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On the axiomatic theory of spectrum II
by

M. MBEKHTA (Lille) and V. MULLER (Praha)

Abstract. We give a survey of results concerning various classes of bounded linear
operators in a Banach space defined by means of kernels and ranges. We show that many
of these classes define a spectrum that satisfies the spectral mapping property.

Introduction. Denote by £(X) the algebra of all bounded linear op-
erators in a complex Banach space X. The identity operator in X will be
denoted by Ix, or simply by I when no confusion can arise.

By [15], a non-empty subset R C L£(X) is called a regularity if it satisfies
the following two conditions:

(NifAe £(X)andn>1then A€ R+ A™ € R,
(2) if A,B,C,D € L(X) are mutually commuting operators satisfying
AC+BD=1then ABe R4 A, BeR.

A regularity R defines in a natural way the spectrum og by or(d) =
{AeC:A—A¢ R} for every A € L(X).

The axioms of regularity are usually easy to verify and there are many
naturally defined classes of operators satisfying them (see [15]). Since the
corresponding spectrum always satisfies the spectral mapping property, the
notion of regularity enables one to produce spectral mapping theorems in
an easy way.

The aim of this paper is to give a survey of results for various classes
of operators defined by means of kernels and ranges. For the sake of com-
pleteness we include also some well known classes and results. On the other
hand, we ohtain a great number of new resuits (especially spectral mapping
theorems) for various classes of operators and introduce also new classes of
operators which, in our opinion, deserve further attention.
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Key words and phrases: spectral mapping theorem, ascent, descent, semiregular op-
erators, quasi-Fredhelm operators.
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The axioms of regularity (and consequently the spectral mapping prop-
erty) provide a criterion for a decision which classes of operators are reason-
able.

I. Preliminaries. We start with basic properties of regularities (see
[15]).

1) If R € £(X) is a regularity then R contains all invertible operators,
50 that the corresponding spectrum is contained in the ordinary spectrum:
or(A) C a(A) for every 4 € L(X).

2) In general og(A) is neither closed nor non-empty. In particular, R =
L(X) is also a regularity; the corresponding spectrum og(A) is empty for
every A € L(X).

3) If (Ra)o is any family of regularities then R = [, Ry is also a regu-
larity. The corresponding spectra satisfy

or(A) = Jor.(4) (A€ L(X)).

4) Let R C L£(X) be a regularity and let g be the corresponding spec-
trum. Then

cr(f(A)) = flor(4))
for every A € £{X) and every function f analytic on a neighbourhood of
o(A) which is non-constant on each component of its domain of definition.

5) Let R ¢ L(X) be a regularity and let X;, X, be a pair of complemen-
tary closed subspaces, X = X; @ Xs. Then there exist uniquely determined
regularities

Ry = {T1 S [:(Xl) T & IX; & R} - ,C(Xl) and
Ry = {Tg & ,C(Xz) : IX; SMPYS .R} - ﬁ(Xz)
such that

A @Ay € R Ay € Ry and A € Ry (Al & .C(Xl), Ao € E(Xg))
The corresponding spectra satisfy or(A4) @ 4z) = og, (A1) U or, (42).

6) Suppose a regularity B ¢ L£(X) satisfies the following condition: if
X3, X are closed complementary subspaces in X, X = X7 © Xo, such that
Ry = {11 € L(Xy) : Ty ® Ix, € R} # L{Xy), then the corresponding
spectrum o g, (A1) is non-empty for every A; € £(X1). Then

or(f(A)) = flor(A))
for every A € L(X) and every function f analytic on a neighbourhood of
o(A).

Remark. In all reasonable situations (in particular, in all situations
considered in this paper) a regularity decomposes in the canonical way.
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For example, if B = {T' € £(X) : T isonto} and X = X; © X, then
R; = {T; € L(X;) : T, is onto} (i = 1,2) and T3 ® T3 is onto & T3, T are
onto. Thus the condition above reduces to the question of the non-emptiness
of the spectrum.

For an operator T & £(X) denote by N(T'} and R(T') its kernel N(T') =
{z € X : Tz = 0} and range R(T) = {Tx : ¢ € X}, respectively. Clearly
N(T) c N(T?*) c ... and R(T) D R(T?) > ...

