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On generalized Bergman spaces
by

WOLFGANG LUSKY (Paderborn)

Abstract. Let [ be the open unit dise and 4 a positive bounded measure on [0,1).
Extending results of Mateljovié/Pavlovié and Shields/Williams we give Banach-space de-
scriptions of the classes of all harmonic (holomorphic) functions f : D — C satisfying

(2" | Fre) P de) /P dp(r) < oo.

1. Introduction. The aim of this paper is to give Banach space represen-
tations of certain classes of harmonic and holomorphic functions. Consider
D= {z€C:|z| <1} and put, for 0 < r,

27

1/
M,(f,r) = (517? S |f(rexp(i9))|”d9) ’ ifl1<p<oo,
0

and Meo(f, 1) = sup|5)=y | f(2)]-

We want to study harmonic functions f : D — € which are not neces-
sarily bounded but for which M,(f,r) grows in a controlled way as r — 1.
To this end we introduce & bounded (positive) measure p on [0, 1] and put,
for 1 < p < oo,

1

£l = (§ 87,7 die) "

0

ifl<g<oo

and
[£llpyoe = sup (Mp(f,r)u(lr,1])).
Dar<l
We investigate the spaces
bpyg{p) = {f : D =+ C: f harmonic, {|f[|pq < oo}y
bp(18) = { € by,eo(s)  lim My, ru([r,1]) = 0
and

By (1) = {f & bpo(p): f holomorphic} ifg=0o0rl<g<o0.
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78 W. Lusky

The assumption on the boundedness of u is only used to make sure that
these spaces contain all trigonometric polynomials and all polynomials, resp.
If p({1}) > 0 then owr definitions, for p = g, yleld the classical L,- and
Hp-spaces which we want to exclude in what follows. So we assume

(L) tim a((r, 1)) = 0.

If we have supp u C [0, ¢] for some o < 1 then we can replace [0, 1] by [0, a].
Using substitution we see that it suffices to restrict ourselves to the case
a=1,1e.

(1.2) 0 < u(lr 11)

From now on we always assume (1.1) and (1.2).

for each r < 1.

ExampLE. Let du(r) = 2nrdr. Then for p = ¢ < oo we have || f]p,q =
(§§p [f (& + iy)[? d dy) /P. Hence in this case we obtain the classical Berg-
man spaces (see [1], [4], [10}). '

For arbitrary u put v(r) = u(lr, 1}); v is called a radial weight func-
t2on. Boo,q(p) and beg o(u), for ¢ € {0, 00}, are the weighted spaces consid-
ered in [11], [12], [14]-{17]. Note that, for any 1 < p < oo, we have f €
Bp.oo(pt) HE My(f,r) = O(L/v(r)) as r — 1. So, by characterizing bp,so (1)
we obtain generalizations of results of Hardy and Littlewood ([8), 9], [5],
Section 5, and Corollaries 2.6, 2.7 below). The space by1{u) was also con-
sidered in {15] and [16]. Our paper includes extensions of some results
of Shields and Williams. We use non-trivial modifications of the methods
of [12].

Our main result states that, under a mild assumption on u, we have
bp,(p) ~ (35, ®ly)igy (“~” means “is isomorphic to”). In this situation
we can precisely determine for which measures 4 we also have By, o () ~
(32, @15)(g)- For example this is false for all g if g = % ATy -2+
and p & {1, 0o}

Our paper also extends the work of Mateljevié and Pavlovié [18], where
in the case of analytic functions, By o(u) ~ (32, DI} gy was proved for
1 <p < oo for a more restricted class of measures u. (See also [3] and [20].
For another kind of representation in some special cases see (4].)

The paper is organized as follows. In Section 2 we state the main re-
sults; most of their proofs are given in Section 5. In Section 4 we collect
the Banach space properties of {37 Dy g and of related spaces needed
for the proofs. Section 3 deals with elementary properties of trigonomet-
ric polynomials and the operators R,, defined for a harmonic fanction
Flrexplip)) = 37,5 anr!® explike) on D as follows:
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(1.3)  (Ruf)(rexp(iv))
( }: o™ explikep)

bl

Z ar ™ exp(ikp)

k| g on
gnskl L |k:| k] . .
4o Z e o) exp(ikep) i p = 1, 00,
o L [l g antd
(We put Ry = 0.) Lot
dp = supsup{ My, (R, f,7) 0 f a trigonometric polynomial, M, (f,7) < 1}
n

ifl<p<oo,

Since R, is a convolution operator with a Dirichlet or de la Vallée-Poussin
kernel (sce {18], [19]), A, does not depend on r and we have ||Rnfp, <
Apll Fllpig for all f & by ,(14). Morcover, we consider the Riesz projection

(1.4) (BF)(rexp(io)) = Y apr® exp(ikep).
]

R is bounded for | - |1, 1 1 < p < oo ([5], [18]).

