

76 R. deLaubenfels and Vũ Quốc Phóng

[Vũ1] Vũ Quôc Phóng, On the spectrum, complete trajectories, and asymptotic stability of linear semi-dynamical systems, J. Differential Equations 105 (1993), 30-45.

[Vũ2] —, Semigroups with nonquasianalytic growth, Studia Math. 104 (1993), 229-241.

Received October 20, 1995

Ralph deLaubenfels Scientia Research Institute P.O. Box 988 Athens, Ohio 45701 U.S.A.

E-mail: 72260.2403@compuserve.com

Vũ Quốc Phóng Mathematics Department Ohio University Athens, Ohio 45701 U.S.A.

E-mail: qvu@oucsace.cs.ohiou.edu

(3549)

STUDIA MATHEMATICA 119 (1) (1996)

On generalized Bergman spaces

by

WOLFGANG LUSKY (Paderborn)

Abstract. Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions $f:D\to\mathbb{C}$ satisfying $\int_0^1 (\int_0^{2\pi} |f(re^{i\varphi})|^p \,d\varphi)^{q/p} \,d\mu(r) < \infty$.

1. Introduction. The aim of this paper is to give Banach space representations of certain classes of harmonic and holomorphic functions. Consider $D = \{z \in \mathbb{C} : |z| < 1\}$ and put, for $0 \le r$,

$$M_p(f,r) = \left(rac{1}{2\pi}\int\limits_0^{2\pi}|f(r\exp(i heta))|^p\,d heta
ight)^{1/p} \quad ext{if } 1\leq p<\infty,$$

and $M_{\infty}(f,r) = \sup_{|z|=r} |f(z)|$.

We want to study harmonic functions $f: D \to \mathbb{C}$ which are not necessarily bounded but for which $M_p(f,r)$ grows in a controlled way as $r \to 1$. To this end we introduce a bounded (positive) measure μ on [0,1] and put, for $1 \le p \le \infty$,

$$||f||_{p,q} = \left(\int_{0}^{1} M_{p}^{q}(f,r) d\mu(r)\right)^{1/q} \quad \text{if } 1 \leq q < \infty$$

and

$$||f||_{p,\infty} = \sup_{0 \le r < 1} (M_p(f,r)\mu([r,1])).$$

We investigate the spaces

$$b_{p,q}(\mu) = \{ f : D \to \mathbb{C} : f \text{ harmonic}, ||f||_{p,q} < \infty \}, b_{p,0}(\mu) = \{ f \in b_{p,\infty}(\mu) : \lim_{r \to 1} M_p(f,r)\mu([r,1]) = 0 \}$$

and

$$B_{p,q}(\mu) = \{ f \in b_{p,q}(\mu) : f \text{ holomorphic} \}$$
 if $q = 0$ or $1 \le q \le \infty$.

¹⁹⁹¹ Mathematics Subject Classification: 46E15, 46B45.

The assumption on the boundedness of μ is only used to make sure that these spaces contain all trigonometric polynomials and all polynomials, resp. If $\mu(\{1\}) > 0$ then our definitions, for p = q, yield the classical L_p - and H_p -spaces which we want to exclude in what follows. So we assume

(1.1)
$$\lim_{r \to 1} \mu([r, 1]) = 0.$$

If we have supp $\mu \subset [0, a]$ for some a < 1 then we can replace [0, 1] by [0, a]. Using substitution we see that it suffices to restrict ourselves to the case a = 1, i.e.

(1.2)
$$0 < \mu([r, 1])$$
 for each $r < 1$.

From now on we always assume (1.1) and (1.2).

EXAMPLE. Let $d\mu(r) = 2\pi r dr$. Then for $p = q < \infty$ we have $||f||_{p,q} = (\iint_D |f(x+iy)|^p dx dy)^{1/p}$. Hence in this case we obtain the classical Bergman spaces (see [1], [4], [10]).

For arbitrary μ put $v(r) = \mu([r,1])$; v is called a radial weight function. $B_{\infty,q}(\mu)$ and $b_{\infty,q}(\mu)$, for $q \in \{0,\infty\}$, are the weighted spaces considered in [11], [12], [14]–[17]. Note that, for any $1 \leq p \leq \infty$, we have $f \in b_{p,\infty}(\mu)$ iff $M_p(f,r) = O(1/v(r))$ as $r \to 1$. So, by characterizing $b_{p,\infty}(\mu)$ we obtain generalizations of results of Hardy and Littlewood ([8], [9], [5], Section 5, and Corollaries 2.6, 2.7 below). The space $b_{1,1}(\mu)$ was also considered in [15] and [16]. Our paper includes extensions of some results of Shields and Williams. We use non-trivial modifications of the methods of [12].

Our main result states that, under a mild assumption on μ , we have $b_{p,q}(\mu) \sim (\sum_n \oplus l_p^n)_{(q)}$ (" \sim " means "is isomorphic to"). In this situation we can precisely determine for which measures μ we also have $B_{p,q}(\mu) \sim (\sum_n \oplus l_p^n)_{(q)}$. For example this is false for all q if $\mu = \sum_{n=1}^{\infty} \frac{1}{n(n+1)} \delta_{1-2^{-n}}$ and $p \in \{1, \infty\}$.

Our paper also extends the work of Mateljević and Pavlović [13], where in the case of analytic functions, $B_{p,q}(\mu) \sim (\sum_n \oplus l_p^n)_{(q)}$ was proved for $1 for a more restricted class of measures <math>\mu$. (See also [3] and [20]. For another kind of representation in some special cases see [4].)

The paper is organized as follows. In Section 2 we state the main results; most of their proofs are given in Section 5. In Section 4 we collect the Banach space properties of $(\sum \oplus l_p^n)_{(q)}$ and of related spaces needed for the proofs. Section 3 deals with elementary properties of trigonometric polynomials and the operators R_n , defined for a harmonic function $f(r \exp(i\varphi)) = \sum_{k \in \mathbb{Z}} \alpha_k r^{|k|} \exp(ik\varphi)$ on D as follows:

 $(1.3) \quad (R_n f)(r \exp(i\varphi))$ $= \begin{cases} \sum_{|k| \le 2^{n+1}} \alpha_k r^{|k|} \exp(ik\varphi) & \text{if } 1$

(We put $R_0 = 0$.) Let

 $\lambda_p = \sup_n \sup \{ M_p(R_nf,r) : f \text{ a trigonometric polynomial}, M_p(f,r) \leq 1 \}.$

Since R_n is a convolution operator with a Dirichlet or de la Vallée-Poussin kernel (see [18], [19]), λ_p does not depend on r and we have $||R_n||_{p,q} \leq \lambda_p ||f||_{p,q}$ for all $f \in b_{p,q}(\mu)$. Moreover, we consider the Riesz projection

(1.4)
$$(Rf)(r\exp(i\varphi)) = \sum_{k\geq 0} \alpha_k r^{|k|} \exp(ik\varphi).$$

R is bounded for $\|\cdot\|_{p,q}$ if 1 ([5], [18]).

