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Holomorphic motions commuting with semigroups
by

ZBIGNTEW SLODKOWSKI (Chicago, IIL)

Abstract. A holomorphic family fx, |2] < 1, of injections of a compact set E into
the Ricmann sphere can be extended to a holomorphic family of hc_:meomorph:sms F,
|#} < 1, of the Riemann sphere. (An earlier result of the a..uthor.) It is shown l?elow that
there exist exteusions Fz which, in addition, commute with some holomorph}c families
of holomorphic endomorphisms of C\ fz (&), || <1 (under suitable a_.SSumptmns). The
classes of covering maps and maps with the path lifting property are discussed.

0. Introduction. Holomorphic motions were introduced by Mafié et al.
MSS). B

DerFiNrTION 0.1 [MSS]. Let D denote the unit disc and C = C U {99}
Let B be an arbitrary subset of C. A map (v,f:) — fu{z) 1 DxE —Cis
called a holomerphic rrotion of E in C over D if:

(i) fo = idg;

(ii) f, is an injection for every v € D, and _

(iii) the Function v — fu(2) : D — C is holomorphic for every z € E.

The following extension theorem due to the author [St1] (cf. also [S13]
for a simplified proof) is the basis of the results of this paper.

TyroREM 0.2 [St1]. Let (v,2) = fu(2) : D x E — C be a holomorphic
motion. Then there is o holomorphic motion (v,z) — Fy(2) : DxC—C
such that F,|E = fu forv e D. |

Partial extension results were earlier obtained by Sullivan and Thurston
[ST], who posed the problem answered by Theorem 0.2, and by Bers and

"4

den BRI
R‘Uy";}ﬁz lﬁead]er is referred to [MSS, ST, Su, BR, EKK] and [S‘il,B.] for further

,Su{tﬂ on holomorphic motions, their background and apphca.tlon& . .
" P l)llemé concerning the “natural” extensions of holomorphic motions, in
p%rtiiilar of finding equivariant analogues of Theorem 0.2 were formulated
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2 Z. Slodkowski

by Sullivan and Thurston [ST], Bers and Royden [BR] and Curt McMullen
[Mu]. In [Mu], Curt McMullen formulated two questions, which we reproduce
here in a somewhat re-digested form (which means that C. McMullen is not
responsible for possible shortcomings of this formulation).

Let (v,z) — fu(2): DxE — T, with E closed, be a holomorphic motion.
Define U, = C\ f,(E)}, ve D.

Suppose that there is a group of holomorphic families of conformal maps
gv: Uy — Uy, v € D (with g,(2) holomorphic in (v,z)). Must there exist a
holomorphic motion (v, z) — F,(2) : DxT — C extending f and commuting
with every g, i.e.,

guFu(2) = Fugo(7)

The second question is whether the same conclusion is true if the group
{g} is replaced by a semigroup of holomorphic families of endomorphisms
gt Uy — Uy ' '

The following theorem, proved by the author in [S3, Sec. 3] (cf also
[St2}) provides a complete answer to the first question.

THEOREM 0.3 {812, S13]. Let Eo be a compact subset of the Riemann
sphere C = CU{oo} having at least 3 distinct points. Let (v, z) — f2(z) : Dx
Ey — T be o holomorphic motion. Define U, = C\ By, where By, = f2(E),
v € D, and let @ be the group of all fiber-preserving biholomorphic maps g
of U = U,ep{v} x Uy € D x T of the form (v,z) — g(v, 2) = (v, gu(2)) :
U — U. Then there is a holomorphic motion (v,z) — Fy(z): D x Uy —~ C
such that

(i) F’u(Uﬂ) =U,, v eD;
(1].-) Fv°90=gv0Fv-

forve D, 2zl

A somewhat less general version of this result has been independently
obtained by Earle et al. [EKK].

The aim of the present paper is to study the second question of Mc-
Muilen, i.e. the case when g,’s are not necessarily automorphisms. In the
next section we point out the intrinsic difficulties of the problem and for-
mulate the results of the paper.

Acknowledgements. The author is grateful to Curt McMullen for com-
munjcating him the above questions. Most of the paper was conceived in
Spring 1993, during the author’s visit at the I.H.E.S. The author would like
to thank the Institute and, in particular, Professors M. Berger and D. Sul-
livan, for the invitation and support.

1. Results

NOTATIONS AND TERMINOLOGY 1.1. Uy, v € D, will be a holomorphic
family of domains in C, by which we mean that there is a holomorphic
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motion (v, 2) — fu(z) : Up — T such that f,(Uy) = U,. We then say that f,
traces Uy. (By Theorem 0.2 this is equivalent to the condition that there is
a hglomorphic motion ff,’, v € D, tracing B, = C \ Uy. We will assume that
#(C\ Uy) > 3. We will consider a semigroup G of analytic, fiber-preserving
maps of the form

g:(v,2) = (v,g:(2)): U~ T,
where U = | J,cpiv} ¥ Uy, or a single g of this kind. Additional assumptions
on G/g will be formulated as needed.