We shall wse the following convention. If not specified otherwise, p is an
element of [1,00], and ¢ is an element of {0} UL, oo]. For Banach spaces X,
put

(Z (—.E)Xw,)(q) = {(.I'ﬂ) vy € Xy for all o, (Z ||:cn|]")1/q < oo},

(Z E-l?JXn)(w) = (@)t @y € Xy, for all n, sup l|znll < oo},
(Tox.),, ={@)e(Tox.) _ : o lsal =0},

2. The main results. First we st some elementary properties of
By o () and by, {10}
2.1, PROPOSIVION, (a) Al 3y o (1) and by o (1) are Banach spaces.

dense in by, (j0) while the polynordals are dense in By ().

Proof. (a) This follows from the fact that these spaces are closed in

L am . /
{f ¢ 1D - € moeasurable : S ( S |f{re*®)|? dcp)q pdy,(cr') < oo}
00

if 1 € ¢ < oc. The remaining cases ¢ = 0,00 can be proven similarly.
(b) For any f € by () and 0 < r < 1 we have ].‘lmn M*?(f — Raf, T)
=0 in view of (1.3). This includes the case p = co since f is continuous
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on D. Moreover, My (f — Rnf,7) < (14 Ap) Mp(f, 7). So using the dominated
convergence theorem we see that R, — id pointwise on By 4(u) as well as
on by q(p} if 1 < g < co. If ¢ = 0 choose, for given € > 0, some g € 0,1
such that

(14 Xp) sup Mp(f,r)p([r, 1]) < &

7“27"0

Then

£ — R fllp0 < max(e, Mp(f — Rnf,ro)u((0,1)))
in view of the maximum principle. We also obtain R, — id (pointwise) in
the case g = 0. This implies (b). m

2.2. PROPOSITION. There are constanis a,b > 0 and, for every p,q,
positive integers my < my < ... such that for all f € by q(p),

o S (Bon —Rmn>f1|g,q)1 S 1l <5(301 o~ R )5

if 1l < g < o0 and

asup (Bampyy — R ) fllp.a

ifg=0.
Proof We deal with the case 1 < ¢ < oo, The remaining case is similar

(see [11]). Let E, be the span of all trigonometric polynomials of degree
< n. Since the unit ball in E, is compact we obtain from (1.1},

B, ) fllpg S N5 llpe < bS‘;P ”(Rmn+1 -

1

(2.1) lim sup S Mi(g,rydu(r) = 0.

7L geBaillglle,a <1y

Moreover, we have |og|? SOTEM‘-’ du(r) €1 for any f(re) = 3, aprltlete
with || f|l5,¢ < I. Hence, by (1.3} and the Minkowski inequality,

(SME((M _R”)f’ r) d#(’-’"))l/q < |ak1(§wlqu dpe('r))l/q
0 [K[=2m 0
Sngk\qu(T) /g
= i
- ;kf;n (Sérktq dﬁ‘('f'))

st ([0, s]) Ve
< Z ((1+3)/2)k ('u,([(l-i—S)/Zl])) ‘

[kjz2n

Thus, (1.2) yields, for every s < 1,

tn

(2.2) lim S I((id —Ryp) f,r)du(r) =

"H‘”!\fllp Ig
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Using induction and (2.1), (2.

1
sup | M(Rm, f,7) dp(r) < 4~131-9,
17002,

An

sup M‘q((id —‘Rm,t“ o
“f”;u.q,,‘gl §) ? Il)f )

2) we find s, and M1 With

(2.3)
du(r) < 471310,
Now consider an arbitrary f € b, (1) and put f, = (R, ot

We have f == Z f'n and Jr e fn ] = (R'mn-m
for each n,

Rmn).f'
R, ) f. Using (2.3) we obtain,

LT Akt
4 f p -1
ﬂs JVI}) (.f:'r)dﬂ‘(r) < 31 qS Mq(fn + fn+1: )d,u('r) + 4n+1 “f”p,q
Summation yields
Hyped1 2
£, < 3¢ ‘Z U MIn+ frcrar) dp(r) + 3715

o 2
§ 3')‘ ! Z ”f’FL '}” f““’i"l”glq + §Hf”.g:q‘
T

Using the Minkowski inequality we obtain the right-hand inequality of Pro-
position 2.2.
Now (1.3} yields (id ~Ry,, ) fn = fr =
(2.3) applied to fi/|l fullp,e implies
ey

| M) dutr) < 4777180 g
0

R uafo (s02 (3.1), (32)). So,

and
1
V830 dp(r) € 4785 A8 .

