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Local Toeplitz operators based on wavelets:
phase space patterns for rough wavelets

by

KRZYSZTOF NOWAK (Wroclaw)

Abstract. We consider two standard group representations: one acting on functions
by translations and dilations, the other by translations and modulations, and we study
local Toeplitz operators based on them. Local Toeplitz operators are the averages of
projection-valued functions g — P, 4, where for a fixed function ¢, Fy 4 denotes the
one-dimensional orthogonal projection on the function Ug¢, U is a group representation
and g is an element of the group. They are defined as integrals SW P, 4 dg, where W
is an open, relatively compact subset of a group. Our main resulf is a characterization
of function spaces corresponding to local Toeplitz operators with pth power summable
eigenvalues, 0 < p < o0,

0. Introduction. Let 7 be a representation of a group & acting on
functions defined on R%. Let b be a function defined on G and let ¢ be a
function defined on R¢. We define the operator T} 4 acting on functions on
R by
(0.1) Th,6(f) = § b(g)(f, Usd) Uyt dg,

G
where {, ) is the inner product of L2(R?%), and dg is a left invariant mea-
sure on G. The operator T} 4 is called a Toeplitz operator based on the
representation U7,

It is an intrigning problem to understand the dependence of Tj 4 on its
parameters b, ¢. As it stands, the definition (0.1) is rather too general for a
thorough study of the problem. We restrict attention to some specific rep-
resentations U. In fact, in this paper we consider only two representations:

(i) the Schrodinger representation of the reduced Heisenberg group
(0_2) g(p, . t)qﬁ(:n) = e27rite-'rr-£pqezvripm¢(x _ Q’),
where p,g e R%, 0 <t < 1,
1991 Mathematics Subject Classification: 45C05, 81R30, 47B10, 46E30.
Key words and phrases: singular values, time-frequency localization.
The main part of this work bas been done while the author was holding Lise Meitner

fellowship of the Austrian Science Foundation. It has also been supported in part by KBN
Grant 2P 301 051 07.

[37



38 K. Nowak

(ii) the natural representation of the “az + " group

©03) rlwo)o(e) = oo 252),

where u € R%, 5 > 0.

In both cages (1) and (i) if b = 1 and ¢, 9 satisfy some regularity
conditions then the formula (0.1} becomes a resolution of the identity, i.e.
Th,¢ = id. The condition on ¢ that is necessary and sufficient for this reso-
lution of the identity to hold is

[¢llza =1

in the case of (i), and
o]

bt <en, {1 dse) %

=1 for almost every £

in the case (ii) (4 denotes the Fourier transform of ¢).

As long as b is a nonnegative, compactly supported function, larger than
some ¢ > 0, on some open set W, the spectral properties of T} 4 do not
essentially depend on b. Operators T} 4 with b’s having the above properties
are called local Toeplitz operators. We drop the symbol b and write T} for
local Toeplitz operators based on g and 7, for local Toeplitz operators based
on T,

In the paper [R3] Rochberg considered the operator Ty, with 1/ the Haar
function. He assumed that b is a bounded, nonnegative, compactly supported
function. He showed that the nth elgenvalue of Ty is at least cn™2 and that
T belongs to the Schatten ideal S? for all p > 1/2. Two-sided eigenvalue
estimates for 7, were obtained later by the present author in [N2]. These
improve the result of Rochberg, but do not allow the study of the general
case. In the present paper we treat the general case. Our results describe
the Schatten ideal norms (quasi-norms for 0 < p < 1) of both Ty, and Ty in
terms of some expressions involving Fourier transforms of ¥ and ¢.

Let us sketch the results. Let m be a smooth bump function defined on
R? which is concentrated around the point 0 and has suitably large support.

Let
(0.4} P = (mg (i ¢)/\)\/

where my(x) = m(z — n), k,n belong to the integral lattice in R?, and *,
v denote the Fourier transform and the inverse Fourier transform, respec~
tively. Our main result about Ty shows that for 0 < p < oo the following
equivalence of norms holds:

(0.5) 1T l1% =23 6™
k.
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The constants of equivalence do not depend on ¢, but do depend on m and p.

The norm that appears on the right hand side of (0.5) is the well-known
modulation space norm. It has been extensively studied by Feichtinger and
Gréchenig and its behaviour is well understood (see [FG]).

We sketch a one-dimensional result for 7;. The higher-dimensional ana-
logue is stated in the comments that follow Corollary 5.5 (it invelves more
complicated formulas and requires some extra assumptions on ).

Let m be a smooth bump function defined on (0, c0) which is concen-
trated around 1 and has suitably large support. Let us extend it to the whole
real line by putting 0 on the negative axis. We define

e (e Y (e NI T(3)) [ ()M
Y = (AR mF (€ i (E)d(—€))) (=),

where my(¢) = m(£/e¥), k,! are integers, and F denotes the Mellin trans-
form of the multiplicative half-line, i.e. the Fourier transform of the real line
transferred to the positive half-line by the exponential map. Our main result
about 7Ty, asserts the following equivalence of norms, valid for all 0 < p < oo:

01 1%l = 3 (i) = 3 (X Iwali)”

(0.6)

I k<0 I k<0
Z ( Z“"/’kz+r Li) + Z ( Z”ﬂ/m t+r||z,z) .
k>0, 1 rmO k>0,1 1=

The norm on the right hand side of (0.7) seems to be new. Some examples
are provided in Section 5.

Our results are illustrated by the phase space pictures presented below.
The first one exhibits the building blocks ¢*®" corresponding to Ty. The
second one exhibits the blocks ’l,b;:l, Py, corresponding to Ty. In the first
case each block ¢™™ contributes to the [P norm individually, in the second
case '¢k » Y5, have to be grouped properly before taking the I norm (as
the formula (0.7) shows).

& | ¢
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Instead of Ty, Ty we consider the operators
Ry DP(RY, dy) — L*(R*, dpdg),

. r2md 2 { md ds
Ry : LR, dy) - L (IR poe (D,oo),du”msd+l),
defined by the kernels

(0.8) F(p,9)e(p, ¢, 0)¢(v),
(0.9) fu, s)r(u, 8)(y).

The operators Ry, Rty are the square roots of Ty, Ty (provided
b= |f[*, b = |f[* where b is the symbol of Ty, and b the symbol of 7,).
For this reason statements about singular values of Ry 4, Ry, immediately
translate to statements about eigenvalues of Ty, T, and vice versa.