We shall use the following convention. If not specified otherwise, p is an element of $[1, \infty]$, and q is an element of $\{0\} \cup [1, \infty]$. For Banach spaces X_n put

$$\left(\sum \oplus X_n\right)_{(q)} = \left\{ (x_n) : x_n \in X_n \text{ for all } n, \ \left(\sum \|x_n\|^q\right)^{1/q} < \infty \right\},$$

$$\left(\sum \oplus X_n\right)_{(\infty)} = \left\{ (x_n) : x_n \in X_n \text{ for all } n, \sup_n \|x_n\| < \infty \right\},$$

$$\left(\sum \oplus X_n\right)_{(0)} = \left\{ (x_n) \in \left(\sum \oplus X_n\right)_{(\infty)} : \lim_{n \to \infty} \|x_n\| = 0 \right\}.$$

- **2. The main results.** First we list some elementary properties of $B_{p,q}(\mu)$ and $b_{p,q}(\mu)$.
 - **2.1.** Proposition. (a) All $B_{p,q}(\mu)$ and $b_{p,q}(\mu)$ are Banach spaces.
- (b) Let $1 \le q < \infty$ or q = 0. Then the trigonometric polynomials are dense in $b_{p,q}(\mu)$ while the polynomials are dense in $B_{p,q}(\mu)$.

Proof. (a) This follows from the fact that these spaces are closed in

$$\left\{ f: D \to \mathbb{C} \text{ measurable} : \int_{0}^{1} \left(\int_{0}^{2\pi} |f(re^{i\varphi})|^{p} d\varphi \right)^{q/p} d\mu(r) < \infty \right\}$$

if $1 \le q < \infty$. The remaining cases $q = 0, \infty$ can be proven similarly.

(b) For any $f \in b_{p,q}(\mu)$ and 0 < r < 1 we have $\lim_n M_p(f - R_n f, r) = 0$ in view of (1.3). This includes the case $p = \infty$ since f is continuous

on D. Moreover, $M_p(f-R_nf,r) \leq (1+\lambda_p)M_p(f,r)$. So using the dominated convergence theorem we see that $R_n \to \mathrm{id}$ pointwise on $B_{p,q}(\mu)$ as well as on $b_{p,q}(\mu)$ if $1 \leq q < \infty$. If q = 0 choose, for given $\varepsilon > 0$, some $r_0 \in [0,1[$ such that

$$(1+\lambda_p)\sup_{r\geq r_0}M_p(f,r)\mu([r,1])\leq \varepsilon.$$

Then

$$||f - R_n f||_{p,0} \le \max(\varepsilon, M_p(f - R_n f, r_0)\mu([0, 1]))$$

in view of the maximum principle. We also obtain $R_n \to id$ (pointwise) in the case q = 0. This implies (b).

2.2. PROPOSITION. There are constants a, b > 0 and, for every p, q, positive integers $m_1 < m_2 < \dots$ such that for all $f \in b_{p,q}(\mu)$,

$$a\Big(\sum_{n}\|(R_{m_{n+1}}-R_{m_n})f\|_{p,q}^q\Big)^{1/q}\leq \|f\|_{p,q}\leq b\Big(\sum_{n}\|(R_{m_{n+1}}-R_{m_n})f\|_{p,q}^q\Big)^{1/q}$$

if $1 \le q < \infty$ and

$$a \sup_{n} \|(R_{m_{n+1}} - R_{m_n})f\|_{p,q} \le \|f\|_{p,q} \le b \sup_{n} \|(R_{m_{n+1}} - R_{m_n})f\|_{p,q}$$
if $q = 0$.

Proof. We deal with the case $1 \le q < \infty$. The remaining case is similar (see [11]). Let E_n be the span of all trigonometric polynomials of degree $\le n$. Since the unit ball in E_n is compact we obtain from (1.1),

(2.1)
$$\lim_{s \to 1} \sup_{g \in E_n; ||g||_{p,q} \le 1} \int_{a}^{1} M_p^q(g,r) \, d\mu(r) = 0.$$

Moreover, we have $|\alpha_k|^q \int_0^1 r^{|k|q} d\mu(r) \le 1$ for any $f(re^{i\varphi}) = \sum_k \alpha_k r^{|k|} e^{ik\varphi}$ with $||f||_{p,q} \le 1$. Hence, by (1.3) and the Minkowski inequality,

$$\left(\int_{0}^{s} M_{p}^{q}((\mathrm{id}-R_{n})f,r) \, d\mu(r)\right)^{1/q} \leq \sum_{|k|\geq 2^{n}} |\alpha_{k}| \left(\int_{0}^{s} r^{|k|q} \, d\mu(r)\right)^{1/q}
\leq \sum_{|k|\geq 2^{n}} \left(\frac{\int_{0}^{s} r^{|k|q} \, d\mu(r)}{\int_{0}^{1} r^{|k|q} \, d\mu(r)}\right)^{1/q}
\leq \sum_{|k|\geq 2^{n}} \frac{s^{k}}{((1+s)/2)^{k}} \left(\frac{\mu([0,s])}{\mu([(1+s)/2,1])}\right)^{1/q}.$$

Thus, (1.2) yields, for every s < 1,

(2.2)
$$\lim_{n \to \infty} \sup_{\|f\|_{p,q} \le 1} \int_{0}^{s} M_{p}^{q}((\mathrm{id} - R_{n})f, r) \, d\mu(r) = 0.$$

Using induction and (2.1), (2.2) we find s_n and m_{n+1} with

(2.3)
$$\sup_{\substack{\|f\|_{p,q} \le 1 \\ s_n}} \int_{s_n}^{1} M_p^q(R_{m_n}f, r) d\mu(r) \le 4^{-n-1}3^{1-q}, \\ \sup_{\|f\|_{p,q} \le 1} \int_{0}^{s_n} M_p^q((\operatorname{id} - R_{m_{n+1}})f, r) d\mu(r) \le 4^{-n-1}3^{1-q}.$$

Now consider an arbitrary $f \in b_{p,q}(\mu)$ and put $f_n = (R_{m_{n+1}} - R_{m_n})f$. We have $f = \sum f_n$ and $f_n + f_{n+1} = (R_{m_{n+2}} - R_{m_n})f$. Using (2.3) we obtain, for each n,

$$\int_{s_n}^{s_{n+1}} M_p^q(f,r) \, d\mu(r) \le 3^{q-1} \int_{s_n}^{s_{n+1}} M_p^q(f_n + f_{n+1}, r) \, d\mu(r) + \frac{2}{4^{n+1}} \|f\|_{p,q}^q.$$

Summation yields

$$||f||_{p,q}^{q} \leq 3^{q-1} \sum_{n} \int_{s_{n}}^{s_{n+1}} M_{p}^{q}(f_{n} + f_{n+1}, r) d\mu(r) + \frac{2}{3} ||f||_{p,q}^{q}$$

$$\leq 3^{q-1} \sum_{n} ||f_{n} + f_{n+1}||_{p,q}^{q} + \frac{2}{3} ||f||_{p,q}^{q}.$$

Using the Minkowski inequality we obtain the right-hand inequality of Proposition 2.2.

Now (1.3) yields (id $-R_{m_{n-1}}$) $f_n = f_n = R_{m_{n+2}} f_n$ (see (3.1), (3.2)). So, (2.3) applied to $f_n/\|f_n\|_{p,q}$ implies

$$\int_{0}^{q_{n-2}} M_p^q(f_n, r) \, d\mu(r) \le 4^{-n-1} 3^{1-q} \|f_n\|_{p, q}^q$$

and

$$\int_{n_{n+2}}^{1} M_p^q(f_n, r) d\mu(r) \le 4^{-n-1} 3^{1-q} \|f_n\|_{p, q}^q.$$

Hence

$$\frac{1}{2} \|f_n\|_{p,q}^q \le \int_{s_{n-2}}^{s_{n+2}} M_p^q(f_n,r) \, d\mu(r) \le (2\lambda_p)^q \int_{s_{n-2}}^{s_{n+2}} M_p^q(f,r) \, d\mu(r).$$

Summation yields $\frac{1}{2}\sum_{n}\|f_{n}\|_{p,q}^{q} \leq 4(2\lambda_{p})^{q}\|f\|_{p,q}^{q}$ and thus the left-hand inequality of Proposition 2.2.