Define further N°(T) = Upe o N(T™) and R*(T") = (—o R(T").

The following lemma enables an easy verification of axiom (2) of regu-
larities for various classes of operators.

LeMMA 1. Let A, B,C, D be mutually commuting operators in a Banach
space X satisfying AC -+ BD = I and let n > 0. Then

(1) N(A"B™) = N(A") + N(B™), R(A"B™) = R(A™) n R(B"),

(2) N®(AB) = N*(A) + N*(B), R°(AB) = R*(A)N R*(B),

(3) N°(4) ¢ R®(B), N*(B) C R*(A),

(4) R(A™B™) is closed & R(A™) and R(B™) are closed.

Proof. The first three properties were proved in [15]. If R(A™) and
R(B™) are closed then clearly R(A™B") = R(A") N R(B") is closed.

Suppose R(A"B™) is closed and z € R(A"), ie. there are ux € X,
k =1,2,..., such that A"u; — z. Then A"B™y, — B"z = A"B"y for
some u € X. Thus z —~ A™u € N(B™) C R(4™), so that z € R(A"). Hence
R(A™) is closed.

Following Grabiner [7], consider for T € L(X) and n > 0 the linear
mapping

R(T™)/R(T™) — R(T™)/R(T™?)
induced by T. Denote by k,(T) the dimension of its kernel.

LemMa 2 ([7], Lemma 2.3). Let T € L(X) and n = 0. Then kn(T) is
equal to any of the following quontities:

(1) the dimension of the kernel of the linear mapping
R(T™)/R(T™) — R(T™*1)/R(I™)
induced by T; this mapping is onlo,

(2) dim[(R(T™) N N(T))/(R(T™") N.N(T))],
(3) the codimension of the image of the linear mapping

- N(TTPR)/N () = NI /N(TT)

induced by T'; this mapping is injective,
(4) dim{(R(T) + N(T"*))/(R(T) + N(T™))]-
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If My and M; are (not necessarily closed) subspaces of a Banach space X

then we write for short M & My (M is essentially contained in Mpy) if there
is a finite-dimensional subspace F' < X such that My C M + F. We may

assume that F C M. Clearly My & My if and only if dim{My /(M N M)
< oo If My fa Mo and Mo & M, then we write M; = Ms.

II. Descent. For T € £L{X) and n =0, 1,... define
en(T) = dim(R(T™)/R(T™™)).
By Lemma 2, we have ¢, 1(T) € en(T) (n =10,1,..
operator T € £(X) is defined by
A(T) = inf{n : c,(T) = 0} = inf{n: R(T™) = R(T™)}

(the infimum of an empty set is defined to be o00). If d(T) < oo then
R(THT)y = R(T4THY) = . = R=(T).

Similarly we can define the essential descent of T' by

do(T) = inf{n : ¢, (T) < 00} = inf{n : R(T") = R(T™1)}.

¥ d = deo(T) < co then R(T%) = R(T") for every n > d (of course this does
not imply R(T%) = R=(TY).

Denote by ¢.-.(X) the set of all lower semi-Fredholm operators in X, i.e.
T € ¢_(X) if and only if ¢o(T) < oo.

The following two lemmas enable the verification of axioms of regularity:

.). The descent of an

LemMA 3. Let T € L(X), m> 1, and n > 0. Then

m—1
'm) = Z Cmn+i(T)
i=0
In particular, cma(T) < cn(T™) < mema(T).

Proof We have
en(T™) = dim(R(T™")/R(T™™™))

m~1 m—1
= ZS dim(R(T™ ) /REI™ ) = 3 e (T).
1= =0

LeMmMA 4. Let A, B,C, D be mutually commuting operators in a Banach
space X safisfying AC + BD = I and let n > 0. Then

max{cy(A), en(B)} € en(AB) < cp{4) + ¢n(B).

Proof We prove first e,(A) < ¢,(AB). This is clear if ¢,(AB) =
Suppose ¢, (AB) < 0. Set m = ¢,(AB)+1 and let zy,...,zm be arbitrary
clements of R(A™). Then B™z; € R(A"B™) (i = 1,...,m) so that there
exists a non-trivial linear combination
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ZatB“m, B" (Za mt) € R(A™T1pnt].

qe=1 i=]
Thus .
> aiws € R(A™MB) 4+ N(B™) C R(A™).
i=1
Since x4, ... ,%m Were arbitrary, we have ¢, (A) = dim(R(A™)/R{A™11)) <
cn(AB).