Descriptions of the Schatten ideal norms of Ry 4 are contained in The-
orem 4.3 and Corollary 4.4. The one-dimensional case of Ry is covered
in Theorem 5.4 and Corollary 5.5, while the higher-dimensional case is dis-
cussed in the comments following Corollary 5.5.

To avoid technical problems in dealing with integral kernels we assume
that the functions ¢, ¢ are of Schwartz class and we prove norm (quasi-norm)
equivalence (denoted by ). The constant p that appears in our results varies
in the range (0,00) and we do not mention it separately in the text. As is
traditional, the letter ¢ stands for different constants in different places.

1. Historical background. We are going to describe three standard
approaches to time-frequency localization. The first one is due to Landau,
Slepian and Pollak. It consists in analyzing the operator

(L.1) PaQrPa,
where Q7 and Pp are the orthogonal projections on L?(R) defined by the

formulas
_{ f(z) for|z| < T,
(@rf)(z) = {0 for |z| > T,
oy = | FE) forlg < 2,
Far) ()= {18 Brld<
The eigenfunctions hg, h1,... and cigenvalues g, Ay,... of (1.1) have the

following interpretation. The first eigenfunction kg is the most concentrated
in the interval [T, T] among the bandlimited functions with the spectrum
contained in [—42, 2]. In general, h,, is the most concentrated bandlimited
function that is orthogonal to hg,. .., hyn_1. One of the important tasks was
to approximate the dimension of the range of PnQq Pg. It was accomplished
by Landau, Slepian and Pollak and it was later applied by Landau to solve
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the problems of sampling and interpolation for bandlimited functions. We
refer to the survey paper by Stepian [Sl] for more information.
The next two approaches are related to coherent states (both are de-

scribed in [D]). The first one is based on the Schrédinger representation of
the Heisenberg group (0.2) and the study of the operator

(1.2) F {(fidpa)dndpda,

w

where ¢p o(z) = €2"¢(z — ), and W is a compact subset of R*¢. The
other is related to the natural action of the “az + & group (0.3) on L*(R%)
and the operator

(13) £ b du o

W

where 1, < (z) = 5792 ((z — u)/s), and W is a compact subset of R* x
(0,c0). Choosing ¢(z) = 2%/ 4e=7=" 3nd 9 with the Fourier transform ¢(£)
= X(0,00)(£)£}/%e727¢ and the sets W, W to be balls in the Euclidean and
hyperbolic metrics, Daubechies, Paul and Seip obtained formulas for the
cigenfunctions and the eigenvalues of (1.2) and (1.3). Their study followed
the direction of Landau-Slepian-Pollak and is surveyed in [D]. The result
of Rochberg in [R3] showed that the behavior of the eigenvalues of (1.3)
is different if the Bergman wavelet is replaced by the Haar function and
that the rate of decay of the eigenvaiues essentially depends on smoothness
properties of #.

Operators (1.2) and (1.3) are particular cases of Toeplitz operators based
on the representations ¢ and 7. Toeplitz operators based on 7 are called
Calderdén—Toeplitz operators, their study was started by Rochberg in [R1].

The problem of finding Schatten ideal membership criteria for operators
depending on function parameters has a long history. One of the early re-
sults in that direction is a well-known theorem by Peller and Semmes about
Hankel operators acting on the Hardy space H2. This theorem asserts that
the Schatten ideal norm of the Hankel operator is equivalent to the Besov
gpace norm of its symbol. The higher-dimensional analogue of this result
was obtained by Janson and Wolf. Later on, Arazy, Axler, Berger, Coburn,
Janson, Peetre, Rochberg, Zhu and many others investigated Toeplitz and
Hankel operators on Fock and Bergman spaces. Among the results obtained
were the Schatten ideal membership criteria. Criteria of that sort also oc-
curred in the works of Janson, Peetre and Peng on paracommutators and
in several papers by Birman and Solomyak on integral operators. Clearly,
this is not the full list of papers about the Schatten ideal membership cri-
teria.
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Our paper may be thought of as another one in this series. On the other
hand, however, it does not follow standard directions and it addresses the
issues that were not investigated before.

We divide questions about Toeplitz operators based on ¢ and 7 into two
groups:

(i) global behavior, dependence on symbol functions b, b for wavelets
¢, ¥ fixed,

(ii) local behavior, dependence on wavelets ¢, ¢ for fixed compactly
supported, continuous, nonnegative symbol.

The results in the direction (i) were obtained in [R2] and [N1].

Questions of the type (ii), specialized to the context of Schatten ide-
als, are studied in this paper. They are close in spirit to the work of Peng,
Rochberg and Wu in [PRW] on the cut-off phenomenon. In their case, how-
ever, symbols are analytic and the cut-off has different character.

2. Some heuristic arguments. The arguments that we present below
stress the basic features of Ry 4 and Ry in the case when ¢ and ¢ are
rough functions which are not well localized in the phase space.

Let b be a function of Schwartz class and let by, n, = e2momTp (g ton),
with wp, ¢p fixed positive numbers, m,n € Z. Although the system {fi,n}
cannot be an orthonormal basis of L(R), for many choices of h it is a good
substitute (if wofp < 1, then one may choose h in such a way that {Amy .}
constitute a tight frame; see [D], p. 84).

We express the kernel of Ry, R} 4 as follows:

(2-1) f(pla Q’I)f(p21 Q’Z) Z(Q’quz: hmm)(hmm: ¢P1:Q‘l>'

T,

If p, g are close to zero, then e*™7 is close to 1, h(z —¢) is close to h{x) and

k(€ — p) is close to h(£) (this is because h and & are both smooth). Making
use of these observations we derive the following

(2.2)  (¢p,q) hmn)

_ Sezﬂm &z ~ g) 6m2wiwumww da

e 2miwoma S ezwz‘pmqs(m)emeiwome dax

= etmisoma [ (e ) gZmiton g ~dmisomtenf (g _ o e

e ¢m2missmaghriumy { () c2mitans em2meomion e oy de

— e—Zvriwgmqurritunp ((,15, hm,n}“
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The above argument makes us think that for f close to the characteris-
tic function of the unit square [—1/(2wp), 1/(2wg)] % [~1/(2ta), 1/(2t0)] the
expression (2.1) is close to

(23) ZHQS; hm,n)|2Hm,n(p1;q1)Hm,n(p2: QQ):
m,n
where Hpn,n(p, q) = f(p, q)e?mwomae—2mitone,

We conclude that for rough ¢ the numbers |{®, A »)|? should be closely
related to the eigenvalues of Ty = R},quf,qg, and that the basis diagonaliz-
ing Ry, f} , should share some common features with the two-dimensional
trigonometric system.