2.3. COROLLARY. (a) The spaces $B_{p,q}(\mu)$ and $b_{p,q}(\mu)$ are reflexive if $1 < q < \infty$.

(b) We have
$$B_{p,0}(\mu)^{**} = B_{p,\infty}(\mu)$$
 and $b_{p,0}(\mu)^{**} = b_{p,\infty}(\mu)$.

Generalized Bergman spaces

83

Proof. Proposition 2.2 shows that $B_{p,q}(\mu)$ and $b_{p,q}(\mu)$ are isomorphic to subspaces of $(\sum \oplus X_n)_{(q)}$ for some finite-dimensional Banach spaces X_n . If $1 < q < \infty$ the space $(\sum \oplus X_n)_{(q)}$ is reflexive. This yields (a). For the proof of (b) observe that $(\sum \oplus X_n)_{(0)}^{**} = (\sum \oplus X_n)_{(\infty)}$. Now it is very easy to see that the w^* -closures of $B_{p,0}(\mu)$ and $b_{p,0}(\mu)$ regarded as subspaces of $(\sum \oplus X_n)_{(0)}^{**}$ are $B_{p,\infty}(\mu)$ and $b_{p,\infty}(\mu)$.

We want to improve Proposition 2.2 for a special class of measures.

2.4. DEFINITION. Let μ be a bounded positive measure on [0,1] satisfying (1.1) and (1.2). Put $\mu_n = \mu([1-2^{-n},1])$. We consider the following conditions:

$$\sup_{n} \left(\frac{\mu_n}{\mu_{n+1}} \right) < \infty,$$

$$\inf_k \limsup_{n \to \infty} \left(\frac{\mu_{n+k}}{\mu_n} \right) < 1.$$

EXAMPLES. Put $d\mu_1(r) = (1-r)^{\alpha} dr$ for some $\alpha > -1$, $d\mu_2(r) = r^{\beta} dr$ for some $\beta > -1$,

$$d\mu_3(r) = \frac{dr}{(1-r)\log^{\gamma}(e/(1-r))} \quad \text{for some } \gamma > 1,$$

$$\mu_4 = \sum_{k=1}^{\infty} \frac{1}{k(k+1)} \delta_{1-2^{-k}}.$$

Then μ_1, μ_2 satisfy (\star) and $(\star\star)$ while μ_3, μ_4 fulfil (\star) but not $(\star\star)$. μ_1 was considered first by Hardy and Littlewood ([8], [9], see also [6], [7]). μ_2 with $\beta = 1$ yields the "classical" Bergman spaces [1].

2.5. THEOREM. Assume that μ satisfies (\star) . Then there are integers $1 \leq m_1 < m_2 < \ldots$ and constants a, b > 0 such that, for every p, q and $f \in b_{p,q}(\mu)$, we have

$$(2.4) \quad a \left(\sum_{n} M_{p}^{q} ((R_{m_{n}} - R_{m_{n-1}}) f, 1) (\mu_{m_{n}} - \mu_{m_{n+1}}) \right)^{1/q}$$

$$\leq \|f\|_{p,q} \leq b \left(\sum_{n} M_{p}^{q} ((R_{m_{n}} - R_{m_{n-1}}) f, 1) (\mu_{m_{n}} - \mu_{m_{n+1}}) \right)^{1/q}$$

 $if \ 1 \leq q < \infty \ and$

(2.5)
$$a \sup_{n} M_{p}((R_{m_{n}} - R_{m_{n-1}})f, 1)\mu_{m_{n}}$$

$$\leq \|f\|_{p,q} \leq b \sup_{n} M_{p}((R_{m_{n}} - R_{m_{n-1}})f, 1)\mu_{m_{n}}$$

if $q \in \{0, \infty\}$. If $(\star\star)$ holds then we can choose $m_n = Kn$ for some integer K. If $(\star\star)$ is not satisfied and $p \in \{1, \infty\}$ then for any sequence (m_n) with (2.4) or (2.5) we have $\sup_n (m_n - m_{n-1}) = \infty$.

Remark. Recall that $R_m f$ is a trigonometric polynomial, hence $M_p(R_m f,1)$ makes sense. The proof of the theorem as well as of the following corollaries will be given in Section 5. The proof shows that we can choose the m_n by induction such that $m_1=1$ and m_{n+1} is the smallest integer larger than m_n with $\mu_{m_n} \geq 3\mu_{m_{n+1}}$.

In [3] and [13] measures of the form $d\mu(r) = (1-r)^{-1}\varphi(1-r)dr$ were considered where φ is a non-decreasing function satisfying two further conditions which imply (\star) and $(\star\star)$. Hence Theorem 2.5 includes, for $q \geq 1$, Theorem 2.1.(b) of [13] and Corollary 1 of [3].

Consider a harmonic function $f: D \to \mathbb{C}$ and let \widetilde{f} be its trigonometric conjugate, i.e. the harmonic function \widetilde{f} with $\widetilde{f}(0) = 0$ such that $\operatorname{Re} f + i \operatorname{Re} \widetilde{f}$ and $\operatorname{Im} f + i \operatorname{Im} \widetilde{f}$ are holomorphic. We obtain

(2.6)
$$\widetilde{f} = -iRf + i(id - R)f + if(0)$$
 and $Rf = \frac{1}{2}(f + i\widetilde{f}) + \frac{1}{2}f(0)$.

2.6. COROLLARY. Let μ satisfy (\star) .

- (a) $b_{p,q}(\mu) \sim (\sum_n \oplus l_p^n)_{(q)}$ for all p and q.
- (b) $B_{p,q}(\mu) \sim (\sum_{n} \oplus l_{n}^{n})_{(q)}$ for all q and 1 .
- (c) If $1 and q is arbitrary then the Riesz projection is a bounded operator from <math>b_{p,q}(\mu)$ onto $B_{p,q}(\mu)$.
- (d) Let $1 , let q be arbitrary and consider a harmonic function <math>f: D \to \mathbb{C}$. Then $||f||_{p,q} < \infty$ if and only if $||\widetilde{f}||_{p,q} < \infty$.

For the remaining cases there are some notable exceptions.

- **2.7.** COROLLARY. Assume that (*) holds. Let q be arbitrary and $p \in \{1,\infty\}$. Then the following are equivalent:
 - (i) $B_{p,q}(\mu) \sim (\sum_n \oplus l_n^n)_{(q)}$.
 - (ii) R is a bounded operator from $b_{p,q}(\mu)$ onto $B_{p,q}(\mu)$
 - (iii) μ satisfies (**).
- (iv) For a harmonic function $f: D \to \mathbb{C}$ we have $||f||_{p,q} < \infty$ if and only if $||\tilde{f}||_{p,q} < \infty$.