The second inequality is cleaxr if ¢, (A) + ca(B) = co. Let co{A) + cn(B)
be finite and consider the linear mapping R(A"B") — R{A™} & R(B")
defined by ¢ — z & z. f m > cp(A) + ¢, (B} and z1,...,z, are arbi-
trary vectors in R(A™B") then there exists a non-trivial linear combination
such that 37° | c;z; € R(A™Y) and Y 1o, oy € R{B™™'). By Lemma 1,
Yoy onm; € R(A““B““‘l) so that ¢, (AB) < ¢n{A4) +cn(B).

Let us consider the following classes of operators:

(1) R = {T € L(X) : d(T) = 0}. Other equivalent formulations:
co{T) = 0 <> T is onto < ¢, (T} = 0 for every n.

(2) R = {T € L(X) : d(T) < oo and de(T) = 0}. Equivalently:
S ee(T) < 0o & ¢o(T) < oo and there exists d € N such that ca(T)
=0«T is lower semi-Frediolm and T has a finite-descent.

(3) = {T € £(X) : de(T) = 0}. Equivalently: ¢o(T) < 0o & cn(T)
< oo for every neTed (X).

(4) R = {T € £(X) :d(T) < co}. Equivalently: there exists d € N such
that ¢, (T) =0 (n = d) & T has a finite descent.

(5) R2 = {T € L{X) : de{T) < oc}. Equivalently: there exists d € N
such that ,(7) < oo (n > d) & T has a finite essential descent.

In case of ambiguity we shall write R2(X) instead of R} (i=1,...,5).

It is easy to see, by Lemmas 3 and 4, that the sets B}, ..., R§ are regular-
ities, so that the corresponding spectra satisfy the spectral mapping theorem
(for locally non-constant analytic functions}.

The conditions defining the sets B3, ..., RE are purely algebraic (there-
fore we use the upper index a). We could define these classes for linear map-
pings in an arbitrary vector space. The spectral mapping theorem would
remain true (of course only for non-constant polynomials).

An operator T € £(X) with codim R(T) < o0 has automatically closed
range (and in this case also R(T™) is closed for every n). This is not the
case for operators with a finite descent as the following example shows.

EXAMPLE 5. There exists a bounded linear operator T in a Hilbert space
such that R(T?) = R(T) and R(T') is not closed.
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ConsTRrUCTION. Consider the Hilbert space H with an orthonormal ba-

sis {es;}§5~1 and the operator T' defined by

0 if§=1,

1

Teij = 56’1‘,1 ifj =2,

€;;—1 otherwise,
It is easy to check that R(T?) = R(T) = My + TM,, where My = \/{e;; :
J = 2,7 > 1} and My = V{e;2 : ¢ > 1}. Further, R(T) is not closed since
R(TM)N(V{ei1:i>1}) is not closed.

It is more interesting from the point of view of the operator theory
to combine the algebraic conditions defining the regularities R} and R2
with a topological condition—closedness of R(T¢). It is easy to see that
if eg(T) = dim(R(T?)/R(T9+1)) < co then R(T?) is closed if and only if
R(T***) is closed, Thus, by induction, if ¢g(T) < co and R(T™) is closed
for some n > d then R(T™) is closed for every ¢ > d.

The classes of operators which we are really interested in are the follow-
ing (the first three sets remain unchanged since a topological condition is
already implicitly contained in the definition; we repeat them only in order
to preserve symmetry with subsequent situations):

Ry ={T ¢ £{X): T is onto},

Ry ={Tel(X):T€¢_(X)and d(T) < oo},

Ry = ¢_(X),

Ry ={T € L£{X): d(T) < oo and R(THT) is closed},
Rs = {T € £(X) : do(T) < oo and R(T%'T)) is closed}.

Obviously By C Rg = R3 N Ry C R3 U Ry C Ry.