The function ¢*™ (defined in (0.4)) is localized around the phase space
point (n, k). Moreover, ¢ & 3, ¢* ™. We assume that f(p,q) = fi(p)f2(q),
where f,, fa are nonnegative Schwartz class functions. Let by (p) = (f1(p))?,
ba(q) = (f2(q))*. We have

(24)  Rj4Rpe = || b1(0)ba{@)e?™ Pz — q)e >4y — q) dpdgq
bi(y — =) {b2(a)plz — 9By — ¢) dg
bily—=2) D (h(@e™™ (e — q)dkrma{y —g) dg

ni,nz.k1,k2

> {ba(q)d™ (@ — q)¢F2m(y — g) dg.

nr’"l ykﬂ

Q

2

In the last step we made use of the fact that ;(y — «) is localized around
the diagonal y = z. Let F denote the Fourier transform. For fixed n we have

235 3 (ba(0)¢™ (@ — )Ry — g dg

klpkﬂ

= Z F*Sbg(q)e—2wiq§(¢k1,n)r\(£)e2wiqn(¢k2!n)/\('7?) qu

ki, kz
=F* > byt —m)(¢M™)NE (™A () F
k1, ke
m PR3 (RO F = ¢*m @ o,
k k

We use the fact that bs(¢€ — ) is localized around the diagonal £ = 7.
Combining (2.4) and (2.5) we obtain

R;,¢R‘f!¢ [~ Z ¢k,-n. ® (}Sk’n.
k

The above arguments suggest the equivalence of norms stated in (0.5).
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The pattern for R¢,y is more complicated. The blocks in the phase space
that correspond to different eigenvalues may overlap. Moreover, one needs
to use mixed norms, not only I norms, to describe the SP criteria.

We only discuss a special case, namely when 9 is compactly supported,
and we interpret the terms in (0.7) that correspond to k < 0. Let f(u, s) =
f1(u)fz(s), where f; is a Schwartz class function and f; is a smooth, nonneg-
ative, compactly supported function defined on (0,00). We compose Ry
with F~1 on the right and with F ® id on the left. This yields the integral
kernel

(2.6) £ (€ — mfa(s)s™ 2b(sm).

Next we take a composition of (2.6) with its adjoint. We obtain
(2.7 Fi < hie - ) § (20 s80Com) 2.
0

If {f; «f1(6 — )| = € > 0 on the support of

[s.0]

(28) | (ta(o)) () 5om) 2,
0
)

then the S norms of (2.7) and (2.8) are comparable. On the other hand,

(2.9) f2(s)(sm)

is the kernel of a square root of (2.8). But (2.9) is just a convolution-product
operator on the multiplicative line.

We conclude that in the case of compactly supported 'gb we may forget
about averaging over translations. Only dilations influence the picture, and
R,y reduces to a convolution-product operator on the multiplicative half-

line. The terms in (0.7) with & < 0 come from such a convolution-product
operator.

3". Definitions and preliminary results. In this section we present
basic definitions and several facts concerning the operators R 70> Ry (de-
fined in (0.8), (0.9)), Schur multipliers and eigenvalue estimates for certain
types of matrices.

We start by defining some partitions of unity and Hilbert spaces bases
related to them.

o Let Ro = [-1/2,1/2], Ry = [0,1]. For n € Z¢ and 7 = (4, ..., iq),
15 = 0,1, we define cubes

Q;=n+R¢1 X...XRid.

icm
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We take two nonnegative C™ functions hg, hy satisfying

supp ho C (—1/2,1/2), Z(hg(:c—n)—i-hl(:c—n)) =1
nez

supp by C (0,1),
We define

d
mr (z) = H hi;(zj —n;) and m7(z) = Z mr(x).

ngZe

It is clear that
suppm,, C Qr, dist(suppm],8Q) > 6 >0, ZmT =1
T

Each space L?(Q7,, dx) is equipped with the orthonormal trigonometric basis
efz) = 242, e 78,

We use the standard symbols ", ¥, * to denote the Fourier transform,
the inverse Fourier transform and the involution in L'(R%), i.e.

f&) = | f@)e™® 0 d,  f(&) = | =)™ da, f(a) = F(-).
Re Re
We also need multiplicative, one-dimensional versions of Q7, ml, m™. We
assume that d = 1 and for s > 0 we define

myj(s) = mi(logs), m"(s) =m(logs)

and
seQrp ifandonlyif logse Q.
In each space L?(Q, ds) we take the orthonormal basis
er(s) = s7V2M ez
By Ff we denote the mulitiplicative Fourier transform of f, i.e.
Fi(s) = (f o exp)” (log s),
and
Iy n_ 1 —amal Ot
Fy =7y = | s S
0

We recall that the Schatten ideal S? consists of compact operators with
pth power summable singular values. By §*° we denote the ideal of compact
operators.

Functions f, f play the roles of the symbols of E¢ 4, Rt y. Our next two
propositions show that it is possible to switch them conveniently, namely
we may replace f(p,q) by fi(p)fa{g) and f(u, s) by £y {u)fa(s).
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PROPOSITION 3.1. Let f be a continuous, compactly supported function
defined on R and let 1, fa be Schwarts class functions defined on R®. Then

[ Bs.pllse = | Rp@ta,0lls0-
The constants of equivalence do not depend on ¢.

Proof Let D be a ball in R?¢ such that
(3.1) Ifp, )2 >e>0 forall (pg) e D.

There is a constant M > 0 and a sequence {ay,1}x e pz4, gth power sum-
mable for every ¢ > 0, such that
Z Op,IX (K, 1)+

(3.2) ()P falg)]* <
kle M7

We observe that
(33) (BheneRnon.eh b
“ 1(2) 1 f2(0) P 1(R, p,00|? dp dg

> ok § X+ D0, )| (B, o o) dp dg
o

IA

IA

¢ et §§1F 0~k g = D)PI(h, p.q)|? dpdg
ol

e o {§1F 0 O P(hok 1, dp,0) | dp dg

k,l

= CZ ok (R} g Rygher,—1, Bk, 1),

kI
where h € L*(R%). The relation (3.3) means
(3.4) R}1®f2,¢Rf1®f2,¢ < CZ a0k, )R} 4Ry s0(k, 1),

k,d
but clearly (3.4) implies

[ Br.05.0llsp < cl|Ry,gllse-
The reverse inequality follows in a similar manner.

