CCTV] (note a misprint in (2.5) of
[CCTV]: in 0 € ¢ < 1 the factor #* is migsing and the estimate should
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read [Jo(t)| £ Ct¥ for o's satisfying o > —1/2 this was, however, imma-
terial when proving Lemma 2.4 of [CCTV] since then the global estimate
Ja ()] € Ct=Y2% ¢ > 0, was used).

We restrict our attention to changes that should be made when modifying
the proof of Lemma 2.4 in [CCTV] and use the representation (2.11) of
Sg(x,y). For (a) the only change oceurs in estimating the factor J,(Ry) by
C(Ry)*. In the proof of (h) no change is necessary. For (c) we use

b (@) Tu(yt) = O, ¢ 0,

instead of the estimate (2.7) in [CCTV]. This gives the required bound by
a constant when integrating the above between 0 and 1. The rest is exactly
the same as in [CCTV].

In what follows we use the notation
[+ =)

Frfw) =\ Fula,y)f () dy,
0

1 sin Rz -
Fr(z,y) = lonke-y),
T T—y
Analogously to [CCTV] Lemma 3.1 gives
LeMMa 3.2, Let o > ~1 and v = min{0, o + 1/2}.

(a) Let supp f < [0,&]. Then for z > ¢,
Sef (@) + | Frf(@)] < C{IF ()Y dy,
0

with o constant C depending on € and z but not depending on f and R.
(b) Let supp f C [1,00). Then for w <,

[ee]

Snf ()| + 1 Frf@) < C | 1Fw) %jf
"

with a constant ¢ depending on n and © but not depending on f and R.
A parallel to Theorem 2.3 of [CCTV] 1 now the following theorern.

TupoweMm 3.3. Let o > ~1 and assume f to be in LMRy,dz/(1+z))
if oz =172, or S[I} |F () |at 2 de < 0o and §; | ()| € < co when ~1 <
o < ~1/2, Then, for any » with 0 < z < o0,

lim (Spf(x) ~ Frf(z)) =0
Bt 020
and the convergence is uniform in every interval 0 <e <z <n < 00.

For the proof we merely repeat the argument from [CCTV], An appeal
to the Carleson-Fhint theorem and a localization argument then gives
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COROLLARY 3.4, Let o > —1. Assume [ salisfies the assumplions of
Theorern 3.3 and, in addition, locally belongs to an LP(Ry,dx), p > 1.
Then

I}Er;c Srf(x) = f(x)
almost everywhere on (0, 00).
The following inclusions are eagily verified:
(a) for every 1 <p<ocand ~1 <& <p-1,
dx

n r'E‘v 1 ]R: e ;
L (R,}.,.E d.ﬂ.)CL ( “l"’}-’m)

(b) for every 1 <p < oo and =1 < & < p— L+ p(a+ 1/2),
d
| o oo}

Therefore, in the case o > —1/2, Corollary 3.4 implies Corollary 3.2
of [CCTV]. In fact, if f € LP(Ry, 2 dw) and 4{a + 1)/ (2 +8) < p <
4a +1)/{2a + 1), then the function g(x) = «* /21 (x) is in LP(Ry., x*dz)
with § = (L -~ p/2)(2c + 1) and =1 < & < p ~ 1. Hence the conditions
Sng(z) — g(z) almost everywhere as £ — co and

Srg(z) = Sa(()*H2 () (@) = 2250 ()
imply Srf(x) — flz) almost everywhere as R — co.

Combining Theorem 2.1 and Corollary 3.4 implies convergence of the
partial sums: s, f(z) — f(z), n — oo, almost everywhere in R for every f
locally in some L? space, p > 1, and satisfying the assumptions (2.1)-(2.3)
in Theorem 2.1. On the scale of weighted LP-spaces this gives the following.