It is easy to see that the sets Ry,...,Rs are regularities. Denote by
o; (i=1,...,5) the corresponding spectra.

ITX = XX, e E(Xl) and Ty € JC(.Xz) then we have

Ty@T € Ri(X) & Ty € Ri(X1) and T € Ry{(X2) (t=1,...,5).
Further,

a1(T1) # 8 & X1 # {0} & Ry(X1) # L(X1).
Similarly, for i = 2,3, ‘
oi(T1) # 0« dim X; = 0o & R;(X1) # L(X1)
(see below). Thus we have

THEOREM 6. Let T € L(X) and let f be a function analytic in a neigh~
bourhood of o(T). Then
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(2) if f is non-constant on each component of its domain of definition
then

oi(f(1)) = flo:(T)) (i=4,3).

The specira o; and o3 are well known—e; is the defect spectrum (some-
times also called the surjective spectrum) and o3 is the lower semi-Fredholm
spectrum. In the remaining cases the spectral mapping theorems seem to be
new. Of particular interest is the case of i = 2 (cf. [8]).

We are now going to study further properties of the regularities R; and
the corresponding spectra ¢;. We will consider the following properties (to
avoid trivialities we consider only infinite-dimensional Banach spaces X):

(A) o:(T) # @ for every T € L(X).

(B) o:(T") is closed for every T € L(X).

(C) T € R; then there exists &€ > 0 such that T+ U € R; whenever
TU = UT and {|U| < ¢ (this means the upper semicontinuity of o; on
commuting elements, see [15], property (P3)).

(DT € R; and F € £(X) is a finite-dimensional operator then
T+ Fe k.

(E) ¥ T € R; and K is a compact operator commuting with I" then
T+ K eR;.

(F)IfT € R; and Q € £(X) is a quasinilpotent operator commuting
with T then T + @ € R;.

The properties of B; (i = 1,...,5) are summarized in the following table:

Table 1
(ay @B (©) (D) (E) ()
o; 7 @ o closed small commut. finite-dim. commut. comp. commut.
perturbations perturh, perturbations quasinilp.pert.
o yes yes yes no no yes
onto
Ry
¢—(X) and | yes ves yes no yes yes
d(T) < oo
Rs yes yes yes yes yes yes
¢—(X)
R4 no yes no no no no
d(T) < o0
Ry no yes no yes ne no
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All these properties are known and some of them are trivial. Nevertheless
we indicate briefly by the following observations how the table can be filled
in.

1) The zero operator 0 is in R; and ¢;(0) = 0 (i = 4,5). Since every ope-
rator commutes with 0, B4 and Ry cannot have properties (A), (C), (E), (F).

2} Consider the identity operator in a Hilbert space and let P be a
1-dimensional orthogonal projection. Then I — P is not onto and R; does
not have properties (D), (E).

3) Consider the bilateral shift T' in a Hilbert space H with an orthonor-
mal basis {e;}3°__, defined by Te; = €;41 and let Fz = (z,ep}e;. Then
d(T ~ F} = oo so that Ry and R4 do not have property (D).

The remaining properties are true.

4) It is well known that o1(T) and o3(T") are non-empty and closed.
Further, a2(T) # 0, since 09(T) D o3(T').

5) It is well known that Rj is stable under (not necessarily commuting)
compact perturbations. Also both R; and Rg are stable under small (not
necessarily commuting} perturbations.

6) The stability of Rz under commuting compact perturbations was
proved in [6)].

T)Let T € L{X) be onto and let @ be a quasinilpotent operator commut-
ing with T'. By the spectral mapping property for the joint defect spectrum
(see e.g. [9], [25]) we have

(T+@Q)={A+u:(Ap) en(T,Q)} C{A+u: Aean(T), nea(Q)}
= UI(T) 59! 0.
Thus ' + () € R;.
Analogous considerations can be made also for Rz {for the spectral map-
ping property see [3]).
8) If T,F € L(X) and F is a finite-dimensional operator, then

n—1

(T -+ F)n -T" = E[TI(T + F)'”'""" — T’H‘l(T + F)'n-—i—l]
im0
n—1
=Y T'F(T + F)"t?
1=}

so that (T + F)™ —T™ is a finite-dimensional operator. Consequently,
R((T + F)™) = R(T™)
for every n and ¢,(T) < o cn(T+ F) < oo, i.e. T'€ Ry T+ F € Rs.