One observes quickly that the existence of a holomorphic motion F,
tracing U, and commuting with the action of G implies that

(1.1) 911=FU0900FU_1: veED, gedG.

This implies that g €  is uniquely determined by gg, and that, for each
g € G, all the g,’s are topologically conjugate. The uniqueness property
implies that GG cannot be too large, in particular it cannot contain too many
g’s such that ¢,(U,) is compact in U,, v € D. The conjugation property
implies that for each g € G, the topological or combinatorial pattern of
critical points of g, should not change with v € D

The next result, to be proven in Section 2, describes the simplest case in
which. difficulties of both kinds are avoided.

THEOREM 1.2. Let Uy, v € D, U and G = {g} satisfy Notation and
Terminology 1.1. If, in aeddition, g, : Uy, — U, is a covering map for every
v e D andg € @, then there is a holomorphic motion I, v € D, iracing
U, and commuting with g € G, i.e. Fyog0 = gy o Fy.

Proper maps are fairly close to covering maps. The next example shows,
however, that some assumptions on critical points have to be introduced.

ExaMPLE 1.3. Consider the maps g,(2) = 2% + v. As is well known
(c¢f. Douady and Hubbard [DH], Sullivan [Su]) for Ju] < ¢, ¢ > 0, the Julia
set Jy, of g is & quasicircle. Denote by U, the unique bounded component
of C\ J,. Then J, moves by holomorphic motion over |v| < ¢ (cf. [DH],
[8u, Section 7)) and 8o does U, by Theorem 0.2. If there were a holomorphic
motion F' : D(0, ¢) x Uy — C with Fy,(Uy) = Uy, commuting with the action
of gy, then g, would be topologically conjugate, via F,, to go. However, go
has a hyperattractive fixed point at ¢, while the g, have no hyperattractive
fixed points for 0 < [u| < ¢. The reason for this is that for go|Up its critical
point and fixed point coincide, while for 0 < |v] < ¢ they differ.

This kind of phenomena has motivated Maiié et al. [MS8] and Sullivan
[Su] to introduce the condition of permanence of critical orbit relations [Su,
Section 1] for the description of the conjugacy classes of rational maps of C.
We now introduce a close analogue of their condition. (The only difference
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between our version and theirs is that they had, or have chosen, to treat
differently the case when (g, U,) is equivalent to a Siegel disc or Herman
ring, or has a superattractive fixed point).

DerFINITION 1.4. Let g, : Uy — Uy, v € D. Assume that (v,2) — gu(2)
is analytic. We say that the family g satisfies the condition of permanence
of critical orbit relations if

(i) the critical variety
{{v,2):ve D, zel,, (g.)'(2) =0}

is the union of mutually digjoint graphs of analytic functions ¢y, ¢a,... :
D -G,

(ii) for every n, m, i, j the functions z -+ g?(c;(2}) and z — g™(cn(2))
are either identical or have digjoint graphs.

THEOREM 1.5. Let g, : Uy, — Uy, v € D, be an analytic family of proper
maps satisfying the condition of permanence of critical orbit relations. Let
U, be a holomorphic family of domains with card(C\U,) > 3. Then there is
a holomorphic motion F,, v € D, tracing U, and commuting with g,, v € D.

This theorem generalizes [MSS, Theorem D] (cf. also [Su]). Our proof is
different from theirs. We will actually prove a more general result, Theorem
1.7, which simultaneously generalizes (or nearly generalizes) Theorems 1.2

and 1.5. (Theorem 1.5 follows immediately from Theorem 1.7 and Proposi-
tion 3.5.)

DEFINITION 1.6. Let ¢ : X — Y be a continuous map. We say that ¢
has the path lifting property if for every arc «v : (0,1} — ¥ and for every
zg € g7 (v(0)) there is an arc o : [0,1] — X, not necessarily unique, such
that g(o(t}) = y(t) for ¢t € [0, 1] and o{0) = zy.

Examples of maps with the path lifting property include covering maps
and proper maps. Further examples and basic properties of such maps are
discussed in Sections 3, 4. The next theorem is the main result of this paper.

THEOREM 1.7. Let Uy, v € D, be a holomorphic family of domains in
C, card(C\T,) = 3, and g, : Uy — Uy, v € D, be an analytic family of
maps having the path lifting property. Assume that g satisfies the condition
of permanence of critical orbit relations. Then there is a holomorphic motion
F,: Uy — U, tracing U, and commuting with g.

This result is proven in Section 5, where we also discuss its analogue
for semigroups (cf. Definition 5.1 and Proposition 5.2), too technical to be

discussed here. The following Corollary of Proposition 5.2 is, perhaps, more
attractive.
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CoROLLARY 1.8. Let Uy, v € D, U, G = {g} satisfy Notation and Ter-
minology 1.1. Assume, in addition, thet there is a fopological isotopy du,
v € D, with ¢, (Up) = Uy which conjugates the action of G on Uy and U,
veD (te, gy =y, 0600 q’ﬁ;l for g € G and v € D). Then there is a holo-
morphic motion Fy, v € D, tracing Uy, which quasiconformally conjugates
the actions of G on U, and Up.