Remark. 2.5-2.7 extend the results of [12] where the cases $p = \infty$ and $q \in \{0, \infty\}$ were proved. Corollary 2.7 gives a positive answer to a problem raised in [13], p. 236. (This problem was independently solved by Wojtaszczyk in [20].) For $d\mu_2(r) = rdr$ we obtain the known isomorphic representations $b_{p,p}(\mu_2) \sim B_{p,p}(\mu_2) \sim l_p$ ([10], [16]). However, for the measures μ_3 and μ_4 of the above examples we have $B_{p,q}(\mu) \not\sim (\sum \oplus l_p^n)_{(q)}$ if $p \in \{1,\infty\}$ (in particular, $B_{1,1}(\mu) \not\sim l_1$) but $B_{p,\infty}(\mu) \sim (\sum \oplus l_p^n)_{(\infty)}$ whenever 1 .

84

Corollary 2.7(iv) together with Corollary 2.6(d) might be regarded as a generalization of some Hardy-Littlewood theorems: Considering

$$d\mu_1(r) = (1-r)^{\alpha} dr$$
, $\alpha > -1$, and $q = \infty$

we obtain, as $r \to 1$,

$$M_p(f,r) = O\left(\frac{1}{(1-r)^{\alpha+1}}\right)$$
 if and only if $M_p(\tilde{f},r) = O\left(\frac{1}{(1-r)^{\alpha+1}}\right)$

([5], Theorem 5.7).

Virtually everything carries over to the case where D is the Euclidean ball in \mathbb{C}^n .

3. Trigonometric polynomials. Here we collect some basic properties of the operators R_n . Clearly, we always have

$$(3.1) R_n R_m = R_{\min(n,m)} \text{if } n \neq m.$$

Sometimes we use the following consequence of (3.1):

(3.2)
$$(R_q - R_p)(R_n - R_m) = \begin{cases} R_n - R_m & \text{if } p < m < n < q, \\ R_q - R_p & \text{if } m < p < q < n, \\ 0 & \text{if } q > p > n > m \\ & \text{or } n > m > q > p. \end{cases}$$

For $f(re^{i\varphi}) = \sum \alpha_k r^{|k|} e^{ik\varphi}$ put

(3.3)
$$(\sigma_m f)(re^{i\varphi}) = \sum_{|k| \le m} \frac{m - |k|}{m} \alpha_k r^{|k|} e^{ik\varphi}.$$

Then σ_m is contractive with respect to $M_p(\cdot, r)$ ([18]).

3.1. LEMMA. There is a universal constant c>0 such that for $p\in\{1,\infty\}$ and all r>0 we have

(3.4)
$$M_p(R(R_{n+1}-R_n)f,r) \leq cM_p((R_{n+1}-R_n)f,r), \quad n=1,2,\ldots,$$

whenever f is a harmonic function.

Proof. For each m we have, in view of (1.3),

$$R(R_{m+1} - R_m)f = e^{i2^{m+1}\varphi}\sigma_{2^{m+1}}(e^{-i2^{m+1}\varphi}f) - \frac{1}{2}e^{i2^m\varphi}\sigma_{2^m}(e^{-i2^m\varphi}f).$$

We conclude that $M_p(R(R_{n+2}-R_{n-1})f,r) \leq \frac{9}{2}M_p(f,r)$. Replacing f by $(R_{n+1}-R_n)f$ yields easily (3.4) (see [12], Corollary 3.1).

3.2. LEMMA. Let $p \in \{1, \infty\}$. Consider integers $1 \leq m_j < n_j$ with $\sup_j (n_j - m_j) = \infty$. Then for any $\beta > 0$ there are a trigonometric polynomial $f: D \to \mathbb{C}$ and an integer k with $(R_{n_k} - R_{m_k})f = f$ such that

$$M_p(f,1) = 1 - but$$
 $M_p(Rf,1) > \beta$.

Proof. For $p=\infty$ this is essentially [12], Lemma 3.5: Put $h(re^{i\varphi})=\sum_{j=1}^{\infty}\frac{1}{j}r^{j}\sin(j\varphi)$ which is the harmonic extension of $h(e^{i\varphi})=i(\pi-\varphi), 0\leq \varphi<2\pi$. For every integer k with $n_{k}\geq m_{k}+3$ define $f_{k}=(R_{n_{k}-1}-R_{m_{k}+1})h$. Then $M_{\infty}(f_{k},1)\leq 2\lambda_{\infty}\pi$ and, in view of (1.3),

$$M_{\infty}(Rf_k, 1) \ge \sum_{j=2^{m_k+2}}^{2^{n_k-1}} \frac{1}{j}.$$

Since $\sup_k (n_k - m_k - 3) = \infty$ we find k such that $M_{\infty}(Rf_k, 1) > 2\lambda_{\infty}\pi\beta$. By (3.2), $f := f_k/M_{\infty}(f_k, 1)$ proves the case $p = \infty$.

Since $\sup(n_k - m_k - 4) = \infty$ we also find a trigonometric polynomial d and an integer k with

$$(R_{n_k-2}-R_{m_k+2})d=d$$
, $M_{\infty}(d,1)=1$ and $M_{\infty}(Rd,1)>2\lambda_1\beta$.

Consider a harmonic g with $M_1(g, 1) = 1$ and

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(e^{i\varphi}) \cdot (Rd)(e^{-i\varphi}) \, d\varphi > 2\lambda_1 \beta.$$

Since $(R_{n_k-1}-R_{m_k+1})^*=R_{n_k-1}-R_{m_k+1}$ we obtain, according to (3.2), $M_1(R(R_{n_k-1}-R_{m_k+1})g,1)>2\lambda_1\beta$. Moreover, $M_1((R_{n_k-1}-R_{m_k+1})g,1)\leq 2\lambda_1$. By (3.2), $f:=(R_{n_k-1}-R_{m_k+1})g/M_1((R_{n_k-1}-R_{m_k+1})g,1)$ proves the case p=1.

- **3.3.** LEMMA. Let 0 < r < s.
- (a) If f is a trigonometric polynomial of degree n then

$$M_p(f,s) \le (s/r)^{2n} M_p(f,r).$$

(b) Let $f(te^{i\varphi}) = \sum_{|k| > m} \alpha_k t^{|k|} e^{ik\varphi}$ for some integer m > 0. Then

$$M_p(f,r) \le c(r/s)^m M_p(f,s)$$

for some universal constant c which does not depend on f, m, r or s.

Proof. (a) Let $1 \le p < \infty$. We may assume $r \le s < \exp(1/(2n))r$ (if the lemma holds for these r and s then repeated application yields the general case). Let $f(re^{i\varphi}) = \sum_{|k| \le n} \alpha_k r^{|k|} e^{ik\varphi}$. Fix $z \in \partial D$. Then (3.3) yields

$$\left(\frac{n}{t}(\mathrm{id}-\sigma_n)f\right)(z) = \sum_{0 < |k| \le n} |k|\alpha_k t^{|k|-1} z^k.$$

This implies, with 1/p' + 1/p = 1,

Hence $M_p(f,s) \leq (1-2n\log(s/r))^{-1}M_p(f,r)$. For a fixed integer m put $r_j = r^{(m-j)/m}s^{j/m}$, $j=0,\ldots,m$. Then we have $r_{j+1}/r_j = (s/r)^{1/m}$ and $r_j \leq r_{j+1} < e^{1/(2n)}r_j$. Repeated application of what we have just proved yields

$$M_p(f,s) \le \left(1 - \frac{2n}{m} \log\left(\frac{s}{r}\right)\right)^{-1} M_p(f,r_{m-1}) \le \dots$$
$$\le \left(1 - \frac{2n}{m} \log\left(\frac{s}{r}\right)\right)^{-m} M_p(f,r).$$

If $m \to \infty$ then $(1 - (2n/m)\log(s/r))^{-m}$ tends to $\exp(2n\log(s/r)) = (s/r)^{2n}$. This proves the case $1 \le p < \infty$. The proof for $p = \infty$ is the same.