PROPOSITION 3.2. Let f be a continuous, compactly supported function
defined on R% x (0, co), let f; be a Schwartz class function defined on RY and
let f3 be a compactly supported, smooth function defined on (0, o0). Then

Repllse = | Re gt pllse-

Proof. The proof follows the same pattern as in Proposition 3.1 and we
omit it.
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Schur multipliers, i.e. pointwise multipliers of operators given by integral
kernels, occur to be a useful technical tool in the context of questions we logk
at. In the following part of our preliminaries we collect several propositions
about them.

PROPOSITION 3.3. Let f(z) be a Schwartz class function that satisfies
|f{z)|26>0 forzeQ-Q,

where Q is some cube tn RS, Let K (@,y) be a kernel of an 5P class operator
acting on L*(Q). Then
I f(z - y)K (2, y)llse = | K (z, ¥)] 50

Proof. We extend the functions f(z) and 1/f(z) outside Q@ — Q to some
C¢° functions and expand them in a Fourier series on a cube containing the
supports.

To get the estimate from above for the kernel K(z,y)f(x—y) we expand
f(z —y) as indicated and we sum up the terms making use of the decay of
the Fourier coefficients. ‘

The estimate from below follows similarly. First we write

1
K(z,y) = flz —y)K(z,y) e

and then we expand 1/f(z —y) in a Fourier series.

ProrosiTioN 3.4. Let K(p,a,y) be a kernel of an S? class operator
acting from L?{R?) into L*>(R*?). Then

Im™(y — DK (p, g, y)llse < cl| K(p. 0, 5)lls»-

Proof. It is enough to expand the multiplier m™ in a Fourier series on
Q7. This expansion is valid over the whole R%,

ProrosiTioN 3.5. Let K(£,s,m) be a kernel of an SP class operator
acting from L*{(0, 00),dn) into L2(R x (0,00), déds). Then
lm™ (sm) K (€, 5,m) |52 < ¢ K (€, 5,m) |50
Proof. It is enough to expand m7(s) in a series }, ars2™", which is
obtained from the Fourier series expansion of m™ by evaluating at log s.

ProprosITiOn 3.6. There is a constant o > 1 such that for all0 <e <1
and all nonnegative integers k,

{em e QExQL:le—nl <o c{(6n) € Qf x Qf « | log&/n] < e}
C{(€:m) € QL x Qf : | — 0} < oe}.
Proof We assume that Q] = [e*,e*¥1]. The argument for Qf =

[ek~1/2 ekt1/2] i5 the same.
Let; 5 ,m € [¢*, e*T1]. Tt is an easy geometric observation that
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(i) if |e® log £/n| < e, then |§ —n| < Do/2,
where Dy is the distance between the points
(e——ae“"ek+1’ek+l), (ek+1’e—£e"”ek+1)’
(i) if | — | < D1/2, then |e*log&/n| < e,
where Iy is the distance between the points
(ek’eae_kekL (eee-*ek,ek)_
Clearly
Dy = \/ﬁek"'l(l - e'“_k) < Ves,

and one can easily choose a suitable o.

D1 =v2eb (e ~ 1) > V2,

PROPOSITION 3.7. Let o be any constant satisfying the statement in
Proposition 3.6. '

(a) Let H, f be C™ functions satisfying the following conditions:
(i) supp H C [—¢,¢], supp f € [~4,6], § <o P,
(il) 1) 2 k> 04 |¢] < oe.
If K(£,1) is o kernel of an operator acting on L*(QF,dn), k > 0, then

|1H (" log &/m K (€, m)|s» < €ll#(€ = m)K (€, 1) 55-

The constant ¢ depends neither on k nor on K(£,7).
(b) If H, f, K satisfy the same conditions as in (a), with (i), (i) re-
placed by

(i') supp H C [~¢,¢], supp f € [-6,6], e < 1,
(i) [H(z)| = &> 0 if |z} < o6,
then

I£(€ = MK, mllse < eiH(e* log &/mK (£, m)|gr.

The same comment about ¢ as in {a) applies.

Proof. We only prove {a}). The proof of (b) is similax.
‘We pick a ™ function f which satisfies

T )1/ F(E) if €] < oe,
f(f)“{o © ;fIé"IZ&.

By Proposition 3.6,
{(&m) € QL x QF - He" logé/m) # 0} C {(4,m) € QF x Qf : [£ —n| < 0g},
thus

(3.3)  H(e"log¢/nK(£,m) = H(e"log&/n)f(€ ~ n) F(€ — K (E,m).
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We expand H in a Fourier series on the interval {~o6, o6]. This gives

(3.6) H(c*log¢/n) =3 apmel™e"/(eDImlogé/n,

m
Since & < o6 the sequence a,, has fast decay.
We also expand f in a Fourier series on the interval [~6, §]. We obtain

(3.7) FE=n) =3 byetmi/Onte=m),
ki

Again the sequence by, has fast decay. By Proposition 3.6,
{(¢,m) & QL x Qk + |§—~nl S 6} C{(&m) € QF x Qf : |e* logé/n| < o6},

thus the Fourier series expansions are valid on a set where f(£ —n) % 0. We
combine (3.5)-(3.7) to get

(3.8)  H{(c*logé&/n)K (€,m)
- Z a‘me(m‘u"'/(aﬁ))mlog &fn E bne(w-i/ﬁ)n(f—n)f(g — K€, 7).

The sequences a,, and by, are qth power summable with any ¢ > 0 and our
proposition follows easily from (3.8).

The next part of our preliminaries exhibits two classes of matrices for
which one may explicitly characterize SP membership conditions. By sx we
denote the Nth singular value of a given compact operator.