2. Holomorphic motions commuting with families of covering
maps

Proof of Theorem 1.2. The idea of the proof is to lift the actions
of g: U = U, g € G, to the universal covering space T : U — U, obtain an
equivariant holomorphic motion in U by means of Theorem 0.3, and observe
that it can be pushed down to U.

We now recall the description of the universal covering space of U, de-
noted here by m : 7 — U, given in [S13, Proposition 3.4]. Define U, =
o= ({u} x Uy) and let m, : {7, — U, be the map defined by {v} x wv(m? =
n(z), ¢ € 7., and let I' be the covering group. Then. the Uy are topologmjal
discs, 7y : [7"” — Uy, v € D, are universal covering maps and I is isomorphic
to the fundamental group ©*(Uy),v € D. With the unique complex structure
in U making 7 an analytic map the fibers U, are conformally equivalt?nt to
the unit disc and the deck transformations « : U — U,y €T, are biholo-
morphic. For g € G, let § : U — U be any of its lifts to U;Qen.ote ‘t.)y G
the set of all such lifts. Then §(Uy) = Uy and the map §» = §|Uy is a lift of
gw to the universal covering space 7y : U, — Uy. As is well known, such a
lifting must be a homeomorphism when g, is a covering map. We need the
following two observations.

ASSERTION 1. Any holomorphic motion trocing , can be lifted to a
holomorphic motion fracing U, i.e. there s a homeomorphism

(0,2) = Fulz) : Dx T = T

such that for every z € ta, v — Folz): D = I7 s an anelytic mapping and
Fol{v} x Uy) = Uy, v € D,

ASSERTION 2. There is a biholomorphic, fiber-preserving embedding of
U onto an open subset of D x C.

We first conclude the proof of the theorem, assuming thz? ahove facts.
Taken together, Assertions 1 and 2 allow us to assume, without loss of
generality, that If ¢ D x C, with Uy C {2} x C, v € D, and that f':he
family {7, varies holomorphically. Denote by H the group of fiber-preserving
biholomorphic maps i : U — U. In particular, hy = WU, : Uy — U, are
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conformal maps. Note that

G, I'CH.
By Thgorg_m 0.3 there is a holomorphic motion ﬁ(fu, z) =
Up— U, F,(Ug) =U,, v e D, such that

hy o F, = F, o hyg forheH, ve D.

‘We now deﬁne Fy: Uy — Uy, v € D. For zg € Up, let Fyy(z0) = m, F (wg)
if wo € wgy (Zg) The definition is independent of the choice of wy, for if
wy,wg € My (zo) then there is v € I' such that w; = vo(wy) and so
o Fy(wo) = 1y Fy (1)

To check that the F, have the required properties it is actually more
convenient to look at the trajectories of F, and F,. The former define a
holomorphic foliation of U that is preserved by the action of I', i.e., for
every -y € I', v maps one foliation leaf onto another foliation leaf. Thus the
projection 7 maps the foliation of U onto a foliation of U/, whose leaves are
trajectories of F,. This gives immediately that F, is a holomorphlc motion.
Since the foliation of U is left invariant by HO{§:9g€ G}UT, it is clear
that the projected foliation in ¥/ is preserved by G, which is equivalent to
g'qu = Ly0o, g € G.

It remains to prove the two assertions.

Observe first that Assertion 2 follows from Assertion 1. The statement
of the latter means that the family of Riemann surfaces Uy, v € D, is a
simple analytic family in the sense of Earle and Fowler [EF], i.e., it satisfies
condition (a) of Proposition 4.1 in [S13]. By this result the faxmly Us,veD,
is equivalent to a Bers model, which, in particular, irnplies Assertion 2.

As for Assertion 1 observe that since 7 : U — U and id xag 1 D % U —
Dx Uy axe both universal coverings, the homeomorphism (v, z) = (v, fo(z)) :
D x Uy — I can be lifted to a homeomorphism D x UD — 7 which makes
the diagram

Fy(2), F: D x

D x ﬁg — ﬁ
lid X1y lﬂ'
Dx Uy — U
commutative. Since it moves fibers to fibers, it must be of the form (v, 2) —
(v, fulz )), where f, : Uy — U,, v € D, are homeomorphisms. If we specify
one point (0, 'wo) € D x Uy and require that it is mapped onto wy € U,
then the 11ftmg f is unique, fo(wg) = wy, idy, © My = 7y © fg and so fg =
idg; . Since Fol2)) = f, (m0(2)), and  is locally biholomorphic, f,(z) must

be holomorphlc in z for every fixed z € Uy. This completes the proof of
Agsertion 1. m :
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3. Mappings with the path lifting property. We restrict our discus-
sion of mappings with the path lifting property to the case of open Riemann
surfaces or planar domains because that is what we need for our applications.