(b) It suffices to assume $r/s \leq 1 - 1/m$. (For r/s > 1 - 1/m we have $M_p(f,r) \leq 2e(r/s)^m M_p(f,s)$.) The inequality of (b) is clear if f is holomorphic (even with c=1). For arbitrary f satisfying the assumption let k be such that

$$(3.5) 2^{k+1} \le m \le 2^{k+2}.$$

Then we have $\sum_{j=0}^{\infty} (R_{k+j+1} - R_{k+j}) f = f$. Put $f_1 = R(R_{k+1} - R_k) f$ and $f_2 = (\mathrm{id} - R)(R_{k+1} - R_k) f$. Using Lemma 3.1 and the continuity of R if $1 we find a universal constant <math>c_1 > 0$ with

$$\begin{split} M_p((R_{k+1} - R_k)f, r) &\leq M_p(f_1, r) + M_p(f_2, r) \\ &\leq (r/s)^m (M_p(f_1, s) + M_p(f_2, s)) \\ &\leq c_1 (r/s)^m M_p((R_{k+1} - R_k)f, s) \\ &\leq 2\lambda_p c_1 (r/s)^m M_p(f, s). \end{split}$$

Similarly,

$$M_p((R_{k+j+1}-R_{k+j})f,r) \le 2\lambda_p c_1(r/s)^{2^{k+j}}M_p(f,s), \quad j=1,2,\ldots,$$

since $(R_{k+j+1}-R_{k+j})f$ is spanned by $\overline{z}^{2^{k+j}}, z^{2^{k+j}}, \dots, \overline{z}^{2^{k+j+1}}, z^{2^{k+j+1}}$. Hence for $r/s \leq 1-1/m$ we obtain

$$M_p(f,r) \le 2\lambda_p c_1 (r/s)^m \left(1 + \sum_{j=1}^{\infty} (r/s)^{2^{k+j}-m}\right) M_p(f,s)$$

$$\le 2\lambda_p c_1 (r/s)^m \left(1 + \sum_{j=1}^{\infty} \exp\left(-\frac{2^{k+j}-m}{m}\right)\right) M_p(f,s).$$

In view of (3.5) there is a universal constant c > 0 with

$$M_p(f,r) \le c(r/s)^m M_p(f,s)$$
.

- **4. The Banach spaces** $(\sum \oplus l_p^n)_{(q)}$. Let $d(\cdot, \cdot)$ be the Banach-Mazur distance between two Banach spaces.
- **4.1.** LEMMA. Put $X = (\sum \oplus l_p^n)_{(q)}$. Let n_k be a sequence of positive integers with $\sup_k n_k = \infty$. Then

$$\left(\sum_{k=1}^{\infty} \oplus l_p^{n_k}\right)_{(q)} \sim X \sim (X \oplus X \oplus \ldots)_{(q)}.$$

Proof. For each integer m > 0 find $n_k > m$. We obtain

$$d(l_p^{n_k}, (l_p^m \oplus l_p^{n_k-m})_{(q)}) \le 2.$$

Hence there is a set N of integers $n_k - m$ with

$$(4.1) d\Big(\Big(\sum \oplus l_p^{n_k}\Big)_{(q)}, \Big(\Big(\sum_{m=1}^{\infty} \oplus l_p^m\Big) \oplus \Big(\sum_{j \in N} \oplus l_p^j\Big)\Big)_{(q)}\Big) \le 2.$$

Moreover, in the same way, for any infinite subset N_m of positive integers we find integers m_k with

$$(4.2) d\Big(\Big(\sum_{j\in N_m} \oplus l_p^j\Big)_{(q)}, \Big(\big(l_p^m \oplus l_p^m \oplus \ldots\big) \oplus \Big(\sum_k \oplus l_p^{m_k}\Big)\Big)_{(q)}\Big) \le 2.$$

If we split the positive integers into a sequence of disjoint infinite subsets N_m then (4.2) shows that $d(X, (X \oplus X \oplus \ldots)_{(q)}) \leq 2$. This together with (4.1) yields

$$\left(\sum_{k=1}^{\infty} \oplus l_p^{n_k}\right)_{(q)} \sim \left((X \oplus X \oplus \ldots) \oplus \left(\sum_{j \in N} \oplus l_p^j\right)\right)_{(q)} \sim X. \blacksquare$$

Next, consider $\alpha_k > 0$ such that

$$(4.3) 0 < \inf\left(\frac{\alpha_k}{\alpha_{k+1}}\right) \le \sup\left(\frac{\alpha_k}{\alpha_{k+1}}\right) < \infty.$$

Furthermore, take integers $m_0 = 0 < m_1 < m_2 < \dots$ and define, for harmonic f,

$$|||f||_{p,q} = \begin{cases} (\sum_k M_p((R_{m_k} - R_{m_{k-1}})f, 1)^q \alpha_k)^{1/q} & \text{if } q \notin \{0, \infty\}, \\ \sup_k M_p((R_{m_k} - R_{m_{k-1}})f, 1)\alpha_k & \text{if } q \in \{0, \infty\}. \end{cases}$$

Let

$$\begin{split} Z_{p,q} &= \{f: D \rightarrow \mathbb{C}: f \text{ harmonic, } \|f\|_{p,q} < \infty\} \quad \text{ for } q \neq 0, \\ Z_{p,0} &= \{f \in Z_{p,\infty}: \lim_n M_p((R_{m_n} - R_{m_{n-1}})f, 1)\alpha_n = 0\}, \end{split}$$

$$Y_{p,q} = \{ f \in \mathbb{Z}_{p,q} : f \text{ holomorphic} \}.$$

4.2. LEMMA. Let N be a positive integer. Then each $Y_{p,q}$ contains a subspace X with a projection $Q: Z_{p,q} \to X$ such that

$$d\Big(X,\Big(\sum_j \oplus l_p^j\Big)_{(q)}\Big) \leq 2, \quad \|Q\| \leq 2 \quad and \ R_N f = 0 \ for \ all \ f \in X.$$

Proof. Put $F_k = \text{span}\{z^j: 2^{m_{k-1}+1} \le j \le 2^{m_k-1}\}$ if $m_{k-1}+1 < m_k-1$. In view of (3.2) we obtain

$$(4.4) (R_{m_j} - R_{m_{j-1}})f = \begin{cases} f & \text{if } j = k \\ 0 & \text{else} \end{cases} \text{for all } f \in F_k.$$

Since by assumption $\sup_k \dim F_k = \infty$ we find, for each j, a suitable k_j , a subspace $E_{k_j} \subset F_{k_j}$ with $d(E_{k_j}, l_p^j) \leq 2$ and a projection $P_{k_j} : L_p(\partial D) \to E_{k_j}$ with $\|P_{k_j}\| \leq 2$. Here we consider the norm $M_p(g,1)\alpha_{k_j}^{1/q}$ on $L_p(\partial D)$ which coincides with $\|\cdot\|_{p,q}$ on F_{k_j} by (4.4). (Of course E_{k_j} and P_{k_j} exist. At first consider the norm $M_p(g,1)$ on $L_p(\partial D)$. Find a complemented subspace $E \subset L_p(\partial D)$ with $d(E,l_p^j) \leq 2$ consisting of trigonometric polynomials. Then apply a shift into a suitable F_k which is possible since $\sup_k (2^{m_k-1}-2^{m_{k-1}+1}) = \infty$. In particular, if k is large enough we have $R_N|E_k=0$. Everything remains true if we go over to the norm $M_p(g,1)\alpha_k^{1/q}$.)