""rl-la!

Hence

Ay g Hayod
“fn”,n g \ !”q fm d,“( ) (2}\2))97 s Mﬁ(fﬂ”) d}.l-(?‘)-

LITE ] Fyyed

Summation yields 5 5° [1fulig, < 42204 718 , and thus the lefi-hand in-

equality of Pwpmltmn 2.2, m

2.3. Cororranry. (a) The spaces By, (1) and byq(p) are reflexive if
1<y <o,

(b) We have By o(j0)* = By oo (i) and bpo(p)*™ = bp,eo(p):
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Proof. Proposition 2.2 shows that By o(u) and by 4(p) are isomorphic
to subspaces of (3, @Xn)(q) for some finite-dimensional Banach spaces X,.
If 1 < ¢ < co the space (3, @X,)(y) is reflexive. This yields (a). For the
proof of (b) observe that (3°@Xn {5y = (30 @Xn)(o). Now it is very easy
to see that the w*-closures of By o(p) and by o(p) regarded as subspaces of
(3" ®Xn)[g) are Bpoo(p) and bpeo(u). =

We want to improve Proposition 2.2 for a special class of measures.

2.4. DEFINITION. Let 1 be a bounded positive measure on [0, 1] satis-
fying (1.1) and (1.2). Put g, = p([L — 27", 1]). We consider the following
conditions:

() sup( Fin ) < oe,
n \ Hntl
(%) inf lim sup (Mn%) < 1.
E  neoo L

ExaMpLES. Put dui(r) =
for some 4 > —1,

dus(r) =

(1 — r)*dr for some o > —1, dug(r) = ridr

dir
( —r) 10g”(8/(1 —))

Z k k+ 1)‘51-2""

Then w1, pa satisfy {x ) a,nd (#x) while pg, pg fulfil (%) but not (xx). i1 was
considered first by Hardy and Littlewood ([8], [9], see also [6], [7]). ue with
B =1 yields the “classical” Bergman spaces [1].

for some v > 1,

2.5. THEOREM. Assume that pu satisfies (%). Then there are integers
1 <my < mg < ... and constants a,b > 0 such that, for every p,q and
f € bpg(n), we have

(2.4) G:( Z Mg((Rmn b Rmn—1)f: 1)(/"'mn - I-”mn+1))l/q
< le B MR

zf1<g<oo oand

(2'5) a'mip MP(( My ™ Rmn—l)f? l)ll‘l'm'n

S fllpg = bsip Mp((Rnp = By ) £, 1) i,

if ¢ € {0,00}. If (%) holds then we can choose my, = Kn for some integer
K. If (k) is not satisfied and p € {1, 00} then for any sequence (my,) with
(2.4) or (2.5) we have sup,, (M, — Mip—1) = co.

/e
e = B )£, 1) (b, = o))

icm
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Remark. Recall that R.,f is a trigonometric polynomial, hence
Mp(Rmf, 1) makes sense. The proof of the theorem as well as of the fol-
lowing corollaries will be given in Section 5. The proof shows that we can
choose the m, by induction such that my = 1 and M1 18 the smallest
integer larger than m, with g, > Bdomyy oy -

In [3) and {13] measures of the form du(r) = (1 - )" (1 — r)dr were
considered where  is a non-decreasing function satisfying two further con-
ditions which imply (%) and (x«). Hence Theorem 2.5 includes, for ¢ > 1,
Theorem 2.1.(b) of [13] and Corollary 1 of [3).

Consider a harmonic function f: D — C and let f be its trigonometric
conjugate, i.e. the harmonic function f with f ( ) = 0 such that Re f+iRe f
and Im f -1 Imf are holomorphic. We obtain

(2.6)  f=~iRf +i(d-R)f +if(0) and Rf=Li(f+if)+ $f(0).
2.6. COROLLARY. Let u satisfy (x).

(a) b,,,q(u) (3on ® ) (g Jor all p and q.

(b) Bpg(p) ~ G0, ®l gy Jor all g and 1 < p < co.

(c) If 1 < p < oo and q 18 arbitrary then the Riesz projection is a bounded
operator from by 4(1) onto By 4(1).

(d) Let 1 < p < oo, let ¢ be arbitrary and consider a harmonic function
FiD = C Then || Fllpy < 00 if and only if || Flip.q < oo.

For the remaiuing cascs there are some notable exceptions.