PROPOSITION 3.1. Let W, U be open Riemann surfaces and g: W — U
be an analytic endomorphism with the poth lifting property. Let C denote the
set of critical points of g and V = U\ g(C). Then glg~}(V): gHV) =V
i8 o covering map. ‘

Proof. Since g is analytic, ¢'(2) # 0 on g=*(V) and so glg=*(V) is a
local homeomorphism. Because g has the path lifting property, ¢ is onto,
hence glg~*(V) is onto V, and the latter map has the unique path lifting
property (being a local homeomorphism). By the topological monodromy
theorem, g/g~ (V) is a covering map onto V. m

Remark 3.2. It is an obvious observation that all the analytic self-maps
g+ W — W with the path lifting property form a semigroup with respect
to composition.

LeMMA 3.3. Let W, U be open Riemann surfaces and let g : W — U
have the path lifting property. Let v : [0,1] — U be an arc. Assume that
for every 0 < ¢ < 1 the point ¥(t) is not a critical value (but v(1) can be a
eritical value). Let g7 (v(0)) = {zn : n = 1,2,...} and let 0, : [0,1] — W
denote o lifting of v such that 0,(0) = z,, n=1,2,... Then

(a) For cach n, oy, is unique.
(b) {on(l) :n=1,2,...} = g7 (+(1)).

Proof. (a) Fix n. Suppose there are two liftings o, 7, with 0,(0) =
zn = To(0). Let t* € [0,1] be the largest ¢ such that o,(s) = 7,(s) for
all 0 £ s < ¢ Suppose t* < 1. Then g(o,(t*)) = ¥(t*) € g{C) and so
on(t*) € C. There is a neighbourhood Wy of o,(t*) = 7, (t*) such that
g\Wo : Wy — g(Wy) is a local homeomorphism. Choose £ > 0 such that
Un([t*“E,t*-I—E]) < W, Tn([t*“ﬁ',t*-l-&]) C Wy and 7([t*_5: t*+5]) c g(WU)'
Since g|Wy is a local homeomorphism, o, [[t* — g, t* + 2] = 7 |[t* — €, t* + ¢,
in contradiction to the maximality of ¢*. Thus t* =

b) Let {wn} = g~'(v(1)). By the path lifting property for each m
there is an arc py, : [0,1] — W, perhaps not unique (if (1) is a critical
value), such that fi, (1) == wy, and gu, = . But then g, must be equal to
one of the arcs orn, namely the unique one for which 0, (0) = 2y (0). Thus
g™ A( (1)) € {on(l) i n =1,2,...}. The reverse inclusion is ohvious. m

We now consider some natural examples of analytic endomorphisms hav-
ing the path lifting property. The class of almost proper maps was introduged
by E. Bishop [Bi].



8 Z. Stodkowski

DerINTTION 3.4 [Bi, GR, Ch. VII, Sec. C.1]. Let g: X — Y be a con-
tinuous map. We say that g is almost proper if, for every compact subset
K C Y, every connected component of g1 (K) is compact. We say that g is
locally almost proper if for every yp € Y there is a compact neighbourhood
N of yp such that glg~*(N) : g~ }(N) — N is almost proper.

It is clear that the class of locally almost proper maps contains covering
maps, proper maps and branched regular coverings (¢f. [Ma, IILF.2}).

ProrosiTioN 3.5. Let W, U be open Riemann surfaces andg: W — U
be an analytic map. Assume g : W — U is almost proper. Then g has the
path lifting property.

For the proof we need the following result due to Bishop.

PROPOSITION 3.6, Let g : W — U be a locally almost proper map belween
open Riemann surfaces. Then for every point zy € U there is a compact disc
neighbourhood D, with interior D, such that g7 (D,,) = |JXn, X are
connected open sets with mutually disjoint closures X. and the restricted
maps

gl Xn i Xn — Dy, gr|)_('n:Xﬂ—rﬁz0

are proper and onto.

For the proof ohserve that we can choose D, as a subset of some open
neighbourhood V of zp such that glg=*(V) : g=*(V) — V is almost proper,
in which case the statement was proved by Bishop [Bi] {cf. also [GR, Lemma
VIL.C.3]).

Proof of Proposition 3.5 (sketch). Choosing a suitable finite cov-
ering of the arc «v : [0;1] — U by neighbourhoods D, with the proper-
ties required in Proposition 3.6 we can assume that there is a subdivision
0=ty <t < ... <ty =1 and neighbourhoods Dy, D1,..., Dy, as in
Proposition 3.6 such that

¥; = ’)’([tj_l,tj+1]) C Dj, i=1...,m-~1,

and none of v(tp),v(£1),...,¥{tm) is a critical value. It is clearly enough
to find, for every & € g7 1(v(¢;)), a lifting o, : [t;,%;41] ~ W such that
o;(t;) = &g and goy = ;. Let g71(D) = | Xn, where the X, have properties
as in Proposition 3.6, in particular are connected and mutually disjoint, Let
Xp, be the unique component containing £g.