1
LP(R., xfdz) C {f : S!]"(:i:}l:c"“*"lf'2 da < oo and \ |fx
0

Prorosition 3.
Assume that

(a) =1 < 6§ <p—1-4py when 4/3 < p <

MY1/3—p<b<p~1+pywhenl <p<df3.
Then for every f € LF(R,., ztdx) the partiol sums s, () converge to [{x)
almost everywhere in Ry as n - oo,

5. Let o > —1, 1 < p < oo and v = min{0, e + 1/2}.

Proof. Verifying that the conditions (2.2) and (2.3) in Theorem 2.1 are
satisfied is irnmediate. Let 1/p+1/¢ = 1. By Hilder’s inequality the integral
in (2.1) is bounded by

Vv —(8/pt1/2)q La
, x b
(3.2 1tea( 7 )
: A1 /2

w3 o 1 — g2)ur4
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A change of variable gives the following hound on the integral in (3.2):

2
1, (/A8 0 1/2)-1/2 d
(3.3) Cv )2 (P13 4 [ — uf)eld

We consider separately the cases 4 < ¢ < 00, g == 4, 1 < ¢ < 4 showing that
(3.3) s o(1) as v — oo Let 4 < ¢ < oo, Evaluating the integral in (3.3)
shows that (3.3) Is boundod Dy
(3.4) Cly /0ty 12 (L -q/4) /3
and the assmuption p 4- 6 = 1/3 gives now precisely what we need: the
negativity of the exponent in (3.4). If ¢ = 4 then (8.3) is bounded by

Cly B0 A2 1R In v

and now the assumption ¢ > -1 works, If 1 < ¢ < 4 we bound (3.3) b
e /R 1/ 2) (1 q/4)

and, again, the assumption & > 1 wmakes the exponent negative.

Proposition 3.5 also leads to almost everywhere convergence results for
expangions with respect to another gystem of Laguerre functions (cf. Propo-
sitions 2.1 and 2.2 of [St2]). Consider the system of Laguerre functions

1) 12
A J R /2 ,
L6 - (pregyy) ¢ L),
orthogomal in L2 (R, , dx).

COROLLARY 3.6, Let <o > ~1 and assume p € (4/8,4) when a > —1/2,

and p € (L4 a/2) 1, 4) otherwise. Then

n

(3.5) D 19, L3 1) S () = glw),  n = 00,
k0
a.e. for every g € LY (R, dx).
Proof. Since ¢ () = £ (a?)v/2x woe have
(ot ey = {00 LY 1 )

where g(i) == 2 M= (! 12), Multiplying

T

SO @i (272) - o)

Rial)
by 27122~ 1/4 gives (3.5) provided f belongs to a proper weighted Lebesgue
space. Since
0? (=]
| oGP ds = €, | 1) Pt~/ du
0 0
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it suffices to check that 6 = 1—p/2 satisfies the restrictions from Proposition
3.5. This is immediate.

Similarly consider the system of Laguerre functions
/2
100 = (rotls ) )
orthonormal in L2(Ry., z%de).
COROLLARY 3.7, Let o > —1 and
4o+1)/(2a+8) <p < 4la+1)/(20+ 1}
when & > —1/2, and 1 < p < oo otherwise. Then

7

(3.6) > (0,47 pa ey G (&) — g(=),

k=0
a.e. for every g € LP(R., z%dz).
Proof. Weuse 2 (z) = v2£%(2?) rather than £ (). Then only a change
of variable is required. Since 'tbn{ ) = @(x) et/ wo have
(£ 00 2agde) = (95 PR) L3 (@i 1 d)s
(a+1/2) f (), Multiplying

T
S ) 1agany bl (x) = f(z)
k=0
by ™ (2+1/2) gives (3.6) provided § =
tions from Proposition 3.5

R - 00,

where g(z) =2~

(1 —p/2)(2cx -+ 1) satisfies the restric-
. Again, checking that is inunediate.

4. Proof of lemmas. We start with the proof of Lemrua 2.2. Replac-
ing the factor N=*/2["(n 4 a4 1)/ (n+ 1) by n®/? in Hill's asymptotic
formula (2.12) is allowed since

N_a/zl—‘(n o X A= 1) _
In+1)
This follows from the estimate J,(s) = O(s~ %) for ¢ large, and fhe bound
a/ZF(n ot 1) - nw/Z
In+1)
Next, changing N into n in the formula
e AL (1) = 020, (2(NE)2) + O(ne/ 3814
is also justified since
(4.1) n®?(Jo (2(NE)/?) ~

nﬂ”) To (NP e qol330(1),

N7 < O/,

Jo (2('!’&'!3)1/2)) - O(n(x/'z-»«i%/:l).
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Checking (4.1) requires an application of the mean-value theorem. The dif-
ference on the loft side of {4.1) equals

