R. Frankiewicz and G. Plebanek

- 6] D. H. Fremlin, Postscript to Fremlin 84, preprint, 1991.
- [7] L. Kuipers and H. Neiderreiter, Uniform Distribution of Sequences, Wiley, New York, 1974.
- [8] V. Losert, On the existence of uniformly distributed sequences in compact topological spaces, Trans. Amer. Math. Soc. 246 (1978), 463-471.
- (9) —, On the existence of uniformly distributed sequences in compact topological spaces II, Monatsh. Math. 87 (1979), 247–260.
- [10] S. Mercourakis, Some remarks on countably determined measures and uniform distribution of sequences, to appear.

Institute of Mathematics Polish Academy of Sciences Śniadeckich 8 00-950 Warszawa, Poland E-mail: rf@impan.impan.gov.pl

26

Institute of Mathematics
University of Wrocław
pl. Grunwaldzki 2/4
50-384 Wrocław, Poland
E-mail: grzes@math.uni.wroc.pl

Received April 27, 1995
Revised version February 16, 1996
(3457)

21 ODIW MWITTEMWITTOW ITS (I) (1990)

A compact set without Markov's property but with an extension operator for C^{∞} -functions

bу

ALEXANDER GONCHAROV (Ankara and Rostov-na-Donu)

Abstract. We give an example of a compact set $K \subset [0,1]$ such that the space $\mathcal{E}(K)$ of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator $L: \mathcal{E}(K) \to C^{\infty}[0,1]$. At the same time, Markov's inequality is not satisfied for certain polynomials on K.

1. Introduction. Let K be a compact set in \mathbb{R}^m such that $K = \overline{\inf K}$. Then $\mathcal{E}(K)$ is the space of functions $f: K \to \mathbb{R}$ extendable to C^{∞} -functions on \mathbb{R}^m . $\mathcal{E}(K)$ is a Fréchet space; its topology τ is defined by the norms

$$||f||_q = |f|_q + \sup\{|(R_y^q f)^{(j)}(x)| \cdot |x - y|^{|j| - q} : x, y \in K, \ x \neq y, \ |j| \leq q\},$$

$$q = 0, 1, \dots, \text{ where } j = (j_1, \dots, j_m) \in \mathbb{Z}_+^m, \ |j| = j_1 + \dots + j_m,$$

$$|f|_q = \sup\{|f^{(j)}(x)| : x \in K, \ |j| \leq q\},$$

and $R_x^q f(y) = f(y) - T_x^q f(y)$ is the Taylor remainder. As is shown in [6], 2.4, by Tidten and in [10], 2.4, by Vogt, the space $\mathcal{E}(K)$ is isomorphic to the space

$$s = \left\{ \xi = (\xi_n)_{n=1}^{\infty} : \|\xi\|_q = \sum_{n=1}^{\infty} |\xi_n| n^q < \infty, \ \forall q \right\}$$

of rapidly decreasing sequences iff there exists a linear continuous extension operator $L: \mathcal{E}(K) \to C^{\infty}(\mathbb{R}^m)$. An explicit form of a certain extension operator, using the Lagrange interpolation polynomials, was given in [3]. (See also [5].) Following Zerner [12], Pleśniak considered for the space of Whitney functions the topology τ_1 determined by the seminorms

$$d_{-1}(f) = |f|_0, \quad d_0(f) = E_0(f), \quad d_q(f) = \sup_{n \ge 1} n^q E_n(f), \quad q \in \mathbb{N},$$

where $E_n(f)$ is the best approximation of f by polynomials of degree at most n in the sup-norm on K. By Jackson's theorem (see, e.g., [8]), the

¹⁹⁹¹ Mathematics Subject Classification: Primary 46E10; Secondary 41A17.

topology τ_1 is weaker than τ . Pleśniak proves in [5] that the topologies τ and τ_1 for $\mathcal{E}(K)$ coincide iff there exists a linear continuous extension operator $L: (\mathcal{E}(K), \tau_1) \to C^{\infty}(\mathbb{R}^m)$. In turn, these conditions hold iff the compact set K has the following *Markov property*: for any polynomial P and for any multiindex j,

$$|P^{(j)}|_0 \le C(\deg P)^{r|j|}|P|_0,$$

where C and r are constants depending only on K.