2.7. Cororrary. Assume that (x) holds. Let ¢ be arbitrary and p €
{1,00}. Then the following are equivalent:

(1) Bpal) ~ (2 By )
(i) R % a bounded opc'mfm Jrom by (1) onto By (1),
(i1} o satisfics (xx),
(iv) For a harmonde funetion f o D — C we hove | fllp,y < 00 if and only

if”f“].}.q « (X3,

Remark, 2.5 2.7 extend the results of [12] where the cases p = oo
and ¢ € {0,00} wore proved. Corollary 2.7 gives a positive answer to a
prablom, mmc\d in [13], p. 236, (This problem was independently solved by
Wojtaszazyk in [20].) For dug(r) = rdr we obtain the lnown isomorphic
reprosentations by, (p) ~ Byp(pe) ~ 4 ([10], [16]). However, for the mea-
sures g and pq of the above examples we have By (1) o4 (@I ) g if
p € {1,00} (in particular, By () # ) bt Bpea(p) ~ (3. Sl )(0a) When-
ever 1 < p < o
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Corollary 2.7(iv) together with Corollary 2.6(d) might be regarded as a
generalization of some Hardy-Littlewood theorems: Considering
dpa(r) = (1~ r)%dr,

we obtain, as r — 1,

My(f,7) = o(ﬁ_—i)m) if and only if M,(f,r) = 0(({%)&4:{)

{[5], Theorem 5.7).
Virtually everything carries over to the case where DD is the Euclidean
ball in C*.

a>—1, and g=o0

3. Trigonometric polynomials. Here we collect some basic properties
of the operators R,. Clearly, we always have

(3-1) Ry, Ry = Rmin(n,m) ifn # .
Sometimes we use the following consequence of (3.1):
Ry~ Ry, Hp<m<n<yg,

_JR,—-R, ifm<p<g<m,
(3.2) (Rq_Rp)(Rn_Rm)“ 0 ifg>p>n>m
orn>m>q>p
For f(rei?) =3 axrl*let™ put
(33) o)) = 3 T et
|| <m

Then o, is contractive with respect to Mp(-,r) ([18]).

3.1. LEMMA. There is a universal constant ¢ > 0 such that forp € {1, 00}
and all r > 0 we hove

(34)  Mp(R(Bnsy — Bn)fir) < cMp((Rnr1 = Rn}f,7),

whenever f 45 a harmonic function.

n=12,...,

Proof. For each m we have, in view of (1.3),
R(Rons1 — Bim)f = €2 005m11 (67270 f) m 1627 00pm (71270 f).

We conclude that M, (R(Rn+z — Bu-1)fir) < $Mu(f, 7). Replacing f by
(Rp41 ~ Rn)f yields easily (3.4) (see [12], Corollary 3.1). w

3.2. LEMMA. Let p € {1,00}. Consider integers 1 < m; < n; with
sup;(n;—my;) = c0. Then for any 8 > 0 there are o trigonometric polynomial
f: D — C and an integer k with (Ry, — Ry, )f = f such that

Mp(f, l) = L— but MP(Rf) 1) > 8.

icm
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Proof. For p = oo this is essentially [12], Lemma 3.5: Put h(rei?) =
Yoo -}N sin(j) which is the harmonic extension of h{e?) = i(r — ),0 <
@ < 2m. For every integer k with e 2 my+3 define fx = (Ry, 1 — Rmy21)h.
Then Moo (fi; 1) < 200 and, in view of (1.3),

P
Mu(Bfe D)2 3 =

J‘:zm;ﬂ-{-'}
Since supy(ng = g ~ 3) = oo we find k such that My (Rfr, 1) > 2heemf.
By (3.2), f = fo/ Moo (f, 1) proves the case p = co.
Sinee sup(ng ~ g ~ 4) = oo we also find a trigonometric polynomial d
and an integer k with
(Rupoz = Bmpiadd=d, Mao(d,1) =1 and Mw(Rd,1) > 2X,8.
Consider a harmonic g with My(g,1) = 1 and

%

S g(€"?) . (Rd) (e ™) dip > 20, 5.
0

i}
2

Since (Rpy~1 — Rmgr1)® = Bpy~y = Rmy4+1 we obtain, according to (3.2),
Ml(R(Rn;\,n-l - famkuﬂ)!], 1) > 2)\1[3 MOI'E!OVGI‘, Ml((Rn;c-l - Rmk+1)ggl)
< 2A1- By (3.2), f = (Ruymt = Ronytn )9/ Mo ({Rny <1 — Remg41)g, 1) proves
the case p=1. m

3.3, LuMmMmA, Let 0 < r < 8.
(a) If f is a trigonometric polynomial of degree n then
Mp(F,8) < (8/r)*" Mp(f, 7).
(b) Let f(tei?) = ikizm atl® e for some integer m > 0. Then
Mu(fyr) < e(r/s)" My(f, s)
for some universol constant ¢ which does not depend on fym,r or s.