9) Clearly T € Ry if and only if codim R*®(T) < oc. Let T € Rz and
UT =TU. Then UR®(T) C R*(T) and T|R*(T) is onto. If ||| is small
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enough or U is quasinilpotent then (T + U)|R(T"} is still onto (see obser-
vation 7} so that R*(T +U) D R™®(T) and T+ U € Rz. Thus Ry has
properties (C) and (¥). Consequently, o2(T") is closed.

10) Let T € Rs(X). Define M = R(T%(T)). Then T|M € ¢_(M) and the
operator T : X/M — X/M induced by T is nilpotent. Let A be a non-zero
complex number small enough. Then T+A: X /M — X/M is invertible
and (T +A)|M £ ¢_(M). Let F be a finite-dimensional subspace of M such
that R((T+ M|M)+ F =M. ‘

Iz e Xthena+Me RT+A),sothat z € RT+N+McC
R(T+ A)+ F. Thus codimR(T'+ A) < oo and T'+ A € ¢_(X) ¢ R5(X).
Hence o5(T) is closed (moreover, o3{T"}—o5(T") consists of at most countably
many isolated points).

Similar considerations can he made for T € R4 (with F' = {0}}). Thus
o4{1") is closed and o1 (T} — 4(T") consists of at most countably many iso-
lated points.

III. Ascent. Similar considerations can be made for the dual situation.
For T € £(X) and n = 0,1,... define ¢,(T) = dim(N(ZT™)/N(T™)).
By Lemma 2 we have ¢p(T) = ¢ (T) 2 ... Moreover, if ¢, (T) < oo then
kn(T) = ¢, (T) — e a{T)-

The ascent of T is defined by

a(T) = inf{n : & (T) = 0} = inf{n : N(T™) = N(T™)}
and the essential ascent by
ae(T) = inf{n : ¢, (T) < oo} = inf{n : N(T™) = N(T™)}.

Ag in Lemmas 3 and 4 it is possible to show that

m—1
G (T™) =" hmii(T)  (m21, n20)
i=0

and, for commuting A4, B, C, D satisfying AC' + BD =1,
max{c, (A), en(B)} < cr(AB) < cp{4) + ¢ (B).
Denote by ¢.(X) the set of upper semi-Fredholm operators in a Banach
space X, i.e. ¢4 (X) = {T € L{X}: dim N(T} < cc and R(T) is closed}.
The dual versions of the regularities R%,..., R are the following:
R = {T'€ L£(X) : T is injective},
2 ={T e L(X):dimN(T) < oo and a(T") < oo},
Ry ={T'e€ L(X):dimN(T) < co},
Ry ={T e L(X):a(T) < o0},
fo ={T € L(X) 1 ae(T) < o0}
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It is easy to see that the sets RE,..., R}, are regularities, so that the
corresponding spectra satisfy the spectral mapping theorem (for locally non-
constant analytic functions).

If we consider the topological versions of these regularities, there is a
small difference from. the dual case—the ranges of operators in R, R% and
R2 need not be closed. The dual versions of Ry,..., R5 are then:

Rg = {T € £(X) : T is bounded below},

Ry ={T e L(X): T & ¢4(X) and o(T}) < oo},

Ry = ¢,.(X),

Ry = {T € L(X): a(T) < 0o and R(T*T)*1 i5 closed},
Rip={T € £(X) : ae(T) < 00 and R(T*'T)*) is closed}.

Obviously R C Ry=RgNHg C Re U Rg C Ryp-
The following lemma explains the exponents in the definitions of Rg and
Rio (cf. [7]).

LeMMA 7. Let T be an operator in a Banach space X with a.(T) < .
Then the following two statements are equivalent:

(1) there exists n > ae(T) + 1 such that R(T™) is closed,
(2) R(T™) is closed for every n > ao(T).

Proof. (2)=(1} is trivial.