Here we present an example of a compact set K such that for the space $\mathcal{E}(K)$ there exists a linear extension operator, which is continuous in the topology τ , but this operator (and all other linear extension operators) is not continuous in the topology τ_1 . The space of extendable functions with the topology τ_1 is not complete.

Fix an integer $M \geq 3$. Consider the compact set

$$K = \{0\} \cup \bigcup_{n=0}^{\infty} [a_n, b_n],$$

where $b_n = \exp(-M^n)$, $a_n = b_n - b_{n+1}$, $n \in \mathbb{Z}_+$. (Compare this with the example in [7].)

2. K does not have the Markov property. Let $C_n = \exp(M/2)^n$, $n \in \mathbb{N}$, and for fixed $n \geq 2M$, let

$$N_k = 2\left[\frac{C_n}{2(2M)^k}\right], \quad k = 0, \dots, n-1,$$

where [a] is the greatest integer in a. Consider the polynomial

$$P(x) = P(x, n) = x \prod_{k=0}^{n-1} \left(1 - \frac{x}{b_k} \right)^{N_k}.$$

We obviously have

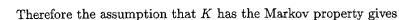
$$P'(0) = 1$$
, $\deg P = 1 + \sum_{k=0}^{n-1} N_k < 2C_n$.

In order to estimate $|P|_0$, we shall show that

- 1) $P'(x) \leq 0, x \in K, x \geq a_{n-1};$
- 2) $P(a_i) \leq b_n$, i = 0, 1, ..., n-1.

Then, taking into account the bound $P(x) \leq b_n$, for $0 \leq x \leq b_n$, we obtain

$$|P|_0 \le b_n.$$



$$1 \le |P'|_0 \le C(2C_n)^r b_n = C2^r \exp\left\{r\left(\frac{M}{2}\right)^n - M^n\right\}, \quad n \to \infty,$$

which is a contradiction.

Now let us fix $i \leq n-1$ and prove that $P'(x) \leq 0$ for $x \in [a_i, b_i]$. In fact, the sign of P'(x) for $x \neq b_i$ is the same as that of

$$1 + x \sum_{k=0}^{n-1} \frac{N_k}{x - b_k}.$$

Therefore it is sufficient to show that

(1)
$$1 + x \sum_{k=i+1}^{n-1} \frac{N_k}{x - b_k} < x \frac{N_i}{b_i - x}.$$

On the one hand, $x/(x-b_k) \le b_i/(a_i-b_{i+1}) < 2$ for k > i, and so the left side in (1) does not exceed $3C_n(2M)^{-i-1}$. On the other hand,

$$x\frac{N_i}{b_i - x} > N_i > \frac{1}{2}C_n(2M)^{-i}$$
.

Thus we have (1). To conclude the proof, it remains to note that $P'(b_i) = 0$. Let us estimate $P(a_i)$, i = 0, 1, ..., n-1. We get

$$P(a_i) = a_i \prod_{k=0}^{i-1} \left(1 - \frac{a_i}{b_k} \right)^{N_k} \left(\frac{b_i - a_i}{b_i} \right)^{N_i} \prod_{k=i+1}^{n-1} \left(\frac{b_k - a_i}{b_k} \right)^{N_k}$$

$$< \left(\frac{b_{i+1}}{b_i} \right)^{N_i} \prod_{k=i+1}^{n-1} b_k^{-N_k},$$

since all other factors of the product are less than 1. Therefore

$$P(a_i) < \exp\left\{-M^{i+1}N_i + \sum_{k=i}^{n-1} M^k N_k\right\}$$

$$< \exp\left\{-M^{i+1} \left(\frac{C_n}{(2M)^i} - 2\right) + C_n 2^{-i+1}\right\}$$

$$\leq \exp\left\{2M^n - C_n 2^{-i} (M-2)\right\}.$$

Since $3(2M)^n < C_n$ for $n \ge 2M+1$, it follows that $P(a_i) \le b_n$, $i = 0, \ldots, n-1$. Thus, K does not have Markov's property. Using the sequence $(P(x,n))_{n=1}^{\infty}$, it can easily be checked that the space $(\mathcal{E}(K), \tau_1)$ is not complete.