Proof. (a) Let 1 € p < oo, We may assume r < 8 < exp(1/(2n))r (if the
lemma holds for these r and s then repeated application yields the general
casie). Lot f(re'?) = zl’fvl‘é” aprikleh®, Pix z € D, Then (3.3) yields

(%(itlm%,)f)(z): Z jkiaktlk\—lzk‘

0<|k|En

This implies, with 1/p" -+ 1/p =1,
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1 2 ) ] 1/p
< (EJJ [ 17(se?) — f(rete)? d‘“)
1 2 P i/p
(5 ) )

- (% ! @?)W(S'“id—vn)f><tewf’?) o)

< 2nM,(f, s)log(s/r).

Hence M,(f,s) < {1 — 2nlog(s/r))"*My(f,r). For a fixed integer m put
Ty = r(m 3)/’“55’/’”, j = 0,...,m. Then we have rj,1/r; = (s/r)*/™ and

s < rign < et/ (2“)7"-. Repeated application of what we have just proved
yie]ds

[=1

i

§ (%(id —-crn)f) (te™) dt

~1
Mp{f,s) < (1_%103 (;)) Mﬁ(f:'rm—l) <.

< (1-Zug(2)) Taglsin)

If m — oo then (1 — (2n/m)log(s/r))™™ tends to exp(2nlog(s/r)) =
(s/r)*™. This proves the case 1 < p < oo. The proof for p = oo is the
same.

(b) It suffices to assume r/s < 1—1/m. (For r/s > 1 — 1/m we have
Mp(f,r) < 2e(r/s)™My(f,3).) The inequality of (b) is clear if f is holomor-
phic (even with ¢ = 1). For arbitrary f satisfying the assumption let k be
such that

(3.5) o+l < < 2F42,

Then we have Z _,O(Rk+g+l Rk.;_j.)f f Put fl (R}b T B Rk,)f and
= {(id—R)( Rk 1 — Ry)f. Using Lemma 3.1 and the continuity of R if
1 < p < oo we find & universal constant ¢; > 0 with
Mp{(Bepr — B ) fir) € Mp(fr,r) + Mp(fa,r)
< (r/s)™(Mp(f1,8) + Mp(f2, 5))

< er(r/8)" Mp((Rit1 — By) ) 5)
< 2per(r/s)™ M, (f, 8).
Similarly,
My((Rgtje1 ~ R;c+j)f, T} < 2)\pcl(T/3)2k+jMp(f,s), i=12,...,.

icm
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—oktd gk
gince (Rp; p~1""RIu|J)f1WPdnnCde 2 22

for r/3 £ 1= 1/m we obtain

gk il kil
yrary @ , 22 . Hence

8

My(f,7) < 22pe1(r/s) m( Z r/s)z’““”'—m)Mp(f, 5)

x Bd
< 20,01 (r/s) ’”(1 + > exp (-— MDMPU, 8).

J==l m
In view of (3.5) there is a universal constant ¢ > 0 with
Mp(f,1) < e(r/8)™ Mp(Ff, s).

4. The Banach spaces (3 @) gy Let d(:,-) be the Banach-Mazur
distance between two Banach spaces.

4.1. LEMMA. Put X = (30 ®lp)(q)- Let ng be a sequence of positive
integers with supy, ng = oo, Then

(Zc i“h) o™

Proof. For cach integer m > 0 find ny, > m. We obtain
dlp*, (I @ ™)) < 2.
Hence there is a set N of integers ng — m with

b (T, (Sew)o(Tew)),) <2

Moreover, in the same way, for any infinite subset N, of positive integers

we find integers my, with
e (Tep)) ) <2

w2y (3 epz;,)m, ((z;,” G
IF we split the positive integers into a sequence of disjoint infinite subsets

~XOX .. )y,

Ir‘ N'HL

Ney then (4.2) shows that d(X, (X 0 X @. (@) S 2. Thig together with
(4.1) yields
22
(Zwl"*‘) (XG)XGD (B(ZG‘:) )) ~X m

JEN
Next, consider ey, > 0 such that

(4.3) 0 < inf( e ) <sup( Sk ) < o
Ot el .
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Furthermore, take integers mg = 0 < my < mg < ... and define, for har-
monic f,
ke = (Ek Mp((Rmk — Ry 1) £, l)qak)l/q %f g ¢ {0, c0},
P Supy MP((Rmk - R‘mk_l)fs l)ak if q€ {0: 00}
Let
Zpq={f:D— C: f harmonic, | 5, < 00} forg#0,
ZPrO = {f € ZP,OO : 1i?]_in MP(('Rmn - Rmn_1)f1 l)an = 0}7

Yp.q = {f € Zp, ¢ f holomorphic}.
4.2. LEMMA. Let N be o positive integer. Then each Y, , contains o
subspace X with a projection Q : Z, 4 — X such that

d(X, (;@Eg)m) 5.2, Q<2 and Rnf=0forall feX.