(1)=(2}. Let n > ae(T) + 1 so that chm(i?\?r(f)f"”')/N(Tn 1) < oo and let
R(T™) be closed. We first prove that also R(T™ ") is closed. To see this, note
that R(T) + N(T"™1) = T-(*=D(R(T™)) is closed. Further, R(T™) N N(T)
is closed and it is of finite codimension in R(T™") N N(T) by Lemma 2,
so that R(T" ') N N(T) is closed. By the lemma of Neubauer (see [16],
Proposition 2.1.1) we conclude that R(T™~1) is closed.

By repeating these considerations we find that R(T") is closed for every
i with a.(T) <7 <n.

Further, T|R(T™*) is an upper semi-Fredholm operator, so that

R(T*) = R((T|R(T"H))~™+)
is closed for every i > n.

It is easy to see that the sets R; (¢ = 6,...,10) are regularities, so that
the corresponding spectra oy(T) = {A : T — A & R;} satisfy the spectral
mapping theorem (in case of i = 6,7, 8 for all analytic functions; in case of
i=9,10 for analytic functions which are locally non-constant).

Moreover, since intersection of two (or more) regularities is again a reg-
ularity, we can obtain the spectral mapping theorem for a large number of
combihations of Ry, ..., Rig.
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It is easy to see that T' € £(X) belongs to R;(X) (i =
only if T* € Rip5(X™*). Similarly, T € Ri(X) (i =6,...,
T € R-,;_5(X*). .

Since the properties (A),..., (F) considered in the previous section are
also preserved by taking adjoints, the regularities Rg, ..., t1o have exactly
the same properties as Ri,..., Rs. 30 Table 1 remains valid for Ry,..., Rs
replaced by Rg, ..., Rio-

.,5) if and
10) if and only if

IV. Semiregular, essentially semiregular and quasi-Fredholm
operators. In this section we replace ¢,(T) = dim(R(T™)/R(T™!)) and
¢ (T) = diim(N(T™*t1)/N(T™)) by the numbers

kn(T) = dim{(R(T) + N(I™) /(R(T) + N(T™))]
= dim[(N(T) N R(T™))/(N(T) 0 R(T™1))].

By Lemma 2, kn(T) = co(T) — caqa1(T) if en(T) < oo and kp(T) =
o (T) — ¢y (T) if e {(T) < 0. On the other hand, it is possible that k,(T')
< oo while both ¢,(T") and ¢}, (T') are infinite.

We start with an analogue of Lemmas 3 and 4.

LEMMA 8. Let A, B,C, D be mutually commuting operators in o Banach
space X satisfying AC + BD =1 and let n > 0. Then

(1) R(A®B™) N N(AB) = [R(A") N N(4)] +[R(B™) N N(B)],
(2) max{kn(A), kn(B)} < kn(AB) < kn(A) + kn(B).
Proof (1} We have
R(A™B™) N N(AB)
= R(A™)NR(B™) N [N(A) + N(B)
o [R{A™ N R(B™) N N(A)] + [R(A™) N R(B™) N N(B)]
= [R(A™) N N(A)] + [R(B™) N N(B)]-
On the other hand, if z € R(4™) N R{(B™) N[N(4) + N(B)] then z =

y + z for some y € N(A) C R(B™) and z € N(B) € R(A"). Thus also
y=mz—2€ R(A") and z =z -~ y € R(B™), so that

& € [R(A™) N R{(B™) N N(A)] + [R(4™) " R(B™) N N(B)]

and we have equality in (1).
(2a) We prove kn(A) < kn{AB). I z1,...,Tm € R(4A™) N N(A), where
m > kn(AB), then B"z; € R(A"B™} N N(A) C R(A®B™)} N N(AB) (G =
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1,...,m). Thus there exists a non-trivial linear combination
.
3" 0B z; € R(A™ B™) ¢ B"R(A™T).
=1
Se
m
S oumi € R(A™) + N(B") € R(A™).
i=1 '
(2b) To prove the second inequality, let
T1,....Zm € R(A®B") N N(AB) = (R(A™)NN(4)) -+ (R(B™) N N(B)),

where m > kn(A) + k,(B). Then there exist y; € R(A™) N N{A) and z €
R(B") N N(B) such that z; = y; + 2 (i = 1,...,m). Thus there exists a
non-trivial linear combination such that 21_1 oy € R{AM1) N N(4) and
S,y € R(B™TY) N N(AB).