3. The space $\mathcal{E}(K)$ has the DN property. We shall use the class D_1 (see [11]) or the property DN (see [9]) of Fréchet spaces:

(2)
$$\exists p \ \forall q \ \exists r, C > 0: \quad \|\cdot\|_q \le t \|\cdot\|_p + \frac{C}{t} \|\cdot\|_r, \quad t > 0.$$

Here and in the sequel we consider (F) spaces with an increasing system of seminorms.

In [6] Tidten proved that the DN property of the space $\mathcal{E}(K)$ is equivalent to the existence of a continuous linear extension operator $L: \mathcal{E}(K) \to C^{\infty}(\mathbb{R}^m)$. In turn, the latter is equivalent to the isomorphism $\mathcal{E}(K) \simeq s$ ([10], Th. 2.4). Let us prove (2) for the space $\mathcal{E}(K)$ in our case.

LEMMA. Let $f \in C^r(I)$, where I is a closed interval of length δ_0 . Then for all $q \in \mathbb{N}$ with $q \leq r$, and all δ with $0 < \delta \leq \delta_0$,

(3)
$$|f^{(q)}(x)| \le C_1 \delta^{-q} |f|_0 + C_2 \delta^{r-q} |f|_r, \quad x \in I,$$

where C_1 and C_2 are constants depending only on a and r.

Proof. Suppose the point x is in the left half of I. Fix δ with $0 < \delta \le \delta_0$, and q. We can suppose that q < r, as for q = r the result is clear. For $h = \delta/(r^2 - q^2)$ and $q \le k < r$ take the finite difference

$$\Delta^k f(x) = \sum_{i=0}^k (-1)^{k-i} \binom{k}{i} f(x+ih).$$

Then we have

$$|\Delta^k f(x)| \le 2^k |f|_0$$

and for some point ξ with $x < \xi < x + kh$,

$$\Delta^k f(x) = f^{(k)}(\xi) \cdot h^k.$$

Using the mean value theorem, we find a point x_{+1} with $x < x_{+1} < x + kh$ such that

$$|f^{(k)}(x) - \Delta^k f(x)h^{-k}| \le |f^{(k+1)}(x_{+1})|kh.$$

Taking into account (4), we obtain

$$|f^{(k)}(x)| \le (2h^{-1})^k |f|_0 + |f^{(k+1)}(x_{+1})| kh$$

Applying this inequality for $k=q,q+1,\ldots,r-1$ and for $x=x_{k-q}$ respectively and combining the obtained estimates, we find a point x_{r-q} such that

$$|f^{(q)}(x)|$$

$$\leq |f|_0 \left\{ \left(\frac{2}{h} \right)^q + qh \left(\frac{2}{h} \right)^{q+1} + \ldots + q(q+1) \ldots (r-2)h^{r-1-q} \left(\frac{2}{h} \right)^{r-1} \right\}$$

$$+ q(q+1) \ldots (r-1)h^{r-q} |f^{(r)}(x_{r-q})|.$$

Therefore we get (3) with

$$C_1 = (2^q + \dots + q \dots (r-2)2^{r-1})(r^2 - q^2)^q, \quad C_2 = q(q+1) \dots (r-1).$$

It remains to show that $x_{r-q} \in I$. In fact,

$$x_{r-q} < x + qh + \ldots + (r-1)h = x + h\frac{(r-q)(r+q-1)}{2} < x + \frac{\delta}{2} \le x + \frac{\delta_0}{2}.$$

If the point x lies in the right half of I we repeat the arguments with h negative. \blacksquare

PROPOSITION. The space $\mathcal{E}(K)$ has the DN property.

Proof. Clearly, since $(\|\cdot\|_q)_{q=0}^{\infty}$ increases, we can take in (2) only q>p and t>C. First let us show that (2) is equivalent to the following condition:

(5) $\exists p, m \ \forall q \ \exists r, C_3, C_4: \ \|f\|_q \leq C_3 t^{m \cdot q} \|f\|_p + C_4 t^{-q} \|f\|_r, \ t > 0, \ f \in X.$ Here $p \in \mathbb{Z}_+, \ m, q, r \in \mathbb{N}, \ C_3, C_4 \in \mathbb{R}_+.$