Since g| Xy, : X, — D; has only finitely many critical points and since
&p is not a critical point there is a homotopy v(s,t) such that

v [t ] X [0,1] = Dy, y(Es,8) = (), 0<s<1,
(it 1) =7(), St <t

icm
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and (£, s) is not a critical value of g| X, for (¢,5) € [t;,2;41] x [0, 1). Since
gl Xng \ 97 9(C) : Xnp \ 972 g(0) — D; \ g(C) is obviously a covering, and
since the arc v°(t) = «(t, s), t € [t;,j41], omits ¥(C), it has a unique lifting
starting with £. Thus there is a continuous function,
00 : [t7,£501] X [0,1) — Xpg \ g7 9(C)

such that goog = 7|[t;, t54.1] x [0,1). Since X ,, is compact, g{Xn, : Xn, —
D, is a proper map with discrete fibers, and one can show easily that g hasa
continuous extension o : [;,4;11] % [0, 1] — X, which lifts the homotopy 7.
(Note that cluster sets of g, at the points (¢, 1), must be connected subsets
of fibers of g, hence have to consist of single points). Then o;(t) = (¢, 1),
t; <t < tj.1, is the required lifting of ;. (Note that o; might be nonunique
because it depends on the choice of the homotopy v(2,5).) =

4. Analytic families of endomorphisms with.
the path lifting property

THEOREM 4.1. Let Uy, v € I}, and g, : Uy — Uy, v € D, satisfy all the
assumptions of Theorem 1.5, Let a: D — C be a holomorphic function such
that, for every v € D, a(v) is not a critical value of g,. Then there is a
sequence (finite or infinite) of enalytic functions h; : D — C with mutually
disjoint graphs such that g,(h;(v)) =a(v),v €D, j=1,2,...

The proof of this theorem is based on the next lemma, presumably well
known. Its proof is an easy exercise and is omitted.

LEMMA 4.2. Let w : W — D be o local homeomorphism onto D. Assume
that for evéry vg € D, 2,21 € 7" (wg), 7 > 0 such that D{ve,r) C D
and analytic function hy : D(vo,r) — W satisfying ho(ve) = 20 and nhy =
idp(vg,r), there exisis an analytic function hy : D{vg,r) — W such that
hi{wo) = 21 and why == idp(yy,r). Then m: W — D is a covering map.

Proof of Theorem 4.1. Let
W = {(v,2z) € D x C: gy(z) = a(v)}

and 7(v,2) = v. Then = : W -» D is a local homeomorphism onto D, by
the assumptions of the theorem. Let vg € D, and let {vo,20), (vo,21) be
two arbitrary points of the fiber m=*(vp). Suppose 7 has an analytic section
over D(vg,r), r > 0. Then it must be of the form » — (v, ho(v)}, where
guho(v) = a(v) for [v — vp| < 7. Our proof of the theorem is based on the
following assertion. -

ASSERTION. Whenever gy,(z0) = gu(21) = a(vo), vo € D, r > 0 and
ho : D(vg,r) — C is an enalytic function such that ho(v) € Uy, ho(ve) = 2o
and gy(ho(v)) = a(v), then there is an analytic function hy : D(vg,7) — C
such that hy(vg) = 21, hi(v) € U, and go(h1(v)) = a(v) in D(vo,7).
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Assuming the assertion, the function v — (v, hq(v)) is an analytic section
of  passing through (vp,z;). Thus 7 : W — D satisfies the assumptions
of Lemma 4.2 and so is a covering map. By the monodromy theorem W =
{{v.2) : gu(2) = a(v)} is the union of countably many mutually disjoint
graphs of analytic functions h; : D — C.

It remains to prove the assertion.

Choose a real analytic arc o : [0,1] — U, joining zp to 21, i.e., o(0) = zo,
(1) = z1, in such a way that it omits the critical points of g, .

Denote by C,, the critical points of g,. The assumption of the permanence
of critical orbit relations and the assumption that a(v) € g,(Cy), v € D,
imply that the sets g,(Cy) U {a{v)} move holomorphically. Extending this
motion to a motion tracing U, v € D, by means of Theorem 0.2 we conclude
that there is a holomorphic motion (v, z) — ¢,(z) : D(vg,7) x Uy, — C (it
is more convenient to have the origin of the motion at vy now) such that

¢’UD = idUn: ¢0(U'Uu) = Uva ¢U(U’Uu \g”un (Ovu)) = U'U \g‘i-’ (CU)
and

¢u(a(v)) = a(v).

Let v°(1) = ¢u(7(2)), 0 <t < 1, [ — | < r. Then 4" is a closed path
in Uy, omitting all the critical values of g, and joining a(v) to itself.