Proof Put Fj, = span{z/ : 2™l <5 < 2™~} if ey +1 < myg—1.
In view of (3.2) we obtain
(4.4) (Boy = By )i = { 2I=F toran fep.

' i it 0 else

Since by assumption sup, dim F, = oo we find, for each 7, a suitable k;, a
subspace Ey, C Fy, with d(Ekj,lg) < 2 and a projection Py, : L,(8D) —
Ey; with ||Py,| < 2. Here we consider the norm M,(g, 1)a,1c:q on L,(8D)
which coincides with || ||, on F; by (4.4). (Of course Ey,; and Py, exist. At
first consider the norm My (g,1) on L,(8D). Find a complemented subspace
E C Ly(dD) with d(E,¥) < 2 consisting of trigonometric polynomials.
Then apply a shift into a suitable F, which is possible since sup,, (2™~ —
2me-1+1) = oo, In particular, if k is large enough we have Ry|Er = 0.
Everything remains true if we go over to the norm M,(g, l)a}c/ 1)

Fork # kj, i =1,2,..., put P, =0 and Bj, = {0}. Let

X ={f€¥Yg: (R ~ Rne_,)f € By for all k}.

According to the definition of the norm || « ||, 4 and (4.4) we obtain

a(x, (Y et) ) <2

Finally, put Qf = Y, Pe(Rm, ~ Bm,_,)f. Then we have, by (4.4), if
q # 0,00,

19 = (D2 Mo (PR, = Roma2) 1))
k

1/q

e

< 2 3 (B, ~ Ry 10) = 21
k
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(4.4) also shows that @ is a projection. The proof for ¢ & {0,0} is the
same. m

4.3. LEMMA. We have Zpq ~ (L 0025y

Proof. Put X = (3 &I}y It suffices to show that Z, , is isomor-
phic to a complemented subspace of X. Then by Lemmas 4.1, 4.2 and Pel-
czynski’s decomposition method we obtain Z,, ~ X. In the following we
treat the cases ¢ % 0,00. The proofs for the remaining cases are similar.

Consider Xy, := Ly(8D) endowed with the norm M,(f,1)ai/?. Find
finite-dimensional subspaces F,, C X, such that (Rm, — Ry, ,)Zp 4 C F,
and sup,, d(F,, lg"“ ) < 00. We may identify X with (3 ®Fy,)(g). Define
T:Zpg— X by Tf = ((Rm, — Rm,_,)f). Then T is an isomorphism.
Define §: X — Z, 4 as follows: Each f, € F, has a natural extension to
a harmonic function f, on D. So put §(f) = 3, (Rm,+1 — Rmn_l_l)]“;.
This definition makes sense, at least, if the f,, are eventually zero. We have,
using (3.1) and (3.2),

15 (F)llp.q

2
< Z (ZM;‘J((R"‘" - Rm""l)(Rmn-l-k'l'l - Rmn+h—1—1)ﬁm+k1ll)an) 1/’1-

k=-—-2 n

Recall that ||R,| < A, for all n. By (4.3) we obtain a universal constant
¢ > 0 such that

1S (fallp,e < c(ZMg(fm l)an) e

This means that §(f.) € Z,,, and S can be extended to a bounded operator
from X to Zp 4. By definition and (3.2) we have STf = f for all f € Z,,,.
Hence T'" is an isomorphism and TS is a bounded projection from X onto
TZ,4 m

4.4, LEMMA. Let p € {1,00} and assume that Yy, ~ (3 @17 ). Then
sup,, (Miy — Mip1) < c0O.

Proof For a function f : D — Cand X € 8D put (70 F)(2) = f(\z),z €
D. Fix n € Z and for a trigonometric polynomial f, let I, f be the trigono-
wetric polynomial with (I, f)(w) = w" f(w),w € 8D.

Now asgume sup,, (my, —Mn—1) = oo. Fix 8 > 0 and find, by Lemma 3.2,
a trigonometric polynomial fg such that || falp,, = 1 and ||Rfslp,q > 8. We
can even assume that there are my,_1,m, such that fs has the form

fren) = 3T el

M<[k|<N
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for some M, N with
(4.5) gme-1tl < M < N <3N <27

(Apply Lemma 3.2 to the indices mp—1 + 1 and mn — 2.} Put

N N
gi{re’?) = Z R AN BN g (i) = E y_rkel=he
k=M k=M
and

N
ga(re'?) = (Iange)(re’¥) = Z yo N TRl BN —kle
k=M
In view of (4.5) we have, for j =1,2,3,
9is k=n,
(Rmp — Rmh—l)gj = {0{ alse.