For
$$k \neq k_j$$
, $j = 1, 2, ...$, put $P_k = 0$ and $E_k = \{0\}$. Let

$$X = \{ f \in Y_{p,q} : (R_{m_k} - R_{m_{k-1}}) f \in E_k \text{ for all } k \}.$$

According to the definition of the norm $\|\cdot\|_{p,q}$ and (4.4) we obtain

$$d\Big(X,\Big(\sum \oplus l_p^j\Big)_{(q)}\Big) \leq 2.$$

Finally, put $Qf = \sum_{k} P_{k}(R_{m_{k}} - R_{m_{k-1}})f$. Then we have, by (4.4), if $q \neq 0, \infty$,

$$||Qf||_{p,q} = \left(\sum_{k} M_{p} (P_{k}(R_{m_{k}} - R_{m_{k-1}})f, 1)^{q} \alpha_{k}\right)^{1/q}$$

$$\leq 2\left(\sum_{k} M_{p} ((R_{m_{k}} - R_{m_{k-1}})f, 1)^{q} \alpha_{k}\right)^{1/q} = 2||f||_{p,q}.$$

(4.4) also shows that Q is a projection. The proof for $q \in \{0, \infty\}$ is the same. \blacksquare

4.3. LEMMA. We have $Z_{p,q} \sim (\sum \oplus l_p^n)_{(q)}$

Proof. Put $X=(\sum \oplus l_p^n)_{(q)}$. It suffices to show that $Z_{p,q}$ is isomorphic to a complemented subspace of X. Then by Lemmas 4.1, 4.2 and Pelczyński's decomposition method we obtain $Z_{p,q} \sim X$. In the following we treat the cases $q \neq 0, \infty$. The proofs for the remaining cases are similar.

Consider $X_n := L_p(\partial D)$ endowed with the norm $M_p(f,1)\alpha_n^{1/q}$. Find finite-dimensional subspaces $F_n \subset X_n$ such that $(R_{m_n} - R_{m_{n-1}})Z_{p,q} \subset F_n$ and $\sup_n d(F_n, l_p^{\dim F_n}) < \infty$. We may identify X with $(\sum \oplus F_n)_{(q)}$. Define $T: Z_{p,q} \to X$ by $Tf = ((R_{m_n} - R_{m_{n-1}})f)$. Then T is an isomorphism. Define $S: X \to Z_{p,q}$ as follows: Each $f_n \in F_n$ has a natural extension to a harmonic function $\widehat{f_n}$ on D. So put $S(f_n) = \sum_n (R_{m_n+1} - R_{m_{n-1}-1})\widehat{f_n}$. This definition makes sense, at least, if the f_n are eventually zero. We have, using (3.1) and (3.2),

 $||S(f_n)||_{p,q}$

$$\leq \sum_{k=-2}^{2} \left(\sum_{n} M_{p}^{q} ((R_{m_{n}} - R_{m_{n-1}})(R_{m_{n+k}+1} - R_{m_{n+k}-1}) \widehat{f}_{n+k}, 1) \alpha_{n} \right)^{1/q}.$$

Recall that $||R_n|| \leq \lambda_p$ for all n. By (4.3) we obtain a universal constant c > 0 such that

$$|||S(f_n)||_{p,q} \le c \Big(\sum_n M_p^q(f_n, 1)\alpha_n\Big)^{1/q}.$$

This means that $S(f_n) \in \mathbb{Z}_{p,q}$ and S can be extended to a bounded operator from X to $\mathbb{Z}_{p,q}$. By definition and (3.2) we have STf = f for all $f \in \mathbb{Z}_{p,q}$. Hence T is an isomorphism and TS is a bounded projection from X onto $T\mathbb{Z}_{p,q}$.

4.4. LEMMA. Let $p \in \{1, \infty\}$ and assume that $Y_{p,q} \sim (\sum \bigoplus l_p^n)_{(q)}$. Then $\sup_n (m_n - m_{n-1}) < \infty$.

Proof. For a function $f: D \to \mathbb{C}$ and $\lambda \in \partial D$ put $(T_{\lambda}f)(z) = f(\lambda z), z \in D$. Fix $n \in \mathbb{Z}$ and for a trigonometric polynomial f, let $I_n f$ be the trigonometric polynomial with $(I_n f)(w) = w^n f(w), w \in \partial D$.

Now assume $\sup_n (m_n - m_{n-1}) = \infty$. Fix $\beta > 0$ and find, by Lemma 3.2, a trigonometric polynomial f_{β} such that $||f_{\beta}||_{p,q} = 1$ and $||Rf_{\beta}||_{p,q} > \beta$. We can even assume that there are m_{n-1}, m_n such that f_{β} has the form

$$f_{\beta}(re^{i\varphi}) = \sum_{M \le |k| \le N} \gamma_k r^{|k|} e^{ik\varphi}$$

for some M, N with

$$(4.5) 2^{m_{n-1}+1} \le M \le N \le 3N \le 2^{m_n}.$$

(Apply Lemma 3.2 to the indices $m_{n-1} + 1$ and $m_n - 2$.) Put

$$g_1(re^{i\varphi}) = \sum_{k=M}^N \gamma_k r^{k+2N} e^{i(k+2N)\varphi}, \quad g_2(re^{i\varphi}) = \sum_{k=M}^N \gamma_{-k} r^k e^{i(-k)\varphi}$$

and

90

$$g_3(re^{i\varphi}) = (I_{2N}g_2)(re^{i\varphi}) = \sum_{k=M}^N \gamma_{-k}r^{2N-k}e^{i(2N-k)\varphi}.$$

In view of (4.5) we have, for j = 1, 2, 3,

$$(R_{m_k} - R_{m_{k-1}})g_j = \begin{cases} g_j, & k = n, \\ 0, & \text{else.} \end{cases}$$

Moreover, for every $\lambda \in \partial D$,

(4.6)
$$||T_{\lambda}g_1 + \lambda^{2N}I_{2N}T_{\lambda}g_2||_{p,q} = M_p(T_{\lambda}(I_{2N}f_{\beta}), 1)\alpha_n^{1/q} = 1$$

and

$$||g_1||_{p,q} = ||Rf_{\beta}||_{p,q}.$$

By assumption, Lemma 4.2 provides us with a subspace $X \subset \ker R_{3N}$ and a projection $Q: \mathbb{Z}_{p,q} \to X$ such that $\|Q\| \leq 2$, and there is a constant c independent of β with $d(X,Y_{p,q}) < c$. Find an isomorphism $T: X \to Y_{p,q}$ with $\|T^{-1}\| = 1$ and $\|T\| < c$. Fix $\varepsilon > 0$. Put $h_k(re^{i\varphi}) = r^{|k|}e^{ik\varphi}$, $k \in \mathbb{Z}$. Define

$$V = \text{span}\{h_{-k} : M < k < N\}$$
 and $W = X + V$.