By the path lifting property there are unique arcs a¥ : [0,1] — [/, \ Ch,
[v = vo| < r, such that 6¥(0) = ho(v) and g,o®(t) = (t), t € [0,1]. Our
plan is to show that hi(v) := ¢”(1), [v - vo| < 7, satisfies all the required
conditions.

Define oy(v) = o¥(t). We first show that oy (v) is jointly continuous
in (¢,) € [0,1] x D{v,r) and analytic in v. Fix ry < r. Consider any
to € [0,1] such that oy, is a continuous function on D(vg,m0). Since the
map (v,z) — (v, g,(2)), if restricted to a small enough neighbourhood of
the graph {(v, o4, (v)) ¢ jv — v| < ro}, is a biholomorphic map onto some
neighbourhood of the graph

{(w,y"(to)) « v —vo| < o},
there is £ > 0 such that o;(v) is continuous on
{to <t < min(ty +¢,1)} x D(vg,rp).

Since v — ¥(t) are analytic functions on D(ug,r), all oy's, tp < ¢ <
min(tg + €, 1), are analytic on D(vg, 7). Observe that fg = 0 satisfies the
above conditions. Hence there is a largest ¢* € (0,1] such that oy(v) is
jointly continuous on [0,t*) x D(wg,r). We want to show that this function

is uniformly continuous on this set, which holds if and only if the cluster
sets

Cl{v) = {z = lim o, (vn) it At vy = v},

icm

Holomorphic motions commuting with semigroups 11

for [u—vg| < 7o, are singletons. Since g, (7:(v)) = +*(t) is a jointly continuous
function,
Cl(v) \ (80U, U {00}) € g5 (v* (%)),
On the other hand, the cluster sets are connected compact subsets of the
Riemann sphere, for

Cl(v) = ﬂ Closure {z = o(t,w) : t € [t* — &,t*}, w € D(v,£)}.
e>0

|v — vo| < 7.

Finally, oy (v) € Cl{v), since ¢” is a continuous arc. Since the fibers
g (¥ (t*)} are discrete subsets of Uy, we conclude that Cl(v) = {o¢~(v)}
for [v—vg| < ro. Thus o¢(v) is jointly continuous on [0, t*] x D{vo, 7o), and,.by
the earlier argument, on [0, min(t* +¢&,1)] x D(vg, ro) for some £ > 0, which
contradicts the maximality of t*, unless #* = 1. Since r* < r is arbitrary,

(t,v) — oy(v) : {0,1] x D(wg,7) - C

is continuous. As we have observed above, being continuous, oy must also
be analytic on D(vg, 7).

Let hi(v) = oy (v), |v — vo| < 7. Then gy(h1(v)) = v*(1) = a(v), and
hi(ve) = o(1) = z, and hi(v) € U,. This completes the proof of the
assertion. :

5. Proof of Theorem 1.7

Proof of Theorem 1.7. For brevity, for any function f € H(D,C)
denote by go f or g" o f, n = 1,2,..., the functions g o f(v} = gu(f(v}),
g" o f(v) = g*(f(v)), v € Uy, v € D. Let C = {c1,¢2, ...}, where the ¢, are
as in Definition 1.4, and let

F=Jg ) ={s"0c;:n20,j=12..}
720
Define inductively Fx, k =0,1,2,..., by Fo = F and Fpya = ¢~ (Fp) UF %,
k=0,1,..., where g"X(F) = {f € H(D,C) : g f € Fr}.

ASSERTION 1. Let a{v) be holomorphic in D with a{v) € U, forv € D.

Assume thot either a(v) & go(Cy) for every v € D or a € g(C). Then
{(2,2) € D x C: gof2) = a(v)}
is the union of mutually disjoint graphs of functions anelytic in D.

ASSERTION 2. For every k = 0,1,2,... functions in Fj, have mutually
disjoini graphs.

Concerning the proof of Assertion 1, the case when all a{v) are noncritical
points was established in Theorem 4.1..
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When a € g(C), consider a holomorphic motion ¢, : Uy — U,, v € D, like
at the beginning of the proof of Theorem 4.1, such that ¢, (g0(Co)} = g.(C,),
$u(Uo \ 90(Co)) = Uy \ g4(Cy), in particular ¢,(a(0)) = a{v). Since (% is
a countable set, there is a closed arc v : [0,1] - Uy such that y(1) = a{0)
and for every 0 < ¢ < 1, () is not a critical point of go. As in the proof of
Theorem 4.1 define v : [0,1] — U, by v¥(¢) = éu((2)). Let ay(v) = v*(¢).
Then a;’s are analytic functions with a; = a.