Let T he an operator acting on [2(Z?) defined by the matrix

a(ly = 1)b{ky, 1)b(k, I2),

where (kq,1) are column indices and (ka, l2) are those for rows. Let
c(l) =Y [b(k, ),
k

and for M, r € 7,
M (1) = 3 (b, ML) 2.
&

The symbols ¢, (e™™)* denote the nonincreasing rearrangements of the
sequences ¢, oM rospoectively,

Prorosirion 3.8. If a(l) iy an absolulely summable, positive definite
sequence and a(0) = 0, then

{i") for some constant C > 0,
sn(T) < Ce*(N),
(i"y for some positive integer M and some constont ¢ > 0,
sn (1) = el (N)  for all r € Z,
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(i)
1Tl = (3 (S we0)") ™
! k

Proof (I') Let m; be the sequence corresponding to the nonincreasing
rearrangement of ¢(l), i.e.

e(my) = e*(4).
Let

. _ [ bk, 1) forl=my,
(k1) = {0 for | # m;,

and let W, = span{wq,..., wy-1}.
We will show that for w € Wi, [jw] = 1,

(Tw,w) < Cc*(N),

and this is enough to prove (1'). We have

(Tw,w) = > ally ll)Zb kl,ll)w(kl,ll)Zb (ka, l2)w(ka, I2)

Il

<GZ‘Zbkl
<C DY bk, Z|fw(kl!2<6’c( )

gVn &k
2Vy k&

where Vy = {mg,...,my—1}.
(i") We pick a positive integer M such that
0) > Y |a(M1)].
10
Let r € Z be fixed and let m; be such that

M (1) = (M) (3),

Let

bk, M = T
M (o, M1 47) = {( L+7) igig#z

M,
Wy = span{wg, LUWN}, wE Wﬁ,{_ﬂ, lw| =1,

M,r
w = Z)\ l” and Vi) = {mq,...,my}.
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‘We have

(Tw,w) =Y a(M(lz = 1)) > b{ky, My + r)w(k, Miy + 1)

ly,lz k1
x 3 blka, Ml + r)w(ks, Miz + 1)
ka

> Z 1Zb(k,Ml+T)'w(k,Ml+7') i

levyly

¢ 3 P Z]b(k- MI47)F 2 (™) (V).

acv;\‘,ﬂ']

Clearly, the above computation proves (i)
(ii) follows easily from (i) and (i").

Now let S be an operator acting on 12(Z) defined by the matrix
ally -y Zd b(k, 11)b(k, I2),

where d(k) > 0. Let
Zd )|b(k, 1)
and for M,r € Z,
) =Y d(k)b(k, M1+ ),
k

ProrosSITION 3.9, If a(l) is an absolutely summable, positive definite
sequence, a(0) > 0 and d(k) is nonnegative, then

(I') for some constant C > 0,
sn(5) £ Ce*(N),
(i"} for some posgitive integer M and some constant ¢ > 0,
sn(9) 2 e[ (N)  for allr € Z,

(i) 19 1gp (;(Z K)lbi, ) ) Uy

Proof The proof in similar to that of Proposition 3.8 and we omit it.

4, Schatten ideal norm of Ity ,. This section contains descriptions of
the expressions characterizing the S norms of the operators Ry 4. We study
the dependence of Hy4 on ¢, provided f is a fixed continuous, compactly
supported function, The wain result is corntained in Theorem 4.3, Tt is a
direct consequence of Lemmas 4.1 and 4.2.
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The following lemma exhibits the role of modulations in introducing
separations in the time variable.

LeMMA 4.1. Let f be a continuous, compactly supported function defined
on B2 and let fi, fo be any two Schwartz class functions defined on R®.
Then

I1Rsal% 2 IRngsmslf

T

The constants of equivelence do not depend on ¢.

Proof. In view of Proposition 3.4 and the fact that 3 _m" = 1 we see
that

(4.1) 1BsslB 2 || Rpmr ol

‘We choose a nonzero Schwartz class function fi such that
(4.2) FPrfilz—y) =0 iflz—yl >4

where dist(suppm?, 0Q7) > 8.
‘We take a nonzero Schwartz class function fo such that

(4-3) falgymp(z —q) =0
Proposition 3.1 guarantees that

unless ¢ € Q..

(4.4) | Bfmrgllse & | Ry fa,meollsn-

We compose Ry, g, mre With the inverse Fourier transform tensored with
the identity on the left. This leads to the kernel

(4.5) hiE =y fol)mmo(y — 0)-
An application of the property (4.2) shows that the kernel of the composition
of (4.5) with its adjoint has the form

(4.6) Zfl * file — ) {1 f2(@) Prpd(z — Qmi ¢y ~ @) dg

Since (4.3) holds, the terms in (4.6) act on orthogonal subspaces L2(Q7).
We obtain

4.7) IBnesmmrel
=3 |7+ fa - ) JIala)miste - Jiel @ da

p/2

Swr/2

= Y 1A ~ v fal)midly - O)li5 E 1R s, 872,mz i G-

n
The 5P norms of Ry, gf,,mr s are equivalent for d1fferent choices of Schwartz
class functions fi, fo (Proposition 3.1) and we may forget about the restric-
tions on f;, f2. A combination of (4.1), (4.4), (4.7) finishes the proof.
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The next lemma makes use of the fact that translations introduce sepa-
ration in the frequency wvariable.

LeMMA 4.2. For any two Schwartz class functions fy, fa,

1R f@tsmzoles D [m(m7e) |2,
ik
The constants of equivalence depend neither on ¢ nor on n.

Proof. We start by making a convenient choice of fi, fo. We take the
same fz as in the proof of Lemma 4.1, but this time we require that f;
satisfies
(4.8) Fixfile-y)26>0 forazyeq)

We compose the kernel of ¥ @ 1dRy, @ gy, mz ¢ With its adjoint. This operation
yields ,
(4.9) Fix fulz = ) § el Prmnd(e — 9)midly — q) da.

In view of Proposition 3.3 the S7/2 norm of (4.9) is equivalent to the S7/2
norm of

(4.10) §172(@)Pmi (@ — )mEdly = ) dy.
The kernel (4.10) is a composition of the kernel
(4.11) hla)miadly - ),

acting on L2(RY), with its adjoint.
The above observations lead to the following equivalence of norms:

(4.12) B p@pamrollse & falgymnd(y — )l s».

We will now work with the kernel (4.11), which appears on the right
hand side of (4.12). The previous choice of f; was suitable to get (4.12).
Since the S* norms of (4.11) are equivalent for any nonzero Schwartz class
functions, we may make another choice of fy.