LevMa 9. Let T € L{X), n >0 and m = 1. Then
b (TT)
= Fnn{T) + 2kmn41(T) + 3kmns2(T) + ... + MEmprm—1(T)
+.(m = Dkmntm(T) + (M = 2)kmnimi1 (T) + - - 4 Bnntam—1(T)-
In particulor,

. e 2 .
Dsggé_lkmn—i—i(iﬂ) < k’n(T ) <m Oﬁggﬁ*lkmn-m(?‘)-

Proof. Consider the mapping
Ty : R(T)/R(TT™) — R(TIT)/R(TI™H)

induced by 7' Its kernel is [(N(T) N R(T¥)) + R(T¥+™))/R{T9*+™), which
is naturally isomorphic to (N{(T) 0 R(T))/(N{T) n R(T7+™)) (see [7],
Lemma 2.1(b}). Thus

dim N(T;) = dim[(N(T )N R(T))/(N(T) N R(THH™)]

= Z dm[(N(T) N R(TIT))/(N(T) n R(TITH1))]

= Z kji(T)

Since the mapping R(T™") /R(Tm”+m) — R(Tmn+M) JR(T™m2m) ip.
duced by T is the composition Tmn+m 1Tmn+m 9. Tmn and all these
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mappings are onto, we have

mn+m—1 mn-4m—1m—1
S TR S S
j=mm j=mn i=0

which gives the statement of the lemma.

We now define the classes of operators analogous to RF, ..., R:

NoTATION. Let X be a Banach space. Define
3 ={T € L(X) : ka(T) = 0 for every n € N},
b= {Te () Y KI) < oo},

i=0
a3 = {T € L(X) : kn(T"} < 00 for every n € N},
&, = {T € L(X) : there exists d € N such that k(') = 0 (n > d)},
R%, = {T € L(X) : there exists d € N such that k,(T) < cc (n = d)}.

The condition in R}, means that
N(T) = N(T) N R(T) = N(T) N R(T?) =

so that B3, = {T: N(T) C R=(T)}.
Similarly $°5°, k;(T") < 0o means that there is d € N such that

N(T) £ N(T)NR(T) £ N(T)NR(T?) =
2 N(TYNR(TY = N(T) N R™® (T)

= N(T)n BR(T)

so that R?, = {T' : N(T) ¢ R™(T)}. These or similar conditions were
studied by many authors (see e.g. [5], [7], [10], [11], [17], [20], [21], [23]).

Operators T € R%, were called in [7] “operators with eventually uniform
descent”. The condition defining B2, can be rewritten as N(T) N R(T%) =
N(T) N R*=(T) and it was studied also in connection with quasi-Fredholm
operators (see [16]).

The condition in R}, can be rewritten as N(T™) c R(T™) for all m,n
€ N. This condition appeared implicitly already in [20].

The conditions in R2; probably have not been considered yst.

It follows from Lemmas 8 and 9 that the sets R}y, ..., R} are regulari-
ties, so that the corresponding spectra satisfy the spectral mapping theorem
(for locally non-constant analytic functions).

Before we introduce the topological version of Rf,,..., R, we state
several simple lernmas.

LEMMA 10. Let T € £(X) and let m > 0 and n > i > 1. If R(T™) +
N(T™) is closed then R(T™ ) + N(T™") is closed.



142 M. Mbekhta and V. Miller

Proof. It is sufficient to show that
(*) R(T™%) + N(T™) = T R(T™) + N(T™)).

The inclusion C is clear. Conversely, suppose that T¢z € R(T™)-+N(T™),
so that T%% = T"z 4+ u for some z € X and u € N{(T™). Then v € R(T"),
so that u = Ty for some v € N(T™+%). Then z — T" !z — v € N(T%), so
that z € R(T™ %) + N(T™) + N(T%) = R(T™ %) + N(T™"*) and we have
equality in (=},

Lenvma 11, Let T € £(X) and let n > 0. If R(T™) and B(T) + N(T™)
are closed then R{T™*") is closed.

Proof Let u; € X (7 =1,2,...) and let T""'u; — 2 as j — oo. Then
z € R(T™), i.e. =T for some v € X and T"(u — Tu;) — 0.
Consider the operator 77 : X/N(T™) — X induced by T™.