Since all the points ag(v) are noncritical, there are analytic functions
ki, ha, ... in D with mutually disjoint graphs such that

97 ao(v)) = {hp(v) i m = 1,2,...}
and since all points of ¥ except for the terminal point +* (1) are noncritical
values of g,, the arc v* has, by Lemma 3.3(a), a unique lifting on for each

initial point hy(v). That is, there are o2 : [0,1] - Uy, n =1,2,..., v € D,
such that
0 (0) = hn(v),  gulon(t)) =7"(t), 0<¢< L.
Since the arc 4¥ contains critical values, the results established in the
proof of Theorem 4.1 do not apply directly to 4% and oh. They apply, how-

ever, for every 0 < £ < 1, to the shorter arcs v°|[0,1 ~ ¢] and ¢2[[0,1 — &].
They can be summarized as follows:

ASSERTION 3. For everyn =1,2,...,
(t,v) = on(t):[0,1)x D —=C

is a continuous function, and v — o¥(t) : D — C is analytic for 0 <t < 1,
n=12,...

Since the half-open arcs ¢%|{0, 1) are mutually disjoint for different n, the
analytic functions v — o2(t): D — C, n = 1,2,..., define a holomeorphic
motion which, by the lambda lemma [MSS, Section 1.2] is jointly continuous
and has a continuous extension to a holomorphic motion 1), of the closure
of theset E = {o0(1): 0<t <1, n=1,2,...} such that

$o(E) =C{oh(t):0<t <1, n=1,2,...},
Yolon(t)) =on(f), te0,1),veD, n=12,...

On the other handg(c1) € Fy C F,, by Lemma 3.3(a), limy—3 o2 (t) = ¥(1),
pointwise, for v € D, n = 1,2,... This convergence must be uniform on
compact subsets of D, by the property of ¢, and so o2(1) = 1, (a3 (1)).
Thus the functions v — o%(1) : D — C, n = 1,2,..., are analytic and
their graphs are either mutually disjoint or identical. Since {o¥(1) : n =
1,2,...} = g7 (y(1)) = g7 (a(v)), by Lemma 3.3(b), Assertion 1 follows.
We now show Assertion 2 by induction on k. The case & = 0 is Jjust the
content of Definition 1.4. Assume the statement for F}, and consider any
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a € Fi. Suppose that for some vy € D, a(vg) is a critical value of g,,. Then
there is ¢; such that gy, (c:{vg)) = a(vp). On the other hand, g(¢;) € Fo C Fi.
Hence g{c;} and o both belong to F, and by inductive assumption they must
be identical since they are equal over vy. Thus all values a(v) are critical. We
conclude that Assertion 1 applies to every a € Fy, and so for every a € Fy,
the set

(5.1) {(v,2) 1 gu(2) = alv)}
is the union of mutually disjoint graphs of analytic functions in g~ *{a). .The
varieties (5.1} corresponding to distinct a’s in Fj, are mutually disjoint, since
the graphs of a’s are mutually disjoint, and so all the functions in g~ (F})
have mutually disjoint graphs. It remains to observe that if a € g~ (Fy),
b € Fr and a{vg) = b(vp) for some wup, then o = b. It is easy to show by
induction on k that

9(Fi) € Fr for k > 0,

g(]:k) C Fy—q fork>1.
Thus gla) = g(b) € Fr—1. Let a1 = g(a). Applying the staternent (5.1) to
a1 € Frp—: we infer that ¢ = b, since their graphs intersect. This completes
the proof of Assertion 2.

Denote by 6,(z) the “large orbits” of gy, that is,

b.(2)= | g7"g0(2)
n,m>0

(cf. Sullivan [Su]). Let
Zy = | J{Bo(2) 1 2 € Cu},
It follows from the definition of F’s, Assertion 2 and (5.1) that the set
Z = U {v} x 2,
vED

is the union of the graphs of all the functions in | J k>0 F., which are mutually
disjoint. This defines a foliation of Z which is unique (the fibers Z, are
countable sets) and invariant with respect to g. Hence the formula

fvz(zﬂ) = f(v)a

where f is the unique function in | J,5o F% such that f(0) = 20, defines a
holomorphic motion (v,z) — fZ(z) : D x Zo — C such that fZ(Z) = Z,
and g, 0 fZ = fZ o (90| Z0).

By the lambda lemma [MSS, Section 1.2], juz extends_ to a unique holo-
morphic motion f;z of the closure of Zg, i.e., fZ : Zo — Zy, [v| < L. _

By the extension theorem (Theorem 0.2) the domains V;, := U, \ Z,,
{v] < 1, move holomorphically. Hence g, |V, : Vi, — V,, are covering maps for

ve D.
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{v] < 1 (note that g;1(Va) = (V4)). Applying Theorem 1.2 to the family of
domains V,,, v € D, and the cyclic semigroup {¢" : n = 1,2,...} we see that
there is a holomorphic motion %, : Vo — V,, commuting with g, It is easy
1o see that letting :

- ﬁ,(z) for z € Zp and
(5.2) Fy(z) {%(z) for 7 € Vi Up \ Zo, v € D,

we obtain a holomorphic motion
Fy: U _)U'Uy ‘UED1 Fv(UD)Z U‘U:
which commutes with the action of . w

We now consider the semigroup case. First we define the analogue of the
condition of permanence of critical orbits relations for the semigroup case.