We obtain $g_2 \in V$. Extend T to an operator $\widetilde{T}: Y_{p,q} + V \to W$ by defining

(4.7)
$$\widetilde{T}(f+g) = T(f+I_{2N}g) + \varepsilon g, \quad f \in Y_{p,g}, g \in V.$$

Since $R_{3N}|_V = \text{id}$ and $X \subset \ker R_{3N}$ the operator \widetilde{T} is linear bijective. For $\lambda \in \partial D$ define $S_{\lambda} : W \to W$ by

$$(4.8) S_{\lambda}(\widetilde{T}f + \widetilde{T}g) = TT_{\lambda}f + \lambda^{2N}\widetilde{T}T_{\lambda}g, f \in Y_{p,g}, g \in V.$$

Then $S_1 = \text{id}$ and $S_{\lambda}S_{\mu} = S_{\lambda\mu}$ for all $\lambda, \mu \in \partial D$. Put

(4.9)
$$(Q_0h)(z) = \frac{1}{2\pi} \int_{0}^{2\pi} (S_{e^{-i\varphi}}QS_{e^{i\varphi}}h)(z) \, d\varphi, \quad h \in W, \ z \in D.$$

This definitition makes sense since, for fixed h, the map $\lambda \mapsto (S_{\overline{\lambda}}QS_{\lambda}h)(z)$ is continuous. Q_0 is a projection from W onto X satisfying $S_{\lambda}Q_0 = Q_0S_{\lambda}$ for all λ . For $M \leq k \leq N$ we obtain by (4.7), (4.8), since $h_{-k} \in V$,

$$(4.10) \lambda^{2N-k} Q_0 \widetilde{T} h_{-k} = Q_0 S_{\lambda} \widetilde{T} h_{-k} = S_{\lambda} Q_0 \widetilde{T} h_{-k}.$$

Now $R_{3N}|_{X} = 0$ and $X \subset Y_{p,q}$ imply that

$$S_{\lambda}Q_0\widetilde{T}h_{-k}=\sum_{j>3N}\delta_j\lambda^jh_j\quad ext{ for some }\delta_j\in\mathbb{C} ext{ and all }\lambda\in\partial D.$$

Hence, by (4.10), $Q_0\widetilde{T}h_{-k}=0$ if $M\leq k\leq N$. In particular, $Q_0\widetilde{T}(g_1+g_2)=Tg_1$. Thus by (4.6)-(4.8) and the fact that $||S_{\lambda}||_X||\leq c$,

$$\begin{split} \beta &< \|Tg_1\|_{p,q} \leq \frac{1}{2\pi} \int\limits_0^{2\pi} \|S_{e^{-i\varphi}}QS_{e^{i\varphi}}\widetilde{T}(g_1 + g_2)\|_{p,q} \, d\varphi \\ &\leq 2c \sup_{\lambda \in \partial D} \|S_{\lambda}\widetilde{T}(g_1 + g_2)\|_{p,q} \\ &\leq 2c \sup_{\lambda \in \partial D} (\|T(T_{\lambda}g_1 + \lambda^{2N}I_{2N}T_{\lambda}g_2)\|_{p,q} + \varepsilon \|\lambda^{2N}T_{\lambda}g_2\|_{p,q}) \\ &\leq 2c^2 (1 + \varepsilon \|g_2\|_{p,q}). \end{split}$$

Since ε was arbitrarily fixed independent of β and g_2 , if β is large enough we arrive at a contradiction.

- 5. Proofs of the main results. First we go back to Definition 2.4.
- **5.1.** LEMMA. Assume that μ satisfies (\star) .
- (a) There are positive integers m_k such that

$$2 \le \inf_{k} \left(\frac{\mu_{m_{k-1}} - \mu_{m_k}}{\mu_{m_k} - \mu_{m_{k+1}}} \right) \le \sup_{k} \left(\frac{\mu_{m_{k-1}} - \mu_{m_k}}{\mu_{m_k} - \mu_{m_{k+1}}} \right) < \infty.$$

- (b) If in addition $(\star\star)$ is satisfied then there is an integer K>0 such that the inequalities of (a) hold for $m_n=Kn, n=1,2,...$
- (c) If $(\star\star)$ is not fulfilled then $\sup_n (m_n m_{n-1}) = \infty$ for any sequence (m_n) of positive integers with $\mu_{m_{n-1}} \geq 3\mu_{m_n}$.

Proof. In (a) we take $m_1 = 1$ and let m_k be the smallest integer with $\mu_{m_{k-1}} \geq 3\mu_{m_k}$. If $(\star\star)$ is satisfied then we find K with $\mu_{Kn+K}/\mu_{Kn} \leq 1/3$ for all n, and put $m_n = Kn$. In any case we obtain

$$2\mu_{m_k} \le \mu_{m_{k-1}} - \mu_{m_k} \le \mu_{m_{k-1}}$$
 and $\frac{2}{3}\mu_{m_k} \le \mu_{m_k} - \mu_{m_{k+1}}$.

Hence

$$2 \le \frac{\mu_{m_{k-1}} - \mu_{m_k}}{\mu_{m_k}} \le \frac{\mu_{m_{k-1}} - \mu_{m_k}}{\mu_{m_k} - \mu_{m_{k+1}}} \le \frac{3}{2} \frac{\mu_{m_{k-1}}}{\mu_{m_k}}.$$

If $m_n = Kn$ then (a) follows directly from (*). If m_k is the smallest integer with $3\mu_{m_k} \leq \mu_{m_{k-1}}$ then we have $\mu_{m_{k-1}} < 3\mu_{m_k-1}$ and therefore $\mu_{m_{k-1}}/\mu_{m_k} \leq 3\mu_{m_k-1}/\mu_{m_k}$. We obtain, by (*),

$$\sup_{k} \left(\frac{\mu_{m_{k-1}} - \mu_{m_k}}{\mu_{m_k} - \mu_{m_{k-1}}} \right) \le \frac{9}{2} \sup \left(\frac{\mu_{m_k-1}}{\mu_{m_k}} \right) < \infty.$$

This proves (a) and (b).

(c) Assume that $\varrho := 2 \sup_n (m_n - m_{n-1}) < \infty$ and $\mu_{m_{n-1}} \ge 3\mu_{m_n}$ for all n. This implies $3\mu_{\varrho j} \le \mu_{\varrho(j-1)}$ for all j. Consider n with $(j-2)\varrho < n \le \varrho(j-1)$. Then $\varrho j \le n + 2\varrho \le \varrho(j+1)$ and we obtain

$$3\mu_{n+2\varrho} \le 3\mu_{\varrho j} \le \mu_{\varrho(j-1)} \le \mu_n.$$

Hence μ_n satisfies $(\star\star)$.

5.2. Proof of Theorem 2.5. Choose m_n according to Lemma 5.1. Put $\alpha_n = \mu_{m_n} - \mu_{m_{n+1}}$ (for q = 0 or $q = \infty$ we consider $\alpha_n = \mu_{m_n}$). We prove the theorem for $1 \leq q < \infty$. The proof of the remaining cases is similar. (For $p = q = \infty$ see [12].)