Moreover, for every A € 8D,
(4.6) ITrg1 + AN Ly Tagallp.g = Mp(Th(Ton f3), e/t = 1

and

lorlp.e = KRS sllp,q-
By assumption, Lemma 4.2 provides us with a subspace X C ker Ry and

a projection @ : Zp, — X such that |Q|| £ 2, and there i3 a constant ¢
independent of § with d(X,Y,;) < ¢. Find an isomorphism T : X — ¥pq
with T~ = 1 and ||T]| < c. Fix £ > 0. Put hy(re?) = riklet®, k e Z.
Define :
V =span{h_; : M <k<N} and W=X+V

We obtain g € V. Extend T to an operator T : ¥p 4+ V — W by defining
@n T+ =T(f+Lhyg)+eg, [EYpqgeV.

Since Ranly = id and X C ker Ry the operator T is linear bijective. For
A€ 0D define S5 : W — W by

(4.8) S\ (Tf+Tg) = TTof + \NTTog, feYy, gV

Then 51 = id and S35, = S, for all A, 4 € 8D. Put
2
1
(4.9) (Qah)(2) = 5 [ (Se-0QSuseh)(2)dp, hEW, z€D.
0
This definitition makes sense since, for fixed h, the map A — (S5QSx\h)(z)

is continnous. @ is a projection from W onto X satisfying Sx@Qo = oSy
for all . For M < k < N we obtain by (4.7), (4.8), since h.., € V,

(4.10) NV RQoTher = QoSaThoy = S3QoThos.
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Now Ran|x = 0 and X C Y, , imply that
53QuThor =Y 83h; for some 6; € C and all A € 4D.
i>»3N

Hence, by (4.10), QoTh- = 0if M < k < N. In particular, Q0T (g1 +g2) =
Tg:. Thus by (4.6)-(4.8) and the fact that ||Sy|x| < ¢,
2w

1 -~
B <ITalpa < 5= § ISe-ivQSese Tor + g2)lpadp
0

< 2¢ sup 9,7 (gq -
. 1537 (g1 + g2)llp.q

< 2 sup (IT(Tags + NN by Taga)llpg + <IN Tagalla)

< 2¢°(1 + &l g2l p,q)-

Since ¢ was arbitrarily fixed independent of 5 and gy, if 8 is large enough
we arrive at a contradiction. w

5. Proofs of the main results. First we' go back to Definition 2.4.
5.1. LEMMA. Assume that pu satisfies (x).

{a) There are positive integers my, such that

2 < inf (M) < sup (M) < o
k Mgy, — I-"mk.;.l k Mg, — ,u‘m}.-,+1

(b) If in addition () is satisfied then there is an integer K > 0 such
that the inegqualities of (a) hold for m, = Kn, n=1,2,...

(c) If (%) is not fulfilied then sup,,(mn — Mn_1) = 0o for any sequence
(mn) of positive integers with pm, . > 3pim,,.

Proof. In (a) we take yny = 1 and let my, be the smallest integer with
Hmy_y 2 Bl . If (+%) is satisfied then we find K with prnix /pen < 1/3
for all n, and put m, = Kn. In any case we obtain

Q.Umk < Bnpey ™ Hmy S Mg, and %F!m;ﬁ < Mony, — Horavgr -
Hence
9 < Moy ™ oy < Bty = Momg < ._':S_,Lt,.mh_l.
Hang, Hgng, = Hmggy 2 Homy,
If my, = Kn then (a) follows directly from (%). If my, is the smallest in-
teger with 3um, < pm,., then we have ym,_, < 3gm,-1 and therefore
fimg .y [ Hng S Btbmy—1/ tim,,. We obtain, by (%),

Prngy ™ My ) 9 (}'J‘mk»—l)
gup | ————— | < = sup | %2} < o,
k (#mk = Hng .y 2 P Loy,

This proves (a) and (b).
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(c) Assume that g := 2sup,, (My — Ma.1) < 00 and fm,_; 2 m, for
all n. This implies 3p,; < pp(;—1) for all 5. Consider n with (j —2)e<n <
o(j — 1). Then gj < n+ 2p < o(j + 1) and we obtain

Bpniag < gy L Po(-1) % Hn-
Hence i, satisfies (x). =

5.2. Proof of Theorem 2.5. Choose m, according to Lemma 5.1.
Put Qp = fim, — Mmae, (for ¢ = 0 or ¢ = 00 we consider ap = ,u,mﬂ)
We prove the theorem for 1 < ¢ < oc. The proof of the remaining cases is
similar. (For p = ¢ = oo see [12].)