1 N —mn
/2 =Y T
2t N2 L pil? 'fcjy (&),

with € between 2(N )% and 2(nt)'/%, Hence the bound (4.1) follows. Re-
peating the above argnments for the variant of Hill'’s formula we have just
obtained:

e AL () st g (2(nt)E) 4 O(ne/ 2308y,

allows a further replacement of n®/? by (t,r,,,,,,,x)“/ % and 2(nt) M2 by Z(bn,ﬂt)‘-“/ 2
Proving Leuuna 2.3 wo first define
@) = Lif(x?) - 'fb""'zf:‘”uﬂm""".fa(273.1/2:1:)
and show that
op (@) = O, e<ogw

By using the differcutial propertios of Bessel functions and Laguerre poly-
nomials, {2.17) and th"‘({) w - L1 (E), and the identity

Jo- ]( ) - “F Trr( ) TJ(E(.&) - Jm"}«l(t):
and applying Hilly's formula from Lemma 2.2, we find
() ~ 2 LT (2%)

- n“/g{(r:"’ Py T, (Ruz) -+ o e -ﬁ(Jnml(ﬁm) - %k(ﬁaz)) }
= ~ 20 % (g~ et (et D2 (i) + O(n/2-1/4))

/% ((a”’ Py I (i) + Fie® 2 (%ﬁ;«fu(ﬁm) = Tt (ﬁm))),

where, as before, # == 2n'/2, After a cancellation the remaining terms are
easily noted to be Q(n®/2 /1), Wo now write

Laly®) = L) L puly) = on(®)
% -y wety o w-y
e ) = e
e /2 HAO (1) n/ 28 12~ J{t(w’:{g : ;"d(nm)
v 2 e L gt 20
ot ”tw'Q 1 . ¢ v & T . Ja(ﬁm).

&y -1y
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The last term is O(n®/2~/*). Hence Lemma 2.3 follows with a4 = bn o
= n. The general case requires the following modification. Define

Pul(@) = LE(2) ~ (0n,0) % 120 T (2(0n,0) /P

and, in order to make a cancellation possible, for given sequences {tna},
{bno} satisfying (2.13) and (2.14) set

~ 1/ {1 41 T .
Ayl = (b'n-l-l,a)l/(rH L)((Lml-ll,n‘)a/(w + ): bn,(x»l«l e bn.-H.,u.

It is fairly easy to check that these new sequences also satisfy the conditions
(2.13) and (2.14) (now with the exponent {rv 4 1)/2 in (2.13)). Proceeding
as above and applying Hilb’s formula from Lemma 2.2 with the Laguerre
polynomial and tilde sequences corresponding to the pair (ce--1, 7~ 1) leads
to the estimate ¢, (x) = O(n®/2~/4). The rest is exactly the same as before,
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Tail and moment estimates for sums of
independent random vectors with logarithmically concave tails

by

RAFAL LATALA (Warszawa)

Abstract. Let X; be a sequence of independent symmetric real random variables with
logarithmically concave tails, We consider a variable X = ¥ #;X;, where v; are vectors
of some Banach space. We derive approximate formulas for the tail and moments of || X||.
The estimates are exact up to some universal constant and they extend results of S. J.
Dilworth and S. J. Montgomery-Smith [1] for the Rademacher sequence and E. D. Gluskin
and S. Kwapieid [2] for real coefficients.

Definitions and notation. Let X; be a sequence of independent sym-
metric real random variables such that the functions
Ni(ty=-InP(|X;| >¢t), t=0,
are convex. Since it is only a matter of normalization we may and will assume
that Nm(].) = 1.
Let us define the functions N; by the formula
oo 1R for |t| < 1,
Nilt) = {N¢(|t[) for [t > 1.
For sequernces (a;) of real numbers and (v;) of vectors in some Banach space
F and u > 0 we define

Ha)lwo =sup { Y ebs: 3 Mi(bs) <uf
and

1wi)lIN e = sup{[I (v (i)}l 0™ € F, 0" < 1)
We denote by &; the Bernoulli sequence, i.e. a sequence of i.i.d. symmetric
random variables taking on values %1,
For a random vector X and p > 1 we write ||X||, = (E||X|[?)*/?, and
for a sequence a = (a;) of real numbers, Jja|, = (3 |a:|")*/>.
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