In fact, $(2)\Rightarrow(5)$ trivially. In order to show $(5)\Rightarrow(2)$ let us use (5) in the following form:

$$\exists p, m \ \forall q \ \exists r, C_3, C_4: \ \|f\|_q \le C_3 \tau^m \|f\|_p + \frac{C_4}{\tau} \|f\|_r, \ \tau > 1.$$

We can find here for r some $r_1 \in \mathbb{N}$ and constants C_3', C_4' such that

$$||f||_r \le C_3' \tau^m ||f||_p + \frac{C_4'}{\tau} ||f||_{r_1}, \quad \tau > 1.$$

Applying the procedure m times and combining the estimates, we get for some $R \in \mathbb{N}$, and \widetilde{C}_3 , $\widetilde{C}_4 \in \mathbb{R}_+$,

$$||f||_q \le ||f||_p \widetilde{C}_3 \tau^m + \frac{\widetilde{C}_4}{\tau^m} ||f||_R, \quad \tau > 1.$$

Therefore.

$$||f||_q \le t||f||_p + \frac{C}{t}||f||_R,$$

where $t = \widetilde{C}_3 \tau^m > C = \widetilde{C}_3 \widetilde{C}_4$.

We shall see that the space $\mathcal{E}(K)$ satisfies (5) with p=0 and $m=M^2$. Let us prove that for any $q\in\mathbb{N}$ the number $r=(M^2+1)q$ is fit for this case.

Without loss of generality it is sufficient to show (5) for t > 3. For fixed t take n such that $b_{n+1} \le t^{-1} < b_n$, and α such that $b_n = t^{-\alpha}$ and $\nu = M\alpha$. Then $M^{-1} \le \alpha < 1$, $1 \le \nu < M$, and $b_{n+1} = t^{-\nu}$. In order to estimate $|f^{(k)}(z)|$ for $z \le b_{n+1}$ we shall use the representation

(6)
$$f^{(k)}(z) = \sum_{i=k}^{N} \frac{f^{(i)}(a_n)}{(i-k)!} (z - a_n)^{i-k} + (R_{a_n}^N f)^{(k)}(z), \quad N = Mq + q,$$

whereas for $z \geq a_n$ the lemma can be applied immediately. Let us consider various cases.

The estimation of $|f^{(k)}(x)|, k \leq q$.

1.1. If $x \ge a_n$, then the point x lies in an interval of length $\ge b_{n+1}$ and we apply the lemma with $\delta = b_{n+1} = t^{-\nu}$:

$$|f^{(k)}(x)| \le C_1 t^{k\nu} |f|_0 + C_2 t^{-\nu(r-k)} |f|_r \le C_1 t^{Mq} |f|_0 + C_2 t^{-q} |f|_r.$$

1.2. If $x \leq b_{n+1}$, then using (6) for z = x and the lemma for $f^{(i)}(a_n)$, we get

$$|f^{(k)}(x)| \leq \sum_{i=k}^{N} (C_1 t^{\nu i} |f|_0 + C_2 t^{-\nu(r-i)} |f|_r) t^{-\alpha(i-k)} + ||f||_N t^{-\alpha(N-k)},$$

since $|x - a_n| \le a_n < t^{-\alpha}$. Estimating the exponents, we have

$$\nu i - \alpha(i - k) = (\nu - \alpha)i + \alpha k \le \alpha(M - 1)N + q < M^2 q;$$

$$-\nu(r - i) - \alpha(i - k) < -\nu r + M^2 q \le -q;$$

$$-\alpha(N - k) = \alpha k - \alpha q(M + 1) \le -\alpha qM \le -q.$$

Thus in both cases we obtain the desired bound of $|f|_{a}$

The estimation of $A = |(R_y^q f)^{(j)}(x)| \cdot |x-y|^{j-q}, \ j \leq q$. Here we shall use the representation

(7)
$$R_y^q f(x) = R_y^N f(x) + \sum_{k=q+1}^N \frac{f^{(k)}(y)}{k!} (x-y)^k, \quad N = Mq + q.$$

2.1. Let $|x-y| \le b_{n+1}$ and $y \ge a_n$. In this case we can apply the lemma for $f^{(k)}(y)$ with $\delta = t^{-\nu}$. Therefore,

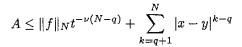
$$A \leq |(R_y^N f)^{(j)}(x)| \cdot |x - y|^{j-q} + \sum_{k=q+1}^N |x - y|^{k-q} |f^{(k)}(y)|$$

$$\leq ||f||_N t^{-\nu(N-q)} + \sum_{k=q+1}^N t^{-\nu(k-q)} (C_1 t^{k\nu} |f|_0 + C_2 t^{-\nu(r-k)} |f|_r)$$

$$\leq C_1' t^{Mq} |f|_0 + C_2' t^{-q} ||f||_r,$$

where C'_1, C'_2 depend only on q and M.