We choose fy satisfying

(4.13) Fixfale=m) =0 if|e—n 26

We compose the kernel (4.11) with the inverse Fourier transform on the
right and with the Fourier transform on the left This yields

(4.14) fal& = m)[mi )R ().
We observe that
(4.15) fa(& — ) (g G (|G & Zklfz € —n)me(mi)"(n) -

We compose the kernel

(4.16) Fa(& = nyme(mI giiin)
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with its adjoint. Since f satisfies (4.13), we obtain
(4.17) > 5% falg ~ mmE(m76)" (€)mi(m )" (n).
k

The terms in (4.17) act on orthogonal subspaces L2(Q%). Combining this
observation with (4.15) we get

(4.18)  |If2(0)miay — o}k
23 I3 * falE = mmi (i) EmE (m )N (W)
2.k
= > lif2(€ = mymE(mzd) (s
ek
The last choice of fo was convenient to get (4.18). We still need yet another
choice of fz. We may change f> again since the S7 norms of the right hand
side of (4.18) are equivalent for different choices of f3.
We now take fp satisfying
5% fol=m) = k>0

An application of Proposition 3.3 vields
(4.19) |15 * fal§ — m)mE(mI )N E)mE(mad) ()| %

= [ (m6) (OmE (ma @) (n) s = mf (m79)" s
A combination of (4.12), (4.18), (4.19) completes the proof.

for &,n € Q5.

THEOREM 4.3. Let f be a contz’ﬁuoua, eompactly supported funciion de-

fined on R?2, Then
(4.20) Bos Y [ImEmIe) |5
rn,pk

The constants of eguivalence do not depend on ¢.
The formula (4.20) is related to the following decomposition of ¢:
(4.21) ¢= 2 (mi(mg)")".
T8,k

The terms in (4.20) are the L? norms of the blocks in the formula (4.21). It
is also possible to express the norm in (4:20) by sampling at suitable points.

COROLLARY 4.4. Under the same assumptions as in Theorem 4.3,
(4.22) IRsollse = Y [(mad) (k).
0,k

Proof. This corollary follows immediately from Theatem 4.3 and stan-
dard Plancherel-Pélya type estimates for functions of exponential type.
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Several agpects of the function space described in (4.20), (4.22) were
studied by Feichtinger and Gréchenig in [F2], [FG].

5. Schatten ideal norm of Ryt . In this section we present expressions
providing two-sided control of the 57 norms of Rt . As in the case of Ryo,
we are interested in the dependence of Ry y on 1, provided that f is a fixed
continmuous, compactly supported function.

The following part of this section, leading to Theorem 5.4, deals with
the one-dimensional cage. The main result s given in Theorem 5.4. It is a
direct consequence of Leromas 5.2 and 5.3

We start by reducing the problem to a class of operators which are easier
to deal with.

PrOPOSITION 5.1. Let f be o continwous, compactly supported function
defined on R x (0, 00), let £ be a Schwartz class function defined on R and
let f2 be a compactly supported, smooth function defined on (0,00). Then

IRl = 18T (65l + 1576, 5,m) 15,

where ,__,_.._.
(5.1) S, 8,m) = Fi(& ~ n)fz(SJmT(sn)tﬁ(_ﬂ?l)L
(5.2) ST(&,8,m) = B1(€ ~ mfa(s)m™ (—sn)if(sn),
and

S L2({0,00), dn) — L*(R x (0,00),déds),
ST L*((—o00,0),dn) — LR x (0, o), déds).
The constants of equivalence do not depend on .
Proof. It was observed in Proposition 3.2 that replacing f(u, s) in R,y

by fi{u)fa(s)s'/? provides a kernel with equivalent SP norm. Thus we may
consider the kernel

£ (u)fa(s)s™ b ((y —~ ) /3),
acting from L?(R, dy) into L*(R x (0, 00), duds), instead of Ry,y.
We compose the above kernel with the inverse Fourler transform on the
right and with the Fourier transforro tensored with identity on the left. After
performing those operations we obtain

(5.3) B (€ ~ n)fa(s)% (sm).

It is clear that the §” norm of the kermel (5.3) is equivalent to |Re | s
We observe that

[if1.(& = n)fa(s)d

()% 22 |[F1L(€ = 1288 (5m)X(0,00) (M) s
+ By (& ~ ) Ea(8)b (M) (—00,0) 7)1 -
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The proof is completed by an application of Proposition 3.5 and the fact
that 3. m"(n) =1

In the above proposition we have reduced the study of Ry 4 to the kernels
ST, ST. These two kernels are treated in the same manner, and we present
our arguments only in the case of S7. Let

=> xap-
k<0
We choose a smooth, nonnegative fa with small support so that for all &,
fa(s)mp(sm} =0 unlessn € Qf.
We write the kernel (5.1) as the sum KF + KT, where

(5.4) K3 (€, 8,m) = F1(€ — n)Ea(s)m (sn)yb(sn) M7 (n)
=Y Ei(€ — n)fa(sym] (s} (sm),
¥<0

(5.5) KT(€,5,m) = f1(€ — m)fa(s)m " (sm)3h(sm)(1 — M7 (7))

> B (&~ n)fa(s)mf (sm)d(sm).
k>0

It is clear that this decomposition of the kernel (5.1) reduces the problem

of characterizing the S? norm of Ry to the same problem for Kf, Ki.
The next two lemmas provide descriptions of the norms || Kfl g», || K] se.

Their combination directly leads to a description of the SF norm of Re y.

LEMMA 5.2. The following equivalence of norms (quasi-norms) holds:

Izl = (3 (3 ke mieren=mr)™) .

1 k<o

The constants of equivalence do not depend on 1.

Proof. It is clear that changing f; in K] to any other nonzero Schwartz
class function leads to a kernel with equivalent 57 norm. We pick f;, a
Schwartz class function, in such a way that

(5.6) [Brabe—mize>0 forallg,ne | QL
. k<)

The kernel of ICF*KJ is given by the formula

oo

(8.7) B¢ — ) | ba(s)m™(s€)ib(s8)m™(sm)ab(sm) ds,

0
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where ba(s) = (f2(8))?, m™%(€) = T; <o M (£). A combination of (5.6), (5.7)
and Proposition 3.3 shows that

(58 K515 = | | bale)mm (s (o)™ (sn)(em) ds|

0

p/2

sm‘2.