Define $r_n=1-2^{-m_n}$ and $I_n=[r_n,r_{n+1}[$. Take $f\in b_{p,q}(\mu)$. Recall that $f_n:=(R_{m_n}-R_{m_{n-1}})f$ is a trigonometric polynomial of degree $\leq 2^{m_n+1}$. Hence, by Lemma 3.3, for $c_1=\sup_n(1-2^{-m_n})^{2^{m_n+2}q}$ we have $M_p^q(f,1)\leq c_1M_p^q(f,r_n)$ and thus

(5.1)
$$\frac{1}{c_1} M_p^q(f_n, 1) \alpha_n \le \int_{I_n} M_p^q(f_n, r) \, d\mu(r) \le M_p^q(f_n, 1) \alpha_n.$$

Similarly, by Lemma 3.3, there is a universal constant $c_2 \ge c_1$ with

$$M_p(f_j, r_{n+1})\alpha_n^{1/q} \le c_2 \begin{cases} (\alpha_n/\alpha_j)^{1/q} M_p(f_j, 1) \alpha_j^{1/q}, & j \le n, \\ r_{n+1}^{2^{m_{j-1}}} (\alpha_n/\alpha_j)^{1/q} M_p(f_j, 1) \alpha_j^{1/q}, & j > n. \end{cases}$$

Put

$$\beta_{n,j} = \begin{cases} (1/2)^{(n-j)/q}, & j \le n, \\ \exp(-2^{m_{j-1} - m_{n+1}}) \varrho^{(j-n)/q}, & j > n, \end{cases} \text{ for } \varrho = \sup_{k} (\alpha_{k-1}/\alpha_k).$$

Using Lemma 5.1 we obtain a constant $c_3 \geq c_2$ with $M_p(f_j, r_{n+1})\alpha_n^{1/q} \leq c_3\beta_{n,j}M_p(f_j, 1)\alpha_j^{1/q}$. Note that $\sup_n \sum_{j=1}^{\infty} \beta_{n,j} < \infty$. The Hölder inequality yields

$$||f||_{p,q} \le \left(\sum_{n} \int_{I_{n}} \left(\sum_{j} M_{p}(f_{j}, r)\right)^{q} d\mu(r)\right)^{1/q}$$

$$\le \left(\sum_{n} \left(\sum_{j} M_{p}(f_{j}, r_{n+1}) \alpha_{n}^{1/q}\right)^{q}\right)^{1/q}$$

$$\le c_{3} \left(\sum_{n} \left(\sum_{j} \beta_{n, j} M_{p}(f_{j}, 1) \alpha_{j}^{1/q}\right)^{q}\right)^{1/q}$$

$$\le c_{4} \left(\sum_{n} \sum_{j} \beta_{n, j} M_{p}^{q}(f_{j}, 1) \alpha_{j}\right)^{1/q}$$

for universal constants $c_5 \ge c_4 \ge c_3$. Conversely, according to (5.1) and (1.3),

$$(5.3) c_1^{-1/q} \Big(\sum_{j=1}^{\infty} M_p^q(f_j, 1) \alpha_j \Big)^{1/q}$$

$$\leq \Big(\sum_{j=1}^{\infty} \int_{I_j} M_p^q(f_j, r) \, d\mu(r) \Big)^{1/q}$$

$$\leq 2\lambda_p \Big(\sum_{j=1}^{\infty} \int_{I_j} M_p^q(f, r) \, d\mu(r) \Big)^{1/q} \leq 2\lambda_p \|f\|_{p,q}.$$

If $(\star\star)$ is satisfied then we find K such that we can choose $m_n=Kn$ in the preceding estimates. In this case we have

$$R_{Kn} - R_{Kn-K} = \sum_{j=1}^{K} (R_{K(n-1)+j} - R_{K(n-1)+j-1}).$$

Thus according to Lemma 3.1, if $p \in \{1, \infty\}$, the Riesz projection $R: b_{p,q}(\mu) \to B_{p,q}(\mu)$ is bounded with respect to $\|\cdot\|_{p,q}$.

If $(\star\star)$ is not satisfied then, by Lemma 5.1, our choice of m_n implies $\sup_n(m_n-m_{n-1})=\infty$. If $p\in\{1,\infty\}$, then Lemma 3.2 shows that R is unbounded. Hence for no choice of (m_n) such that the first part of Theorem 2.5 holds can we have $\sup_n(m_n-m_{n-1})<\infty$.

5.3. Proof of Corollary 2.6. Theorem 2.5 shows that $b_{p,q}(\mu) \sim Z_{p,q}$ with $\alpha_n = \mu_{m_n} - \mu_{m_{n+1}}$ ($\alpha_n = \mu_{m_n}$ if $q \in \{0, \infty\}$). (4.3) is satisfied according to Lemma 5.1. So (a) follows from Lemma 4.3.

Moreover, we have $B_{p,q}(\mu) \sim Y_{p,q}$. Let $1 . Then the Riesz projection is always bounded with respect to <math>\|\cdot\|_{p,q}$ because R is bounded with respect to $M_p(\cdot,1)$. Hence $B_{p,q}(\mu)$ is complemented in $b_{p,q}(\mu)$ if $1 . Now, Lemmas 4.1 and 4.2 together with Pełczyński's decomposition method show that <math>B_{p,q}(\mu) \sim (\sum \oplus l_p^n)_{(q)}$. This proves Corollary 2.6(b).

Since R is bounded, in view of (2.6), the map $f \mapsto \widetilde{f}$ is bounded with respect to $\|\cdot\|_{p,q}$. This yields (d).

94

W. Lusky

Generalized Bergman spaces

5.4. Proof of Corollary 2.7. (ii)⇔(iv) follows directly from (2.6) since R is bounded with respect to $\|\cdot\|_{p,q}$ if and only if the conjugation operator is bounded. Theorem 2.5 in connection with Lemmas 3.1 and 3.2 shows (ii)⇔(iii).

If R is bounded then $B_{p,q}(\mu) \sim Y_{p,q}$ is complemented in $b_{p,q}(\mu) \sim$ $Z_{p,q}$. Lemmas 4.1 and 4.2 and an application of Pełczyński's decomposition method yield $B_{p,q}(\mu) \sim (\sum \oplus l_p^n)_{(q)}$.

Finally, if $B_{p,q}(\mu) \sim (\sum \oplus l_p^n)_{(q)}$ then Lemma 4.4 implies $\sup_n (m_n - 1)^n$ m_{n-1}) < ∞ . So, by Lemma 3.1, R is bounded.

References

- S. Axler, Bergman spaces and their operators, in: Survey of Some Recent Results in Operator Theory, B. Conway and B. Morrel (eds.), Pitman Res. Notes, 1988, 1-50.
- K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Sec. A 54 (1993), 70-79.
- O. Blasco, Multipliers on weighted Besov spaces of analytic functions, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 23-33.
- [4] R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L^p , Astérisque 77 (1980), 12-66.
- P. L. Duren, Theory of H^p-Spaces, Academic Press, New York, 1970.
- T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
- -, Lipschitz spaces of functions on the circle and the disc, ibid. 39 (1972), 125-158.
- [8] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.
- [9] -, -, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256.
- [10] J. Lindenstrauss and A. Pelczyński, Contributions to the theory of classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
- [11] W. Lusky, On the structure of $Hv_0(D)$ and $hv_0(D)$, Math. Nachr. 159 (1992), 279-289.
- [12] --. On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320.
- [13] M. Mateljević and M. Pavlović, L^p-behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.
- [14] L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280.
- [15] A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
- -, -, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279.
- -, -, Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25.

[18] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.

P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press, 1991.

—, On unconditional polynomial bases in L_p and Bergman spaces, Constr. Approx., to appear.

Fachbereich 17 Universität-Gesamthochschule Warburger Straße 100 D-33098 Paderborn, Germany E-mail: lusky@uni-paderborn.de

> Received September 28, 1995 Revised version February 16, 1996

(3535)

95