2.2. Let $|x-y| \le b_{n+1}$ and $y \le b_{n+1}$. Here we first use (7), then (6) for z = y. Applying the lemma for $f^{(j)}(a_n)$ with $\delta = t^{-\nu}$, we obtain



$$\times \Big[\sum_{i=k}^{N} |y - a_n|^{i-k} (C_1 t^{\nu i} |f|_0 + C_2 t^{-\nu(r-i)} |f|_r) + |(R_{a_n}^N f)^{(k)}(y)| \Big].$$

The first term is less than $||f||_N t^{-q}$. Taking into account the bounds $|x-y| \le t^{-\nu}$ and $|y-a_n| \le t^{-\alpha}$, we can estimate the exponent of t in the coefficient of $|f|_0$:

$$-\nu(k-q) - \alpha(i-k) + \nu i = \nu q + (\nu - \alpha)(i-k) \le \nu q + (\nu - \alpha)(Mq - 1)$$

= $\nu(Mq - 1) + \alpha < M^2q - \nu + \alpha < M^2q$.

Hence, for the exponent of t in the coefficient of $|f|_r$ we have

$$-\nu(k-q) - \alpha(i-k) - \nu(r-i) = -\nu r + (\nu - \alpha)(i-k) + \nu q < -\nu r + M^2 q \le -q.$$

Furthermore, in the sum we obtain the terms containing $||f||_N$ with the coefficients t^{β_k} , where

$$\beta_k = -\nu(k-q) - \alpha(N-k) = -\alpha(N-k+Mk-Mq)$$
$$= -\alpha[(M-1)k+q] < -\alpha Mq \le -q.$$

Therefore, as in the previous case we get the required estimate.

For the remaining cases we shall use the inequality

(8)
$$A \le |f^{(j)}(x)| \cdot |x - y|^{j - q} + \sum_{k = j}^{q} |f^{(k)}(y)| \cdot |x - y|^{k - q}.$$

2.3. Let
$$|x-y| > b_{n+1}$$
 and $y \ge a_n$. It follows from the lemma that $|f^{(k)}(y)| \cdot |x-y|^{k-q} \le C_1 t^{\nu k + \nu(q-k)} |f|_0 + C_2 t^{-\nu(r-k) + \nu(q-k)} |f|_r \le C_1 t^{Mq} |f|_0 + C_2 t^{-q} |f|_r.$

In the same way, we obtain the bound of $|f^{(j)}(x)| \cdot |x-y|^{j-q}$ for $x \ge a_n$. Otherwise $x \le b_{n+1}$. Then

$$|x-y| \ge a_n - b_{n+1} = b_n - 2b_{n+1} > \frac{1}{2}b_n = \frac{1}{2}t^{-\alpha}.$$

Therefore, substituting x for z and j for k in (6) and using the lemma, we get

$$|f^{(j)}(x)| \cdot |x - y|^{j - q} \le (2t^{\alpha})^{q - j} \Big[\sum_{i = j}^{N} (C_1 t^{\nu i} |f|_0 + C_2 t^{-\nu(r - i)} |f|_r) t^{-\alpha(i - j)} + ||f||_N t^{-\alpha(N - j)} \Big].$$

Here, as in case 1.2, $|x - a_n| < t^{-\alpha}$. Since

$$\begin{split} \alpha(q-j) + \nu i - \alpha(i-j) &= \alpha q + i\alpha(M-1) \leq \alpha[q+(M^2-1)q] < M^2q; \\ \alpha(q-j) - \nu(r-i) - \alpha(i-j) < -\nu r + M^2q \leq -q; \\ \alpha(q-j) - \alpha(N-j) &= \alpha(q-N) \leq -q, \end{split}$$

we conclude the inspection of this case.