Define r, = 1 — 27™n and I, = [rn, Tnt1]- Take f € by o(1t). Recall that
Fn i= (R, — Rm._,)f is a trigonometric polynomial of degree < 2m~+1,
Hence, by Lemma 3.3, for ¢; = sup,, (1 — 2~ m)2"" 4 we have ME(f,1) <
c1Mg(f, rr) and thus

1

(5.1) o M5 (fny Lo < } ME(fror) du(r)

In

< Mg(fm 1)an

Similarly, by Lemma 3.3, there is a universal constant ¢; > ¢; with

nl o Y OM(f5, a9, i <
Mp(ij'rn-l-l)awlm/q S C2 { (jmg/-f:g) (ij, )a 1/q ] ="
Ta+1 (aﬂ/aj) 1M, (f,?: ) , J >
Put
_ [z, ji<n, _
Bnij = {exp(—2mi—1”mn+1)Q(J'—n)/q? i>mn, for ¢ = Sgp(ak—l/ak)'

Using Lemma 5.1 we obtain a constant ¢z > ¢z with Mp( fJ,Tn+1)C¥n/q <

€3fn,i Mp(fi, V)et; /9 Note that sup,, Ej_—.l Bn,i < o0. The Holder inequality
yields

1llp.0 < (;IS (ZM (1) autr)) ™

(z{gw,w i) )"
gcs(z(zﬁn,JMp(fg, /o)1)

< C4(;;ﬁn,ng(fj, 1ey) "
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= ¢y ( Z ( i(l/g)(n—s)/q
J n=j
-1
- 2 exp(—zmi"-l—mn-l-l)QU"")/Q) Mg(f,-, l)a_-,-) 1/q

n=]
<es (> M, 1)%-)”q
b .

for universal constants cg 2> ¢4 2 c¢3.
Conversely, according to (5.1) and (1.3},

63 (3 M)
j=1

< (3§ M3t dutr)

F=11I;

<2, (3§ M35, )" <€ 20l Sl

Ju=l I
If (x%) is satisfied then we find K such that we can choose my, = Kn in the
preceding estimates. In this case we have
K
Rin — Brn-x = E(RK(n—1)+j — Ric(n-1)+j=1)-

Fel
Thus according to Lemma 3.1, if p € {1,0c}, the Riesz projection R :
bp,q(18) — Bp,q() is bounded with respect to || - ip,q-

Tf () is not satisfied then, by Lemma 5.1, our choice of m, implies
SUp,, (M, — M1 ) == 00. If p € {1, 00}, then Lemma 3.2 shows that R is un-
bounded. Hence for no choice of (m,,) such that the first part of Theorem 2.5
holds can we have sup,, (Mg, — Min-1) < 0C. W

5.8. Proof of Corollary 2.6. Theorem 2.5 shows that by, (u) ~
Zyp.q With oy = fian, = figpy (Gn = fm, if ¢ € {0,00}). (4.3) is satisfied
according to Lemma 5.1, So (a) follows from Lemma 4.3.

Moreover, we have By g(p) ~ Ypq. Let 1 < p < co. Then the Riesz
projection is always bounded with respect to | - [, because R is bounded
with respect to M, (-, 1). Hence Bpq(p) is complemented in bpo(p) if 1 <
p < o0, Now, Lemimnas 4.1 and 4.2 together with Pelcryriski’s decomposition
method show that By ¢(u) ~ (30 ®lp)(q). This proves Corollary 2.6(b).

Since R is bounded, in view of (2 6) the map f — f is bounded with
respect 10 | + [|p,q. This yields (d). w
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5.4. Proof of Corollary 2.7. (ii)&(iv) follows directly from (2.6)
since R is bounded with respect to || - i|; 4 if and only if the conjugation
operator is bounded. Theorem 2.5 in connection with Lemmas 3.1 and 3.2
shows (ii)<(iii).

If R is bounded then Bpo(u) ~ Yp, is complemented in bpo(p) ~
Zpq- Lemmas 4.1 and 4.2 and an application of Pelczyiski’s decomposi-
tion method yield By o(u) ~ (3813 )(q)- ‘

Finally, if By o(u) ~ (5 @I%)(y) then Lemma 4.4 implies sup,(m, —
Mp—1) < 00. S0, by Lemma 3.1, R is bounded. m
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