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The last term is O(n®/2~/*). Hence Lemma 2.3 follows with a4 = bn o
= n. The general case requires the following modification. Define

Pul(@) = LE(2) ~ (0n,0) % 120 T (2(0n,0) /P

and, in order to make a cancellation possible, for given sequences {tna},
{bno} satisfying (2.13) and (2.14) set

~ 1/ {1 41 T .
Ayl = (b'n-l-l,a)l/(rH L)((Lml-ll,n‘)a/(w + ): bn,(x»l«l e bn.-H.,u.

It is fairly easy to check that these new sequences also satisfy the conditions
(2.13) and (2.14) (now with the exponent {rv 4 1)/2 in (2.13)). Proceeding
as above and applying Hilb’s formula from Lemma 2.2 with the Laguerre
polynomial and tilde sequences corresponding to the pair (ce--1, 7~ 1) leads
to the estimate ¢, (x) = O(n®/2~/4). The rest is exactly the same as before,
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Tail and moment estimates for sums of
independent random vectors with logarithmically concave tails

by

RAFAL LATALA (Warszawa)

Abstract. Let X; be a sequence of independent symmetric real random variables with
logarithmically concave tails, We consider a variable X = ¥ #;X;, where v; are vectors
of some Banach space. We derive approximate formulas for the tail and moments of || X||.
The estimates are exact up to some universal constant and they extend results of S. J.
Dilworth and S. J. Montgomery-Smith [1] for the Rademacher sequence and E. D. Gluskin
and S. Kwapieid [2] for real coefficients.

Definitions and notation. Let X; be a sequence of independent sym-
metric real random variables such that the functions
Ni(ty=-InP(|X;| >¢t), t=0,
are convex. Since it is only a matter of normalization we may and will assume
that Nm(].) = 1.
Let us define the functions N; by the formula
oo 1R for |t| < 1,
Nilt) = {N¢(|t[) for [t > 1.
For sequernces (a;) of real numbers and (v;) of vectors in some Banach space
F and u > 0 we define

Ha)lwo =sup { Y ebs: 3 Mi(bs) <uf
and

1wi)lIN e = sup{[I (v (i)}l 0™ € F, 0" < 1)
We denote by &; the Bernoulli sequence, i.e. a sequence of i.i.d. symmetric
random variables taking on values %1,
For a random vector X and p > 1 we write ||X||, = (E||X|[?)*/?, and
for a sequence a = (a;) of real numbers, Jja|, = (3 |a:|")*/>.

1991 Mathematics Subject Classification: 60G50, 60B11.
Research partially supported by the Foundation for Polish Science and KBN Grant 2
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TarOREM 1. Let v; be wectors of some Banach space F such that the
series X = S uX; is almost surely convergent. Then for each p > 1 we
have

1 w U
75 X+ ka1 ) < [ Xl < KX+ 1)l
where K is o universal constant (K < 300).

First we will prove the estimate from helow, hy the sane method as in
[2]. Since | X|[1 < [[X||p, by the definition of [[{v;}{¥, ,, it is enough to show

that
E(Libi S 14“ Z(I’.{X

for any sequences (a;) and (b;) of real mnnb(\m tmch that 3" Ni(b;) <

By symmetry we may assume that a;,b; 2 0. Let [ = {1 : b; > 1}, Then
card(I) < p. Since E|X;| = 1/e we obtain by the contraction principle
and estimate of moments of the Rademacher series ([3], Theorem 1 and

Remark 1)
ST

| S,
22\/5831119{2@@::,;: (~2<p ](,t\<1} z\/z Zra.;bi.
We also have

e

5z {1+ VB2 0 = of < af)

X

2 (Z“ibi)(P(Xi >b; i€ TP
2 %(Zaibi) exp (““ ‘“ZN(b ) 2 g{;%mb@.

el 1€
Sa z asb; < (2\/§8 A= 26)_” Z(L-,;Xin < 14” Z G,iX-"Hp.
To prove the second inequality let us first observe that X; = ¥; + Z; for
some symmetric random variables Y; and Z; such that
.0 ~ t fort <1
AR — 3“‘N1‘(5) e (F) = oy
P(lYi| 2t)=¢ ,  where  N;(%) Ni(f) fort 31,
and |Z;] € 1 a.e; we will also assume that the ¥; are independent and so
are the Z;. By the contraction principle,
< (*” Y
s L ) »

quizﬂ» ) < ” E'u.ie.;| ,
il < (14¢)

)
+ H Z"""Zi

and
, < HZWK‘ .

P

k]

X ’
1

H Z'vix lp < (14 C)H Zm}’; ,
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Hence it is enough to prove that

0 | v, <2 Zwer],

We may obviously assume that the above sum is finite. Let M, 'R — R
be an odd function whose restriction to R* is the inverse of ;. Then ¥;
has digtribution M;(uq), where py is the measure on R with density 1e“|"” ‘
This means in particular that

> f)

P( ’ Z%‘Yi > t) w47 (:r eaR" . H ili(,ﬂ,
fesl insl

where pl' is the product weasure py @ ... & on B*, Let M be the median
1 ]
of || iy ws¥i| and

+ T4 (v) 1%,

A:{meR”:

< M}.

|int(mi)
L2

Then p(A) = 1/2 and by a result of Talagrand (see [5], and [4] for a simpler
proof),

pr(A+Ve) 21 —2e7°,
where
T
V, = {T e R™: Zmin(lmd,mf) < 36.9}.
fe=]

Let z = y+ z with y € A and z € V,. By the convexity of N; we have
|Mi(z:) — M;(ys)] < 2M; (2 ~ yi]), so for some v* € F* with [Jv*}| < 1 we
obtain

Z'UM () {mu (Zl);Mq mz)<M+Zv () ~ Mi(ys))

FE gzl

< M+ 22 |v* (03)| Mi(|2:])
]

7l L]
< M - 2sup { Z |20 (04} by - Zﬁi(bi) < 363}
fexl f]

£ M A 2] (i) IR pes-

So

203,360 ) S 267

i
P(| 5o

and since ||(vi)||% xy € Al (w)||% , for A 21, we have for ¢ > 2,
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pf] e

Therefore integrating by parts gives

n
H Z v, Y
i=1

> M+ (0§, ) < 26772,

, S M2, + 1l wllx,

[= ]

X ( Sptp_lP(” anvm” > M+ (24 t)||(v,g)||j‘\’,-,r,)clt)
0 =1

/e

<M+ )[R (2 + (OSQW’“‘%""” 7))
0

I(p

+ 1) 1/p
- M Y, (2 v (2—;—-) ) < M T4,

Since M < 2| 320, v;¥;||1 the proof of inequality (1) is now complete.
Theorem 1 and the Paley-Zygmund inequalities as in [1] and [2] yield

COROLLARY 1. There exist universal constants O < ¢ < C < o0 such
that under the assumptions of Theorem 1, for each t > 0,

P(IX{ > CUX {1 + (i) ¥s)) S e,
P(IX| > (X1 -+ Nwa)llir,e)) 2 min(e,e™).
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Correction to
“An index formula for chains”

(Stucia Math. 116 (1995), 283-204)
by

ROBIN HARTE (Dublin) and WOO YOUNG LEE (Suwon)

In the proof of Theorem 9 the formula (9.3),
a
b 1

()= () ()

y
(=6 =0 ) () (=0 ),

(§)-(5)e oo ().

(=b a)=(-b a)(a”(;f’bbﬂﬂ("b a).
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