We compute the matrix of the operator given by the kernel

o

J by (s () {8 )on™ (o) o) di

0

with respect to the orthonormal basis {xqrei(s}}ey of the space
EBMU L? (Q,c,ds) on which this operator acts. A direct calculation shows
that this matrix has the form

(59)  balle — L)€ ], ()P(E)™ () (n*/2m, (Nb(m))~ ().

We apply Proposition 3.8, dealing with S* norms of matrices, to get two-
sided estimates of the SP norm of the matrix (5.9). A combination of (5.8),
(5.9) and that proposition shows that

ik

5122 3 (Tl mi©de)” op)"”.

kL0

LeMMa 5.3. The following norms {quasi-norms) are equivalent:

”'CI”S”E(Z(%E 1 (o )€ mnierion (- ) 2)”/2)1”?

E>0,1
Here H is any smooth, nonnegative, positive definite function with suffi-
ciently small support (depending on the constant o in Proposition 3.6). The
constants of equivalence do not depend on 1.

Proof It is clear that we may change f;, fo in X7 as long as f; is a
Schwarts class function ad fy any smooth function with compact support
contained in (0,0c) (Proposition 3.2). We pick a nonnegative function f
with the above properties aud intervals Py < Qf, & > 0, in such a manner
that

(5.10) fp(8)mj(s8) =0 unless £ € Py,
{5.11) dist{P{,0QF) 26 >0 for k> 0.
Now we take a Schwarty class function fy satisfying
(5.12) Prabiig—m) =0 if|¢=nl 26

We put those functions into X§. Since i, fp satisfy (5.10)-(5.12) we
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obtain

(5.13) KK =f«fic-m ) | bals)m sE Y (s€)m (sm)d(sn) ds
k>0 0

The terms in the sum in (5.13) act on orthogonal subspaces L?(Qf, ds) and
this implies

(5.14) K715
k>0

The formula (5.14) reduces the problem for K7 to the two-sided SP estimates
for the kernels

(5.15) fr« (¢ —n) | ba(s)mf
0

Boadig—n) 5 bz(s)m z(s@aﬁ(s&)m%<8ﬂ>mdsm

(s€)P(s€)mp(sn)ef(sn) ds

acting on L2(QZ, ds).

Proposition 3.2 allows us to change f; in (5.15) to any nonzero Schwartz
clags function. This observation together with Proposition 3.7 shows that
the S$P/2 norm of the kernel (5.15) is equivalent to the $P/2 norm of the

kernel

(5.16) H(e*log £/n) | ba(s)mE(s€)w(s&)m(sn)sh(sn) ds,
0

where H is any nonnegative, positive definite O™ function with sufficiently
small support (suppH C (—o™2,0?), where o is any constant satisfying
the condition in Proposition 3.6, is enough). The constants of equivalence
depend neither on k nor on 4.

We compute the matrix of (5.16) with respect to the basis {xqreth. We
obtain
(5.17)  ba(lo = 1)

o0 o0

S SH(eklog‘f/n)£1/2mk(é)¢(5)€~2w7.l1 /20, ( )‘fl)(n) 2l Ci.f?
0 a

Now we expand the function H in (5.17) in a Fourier series on the interval
[—e"’“, €] and (5.17) becomes

5
x> A (2—) (& (EYH(E)™ (b ~ /) (7 m] () (m))~ (1 - /).

icm

Local Toeplitz operators 59

Proposition 3.9 shows that the $7/2 norm of the matrix {(5.18) (and thus
also of the kernel (5.15)) is equivalent to

o 3 () (@ mrira-r

Combining (5.14) and (5.19) we obtain the lemma.

(5.19)

in/2

We may combine the results we have obtained so far to obtain the fi-
nal form of the expressions controlling the SP norm of Ry in the ome-
dimensional case.

TuroREM 5.4. Let £ be a continuous, compactly supported function de-
fined on R x (0,00). Then

(5.20)  [|Re,pl5e

o ;(k;ose”z @erar)”
-3 (e meri-oror)”
kS
+MZ>M( DI (2€k)|(5”2 ()@(é))"*(z—r/z)iz)m
+T,,§l(2ekz (M)I(é”z RO (- £))'“(z“,,/2)‘2)p/2:

where H is o smooth, nonnegative, positive definite function with sufficiently
small support. The constants of equivalence do not depend on 1.

We illustrate the above theorem with two examples.

ExampLes, (i) I € Ok \ {0}) and (&) = [¢|~* for large |¢| and
$(€) = |¢]? for €] close to 0, then the expression (5.20) is finite if and only
if > 1/p and > --1/2.

(i) Let % = x(0,1) * X(-1,0) be the Haar function. The expression (5.20)
is finite if and only 1f P>l

Both of these examples are not hard to check directly and we omit the
computations justifying our statements, The second example, with the Haar
function, was originally studied by Rochberg in [R3].

The expression (5.20) is an analogue of the expression (4.22) obtained
for Ry 4. It is also possible to formulate the result in a form analogous to
(4.20) and this is what we do next.
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We take a compactly supported smooth function m’ defined on (0, c0)
such that

(5.21) > mls) =1,
kEZL
where m}(s) = m'(s/e*). We define
(5.22) ¥t = Bxpee)’s ¥ = ($X(<000))"
and
vty = (P (] FEPmlET)NENE)
Yoy = (CVAF T o] F(EAm(E) (™) (= em( <)>V
Clearly,
(5.23) IR PR
ki k,l

The formula (5.23) is an analogue of (4.21).

COROLLARY 5.5. Under the same assurmptions as in Theorem 5.4,
(5.24)  [Reulss

= Y (S ila)” +2(Zu«pmz)

I k<0 k<0

+ ¥ (; k]lewmran)p + 3 (5 éw;zwniz)m.

k>0,1 k>0,1

Proof. We prove the estimates for 4*. Those for %~ follow in the same
way.