DeriNiTION 5.1, Let U, v € D, be a holomorphic family of domains and
G = {g} a semigroup of holomorphic families of maps g, : U, — Uy, v € D.
Assume that every g € G satisfies Definition 1.4 and let C9 dencte the set
of holomorphic functions ¢; : D — C, 7 = 1,2,..., such that the critical
variety of g is the union of the graphs of ¢;’s. Define C = Ugee €9 We will
say that the semigroup G satisfies the condition of permoanence of critical
orbit relations if the set

(53) ©  F=CU{J{gens10502m-1...95'01(C) : g; € G}

n=1l
consists of functions whose graphs are mutually disjoint (except when iden-
tical}.
‘The above definition is much less satisfactory than Definition 1.4 because

even in the case of a cyclic semigroup {¢™ : n = 1,2,...} it assumes most of
what had to be demonstrated within the proof of Theorem 1.7.

ProroOSITION 5.2. Let G and U, v € D, satisfy the notation and con-
ditions of Definition 5.1. Assume in addition that for every g € G, all the

endomorphisms g, : U, —+ Uy, v € D, have the path lifting property. Then

there is o holomorphic motion F, : Uy — Uy, v € D, commuting with the
action of G.

Proof (sketch). We proceed as at the end of the last proof. Let Z, =
{a(v) : a € F}. Tt is a direct consequence of the (unfortunately very strong)
Definition 5.1 that the set Z = | J,.,{v} X Zy is the union of mutually
digjoint graphs of analytic functions, It is clear that 2, is forward and back-
ward invariant for g, € G. Similarly to the proof of Theorem 1.7, there
exist holomorphic motions fZ : Zy — Z, and fZ : Zy — Z,, the sets
Vo =Us \ Z., are forward and backward invariant with respect to g € G,
and all the g,|V, : V,, — V,,, g € G, are covering maps. Applying the theorem
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to g|lUJ,{v} x V; we obtain a holomorphic motion t, : Vo — V, commuting
with G. Defining F, : Uy — U, by (5.2) we obtain a holomorphic motion
with all the required properties. m

Proof of Corollary 1.8. Let ¢ : Uy — Uy, v € D, denote the
isotopy conjugating the action of G on Uy and U, that is, for every g € G
and v € D,

go=duogood;t.
Let, for v € D,

Zy = J{ @) @)Y - (@) )

ze | Cyglye.o gt eG}.
geEG

It is clear that Z, is backward and forward invariant with respect to g,
g € G. Furthermore, Z, = ¢, (Zp), that is, the set Z =1 p{v} x Zy is the
unicn of the graphs of continuous functions of the form

(5.4) v dy(2¥): D= C, e Zp.

If 2* € (g2 1) (g2™) 1 . .. g5 *gh(2) for fixed z€|J C and fixed ¢',...,g* ",
then the graph (5.4) is contained in the variety

|J {2} x (g2 ) (g2~ . (g2) " (93)(2)

|[ul<1

and s0 v — ¢, (2*) is an analytic function. Let f, = ¢|Zp. Then v — f, :
Zy — Z, is a holomorphic motion and the proof can be finished in the same
way as the proof of Proposition 5.2. u
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On asymptotic density and uniformly distributed sequences
by

RYSZARD FRANKIEWICZ (Warszawa) and
GRZEGORZ PLEBANEK (Wroclaw)

Abstract. Assuming Martin’s axiom we show that if X is a dyadic space of weight at
most continuum then every Radon measure on X admits a uniformly distributed sequence.
This answers a problem posed by Mercourakis [10]. Our proof is based on an auxiliary
result concerning finitely additive measures on w and asymptotic density.

1. Introduction. Let K be a compact Hausdorff space. We denote
by P(K) the set of all probability Radon measures on K. If z € K then
5z € P(K) denotes the usual Dirac measure.

Given A € P(K), a sequence (z,) C K is said to be A-uniformly dis-

tributed (A-u.d.) if
}u E 8z, — A
n

i<n
in the weak* topology, that is, for every real-valued continuous function f
defined on K one has

1 T
lim — ;) = | fdA
Jim = ; flas) IS{

The theory of uniformly distributed sequences originated in the classical
notion of a sequence in the unit interval which is uniformly distributed (with
respect to the Lebesgue measure). For many years the case of a compact
metric space K was mainly studied. The uniform distribution with respect
to the Haar measure of a given compact group also attracted much attention.
The book by Kuipers and Neiderreiter [7] surveys these topics.

Recall that every Radon measure defined on a compact metric space
has a uniformly distributed sequence. On the other hand, Losert [8] noted
that no nonatomic measure on Sw admits such a sequence (since every

1091 Mathematics Subject Classification: Primary 11B03, 28C15; Secondary 03ES0.
Partially supported by KBN grant 2 P 301 043 07.

7]