2.4. Let $|x-y| > b_{n+1}$ and $y \le b_{n+1}$. Under this condition, the point x cannot lie in the interval with index $\ge n+1$. Therefore, $|x-y| \ge a_n - b_{n+1} > \frac{1}{2}t^{-\alpha}$. On the other hand, since $x \in I$ and $|I| \ge t^{-\nu}$, we obtain as above the required estimate for $|f^{(j)}(x)| \cdot |x-y|^{j-q}$ in (8).

Consider now any term of the sum in (8). We take again (6) with z=y and the lemma with $\delta=t^{-\nu}$. Taking into account the bounds $|x-y|^{-1}<2t^{\alpha}$ and $|y-a_n|\leq t^{-\alpha}$ we have

$$|f^{(k)}(y)| \cdot |x - y|^{k - q}$$

$$< (2t^{\alpha})^{q - k} \Big[\sum_{i = k}^{N} (C_1 t^{\nu i} |f|_0 + C_2 t^{-\nu(r - i)} |f|_r) t^{-\alpha(i - k)} + ||f||_N t^{-\alpha(N - k)} \Big].$$

As above we get

$$\alpha(q-k) + \nu i - \alpha(i-k) \le \alpha q + N(\nu - \alpha) = \alpha M^2 q < M^2 q;$$

$$\alpha(q-k) - \nu(r-i) - \alpha(i-k) < -\nu r + M^2 q \le -q;$$

$$\alpha(q-k) - \alpha(N-k) = \alpha(q-N) \le -q.$$

This completes the proof of the proposition, since for any $z, x, y \in K$, $k \leq q, j \leq q$ we have the estimate

$$|f^{(k)}(z)| + A \le C_3 t^{M^2 q} |f|_0 + C_4 t^{-q} ||f||_r,$$

where C_3 and C_4 depend only on q and M.

Remarks. 1. The present example of the compact set K gives a partial answer to Problem 27 of [1]: the isomorphism $\mathcal{E}(K) \simeq s$ does not imply that the Green function $g_K(z)$ satisfies the following Hölder condition:

$$\exists C, \delta > 0 : g_K(z) \le C(\operatorname{dist}(z, K))^{\delta}, \quad \forall z \in \mathbb{C}.$$

In fact, under this condition by Cauchy's integral formula, it follows that K has Markov's property (see, e.g., [4], Lemma 3.1).

2. It is interesting to note that the given compact set K does not admit a bounded extension operator in the sense of Definition 3.3 of [2].

Acknowledgements. The author is grateful to Professor M. Kocatepe for her interest in this paper and to the referee for his valuable remarks.

References

- [1] A. Aytuna, P. Djakov, A. Goncharov, T. Terzioğlu and V. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Complex Analysis 1, METU-TÜBİTAK, 1994, 147-165.
- [2] L. P. Bos and P. D. Milman, On Markov and Sobolev type inequalities on compact sets in \mathbb{R}^n , in: Topics in Polynomials of One and Several Variables and Their Applications, Th. M. Rassias, H. M. Srivastava and A. Yanushauskas (eds.), World Sci., 1993, 81–100.
- W. Pawłucki and W. Pleśniak, Extension of C[∞] functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287.
- [4] W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. (Rozprawy Mat.) 147 (1977).
- 5] —, Markov's inequality and the existence of an extension operator for C^{∞} functions, J. Approx. Theory 61 (1990), 106-117.
- [6] M. Tidten, Fortsetzungen von C[∞]-Funktionen, welche auf einer abgeschlossenen Menge in Rⁿ definiert sind, Manuscripta Math. 27 (1979), 291-312.
- [7] —, Kriterien für die Existenz von Ausdehnungsoperatoren zu ε(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.
- [8] A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon, Oxford, 1963.
- [9] D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
- [10] —, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405-443.
- [11] V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).
- [12] M. Zerner, Développement en séries de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220.

Department of Mathematics Bilkent University 06533 Ankara, Turkey E-mail: goncha@fen.bilkent.edu.tr Department of Mathematics Civil Building Academy Rostov-na-Donu, Russia

Received May 10, 1995 Revised version February 20, 1996 (3467)