First we prove the estimate from below. The proof is based on the fol-
lowing reproducing formula. We take a €% function M™ defined on (0, 00)
such that M7 = 1 on Qf and supp M™ Nm] = 0 for & # 0. We obtain

(5.25) @NE) = D (P (m)d ()~ (HME (€)1,
Tkl

A gimple computation shows that

o

d
I[5ulEa = | IFEPml @9 mml ()
0
After substituting (5.25) in the above formula we obtain
(5.26) b llee < Y Kk =K, 11, 7)afpl,
Rl
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where
oo , dn 1/2
o) K- #,1- 1) = (Il OML©E™ amlmP &)
0
(5.28) af = (€ ml (£)(€))~ (D).
The functions m'(r}, MT™ have compact supports, and this implies
(5.29) Kk~ I-U,7y=0 iflk—k|>C,
where C is some positive constant. It is also easy to see that
(5.30) K(k—k 117 <Ol ~1'"")

for all positive integers N. Estimates (5.29) and (5.30) show that the matrix
K has good decay properties. It is a matter of a standard computation to
use (5.26) together with (5.29) and (5.30) to see that

(5.31) Z (Z ||TPMHL2) Z ( Z] e l-|-'r”Lz)p/2

k<0 k>01
p/2
S CZ ( Z |a‘zal|2) Z (Z‘Hk ‘a’kl—-r| ) )
Tl kSO mk>=C,l o r
where Hy(r) = (1/(2¢*))H (r/(2¢*)) and H is a function as in Theorem 5.4.

Theorem 5.4 and (5.31) complete the proof of the estimate from below.

Now we prove the estimate from above. We need another reproducing
formula. We take a function M' defined on (0,c0) such that F~1{(MT) €
C(0,00) and 37, M;‘ = 1. We have

(632)  (@NNE =D FHF@ Pmndbn)OMI () (€,
LX)

and .

(5.33) (62 mi (PO (/D < D K kil K, 1),

k1
where this time
K (k, 1,7, k1) = [(mp()F (F(n" Pl () m))OM (O)EN™(1/2)].
We want to control the terms of the rxght hand side of (5.33) by an expression
depending on || |l 2. Since 1f, m{ and F~(M') have compact supports,
(5.34) Kk I,nk0)y=0 iflk-k|>C,

where C' is some positive constant. We take a CF° function M defined on
{0,00) such that M = 1 on suppm!. In the following estimate we use the
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decomposition of M}L, into compactly supported pieces Zn mL +I,M;’,. We
obtain
(5.35) K(k1mK.0)
< 3 I FEDE ) Mosrr—i/2(E)| e |F (M *ml, (1) () m o M 2

< D R+ = YR e,

where for every positive integer IV,
(5.36) h(n) = O(n~ ).
It is a matter of a standard argument to check that (5.33)-(5.36) imply

63 Y (Sl mebe)raar)

1 k<0

+ 3 (T

T, k>0,1 T

<ed> (Y Il

I k<o

2);.7/2

/ A /2
1) e O (DA onalt)

k>-C,1

erierier (50

where H is a function as in Theorem 5.4. Another standard argument al-
lows us to rewrite the inner summation in the form given in (5.24). This
observation together with Theorem 5.4 and (5.37) complete the proof of the
estimate from above.

COMMENTS. (i) The operator T involves averages of translations and
modulations of ¢, while 7y is based on averages of translations and dilations
of ¥. Tt is these averaging processes that produce the patterns described in
our results.

It is natural to compare what happens if only translations are involved,
i.e. we take T4 with the symbol supported in the plane p = 0. An argument
similar to those given for Ry ¢ (see also [N3]) shows that the S$* norm in
this case is controlled by the expression

(5.39) (Z (S imzermar))™.

T,k n

If one takes a symbol supported in a plane which is a rotated plane p = 0,
then there is a corresponding phase space rotation in the expression (5.38).

In particular, taking the plane g = 0 corresponds to switching the roles of
n and k. '
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(ii) It is possible to extend the method of Theorem 5.4 to higher dimen-
sions provided that % factors out in polar coordinates. We formulate this ex-

tension below. The proof essentially follows the steps of the one-dimensional
case and we do not include it.

Let 7 : UJ — R4L, j=1,...,N, bea system of coordinate maps of
the (d — 1)-dimensional sphere $4~% and let M7, j=1,..., N, be a family
of siooth, noonegative functions on §¢-* satisfying

(1) suppMj c U,

(2) 32, M7 = L.

Let f be a continuous, compactly supported function. defined on R? x
(0,00). Let us assume that ¢ factors out in polar coordinates, i.e.

$(€) = R(r)2(w),

where £ = rw, r > 0, w € 8%, Let 07($(w)) = MI(w)f2(w) and let
9{z) = 0 for z € R%1 \ $7(U7). Then

IRl 2= 128 s0ms) 3 (3 10200 (r) RUr)) (1) 2)

Tl k<0

1 g d/2 ~ 2 v/
o 3 (o S B (o I i RO - )

k>0, n

x 3 (me |,

Sem
where (2 (z) = e~{4=1r20i(5/¢h) is the L? normalized dilation of {27 by
the exponential factor ¢ and H is a smooth, nonnegative, positive definite
function with sqﬁ"iciently small support.
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Decomposable embeddings, complete trajectories,
and invariant subspaces

by

RALPH DELAUBRENFELS and VU QUOC PHONG (Athens, Ohio)

Abstract. We produce closed nontrivial invariant subspaces for closed {possibly un-
bounded) linear cperators, A, on & Banach space, that may be embedded hetween decom-
posable operators on spaces with weaker and stronger topologies. We show that this can
be done under many conditions on orbits, including when both A and A* have nontriv-
ial non-quasi-analytic corplete trajectories, and when both A and A* generate bounded
semigroups that are not stable,

0. Introduction. We produce closed nontrivial invariant subspaces for
a closed (possibly unbounded) linear operator A, on a Banach space X,
by “sandwiching” it between two slightly better operators. Specifically, we
embed A4 between a decomposable operator, acting on a smaller space con-
tinuously embedded in X, and an operator, acting on a larger space in which
X is continuously embedded, whose local spectral subspaces are closed. In
addition, we need either slightly better behavior of the restricted opera-
tor, including, but not limited to, generating a polynomially bounded group
(see Proposition 2.2), or having an element where the local spectrum of A
contains at least two points (Proposition 2.3).

We show that these conditions are satisfied when A* has a nontrivial
non-quasi-analytic complete trajectory and A has a complete nontrivial non-
quasi-analytic trajectory that either grows roore slowly (polynomial growth
is sufficient) or has spectrun that contains at least two points (Theorem 2.4).
By a complete trajectory we mean a mild solution of the reversible abstract
Cauchy problem (see Definition 1.4). Whon A generates a. strongly contin-
wous bounded sendgroup that i not stable, then it is sufficient for A to
have a non-quasi-analytic complete trajectory (Corollary 2.8; weaker condi-
tions on the senigroup ate sufficient -see Theorcin 2.6). It is also sufficient
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