Clearly T" i injective and has closed range, therefore it is bounded below
and T (u — Tu; + N(Tn)) — 0 (j — oo) implies u — Tu; + N(I™) — 0 in
X/N(T™). Thus there are elements v; € N(T") such that Tu; +v; — u €
R(T) 4+ N(T™). Hence z € R(T™1).

LEMMA 12 (cf. [7], Theorem 3.2). Let T € £(X), d € N and let k;(T) <
oo for every i > d. Then the following statements are equivalent:

(1) there ezists n > d + 1 such that R(T™) is closed,
(2) R(T™) is closed for everyn > d,
(3) R(I™) + N(IT™) is closed for all m,n withm+n>d.

Proof. Clearly (3)=(2)=>(1). The implication (2)=(3) follows from
Lemma 10.

(1)=>(2). If R(T™) is closed then, by Lemma 10, R(T) + N(T™"1) is
closed. Since R(T) + N(I™1) & R(T) + N(T") C ... we deduce that
R(T)+N(T*) s closed for every i > n. Thus by Lemma 11 we see inductively
that B(T™) is closed for every i > n.

To show that R(T™) is closed for every ¢ with d < 7 < n we can proceed
exactly as in the proof of Lemma 7.

NOTATION. We define

Ry ={T € L(X): N(T) C R*(T) and R{T") is closed},
Rz = {T € £L(X): N(T) C R®(T) and R{T) is closed},
Rz = {T € L(X) : kn(T) < 0o for every n € N and R(T) is closed},

Ryy =A{T € L(X) : there exists d € N such that
R(T) + N(T%) = R(T) + N°°(T) and R(T%") is closed},
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Ryz ={T € £L(X) : there exists d € N such that
kn(T) < oo (n > d) and R(T%?) is closed}.
Clearly Bi1 CRis = RiaNRys C RigUR14 C R15, RiURs C Rl]., RsU Ry
C Rz U Rg C Rya, R4 U Ry C Ry4 and Ryl Rig C Rss.
It is easy to see that the sets Ry1,..., K1 are regularities.

Let o; (i=11,...,15) be the corresponding spectra defined by o;(T") =
A:T-x¢d B} X = X @ X is a decomposition of X with
Xy, X5 closed and if T4 € £(X;) and T5 € £(X7) then

Ui(TlEBTz):G'i(Tl)Udi(Tz) (i: 11,...,15).
Since o11{(Th) # @ & X1 # {0}, and for ¢ = 12,13, 0y(T1) # 0 & dim X

= oc (see below), we have the following spectral mapping thecrems:

THEOREM 13. Let T € L(X) and let f be a function analytic on a
neighbourhood of o(T). Then

o:(f(T)) = flo:(T))

If f is non-constant on each component of its domain of definition then

oi(f(T)) = fle:i(T)) (2=14,15).

(i =11,12,13).

Remark. The operators of class R1; and Rjs will be called semiregular
and essentially semiregular, respectively. These classes are well known and
so is the spectral mapping theorem for the corresponding spectra (see [1],
[17], [19], [24] and [20], [21]).

The operators of class Ry4 will be called gquasi-Fredholm. In case of
Hilbert space operators this definition coincides with the definition of
Labrousse [16]). The spectral mapping theorem for 014 in Hilbert space
case was proved in [2]. For Banach space operators the definition of quasi-
Fredholm operators is new and so are, as Tar as we know, the classes R;3
and R15.

ExAMPLE 14. A typical example of an operator of class Rjs is the oper-

ator
S= ésn c c(éﬂn),
n=1

n=1
where H,, is an n-dimensional Hilbert space and S, is a shift in H,,. In this
case kn(S) =1 for every n.
The properties (A)—(F) for the regularities R;y,..., Fi5 are summarized
in the following table:
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Table 2
(A) (B) (©) (D) (B} (F)
a; #@ gy closed small commut. finite-dim. commut, comp. commut.
perturbations perturh, pecturbations quasinilp. pert.

Ry

yes yes yes no no yes

semireg.

Ri2

. yes yes Yes no yes yes

ess. semireg.

Ris yes ? ? yes ? ?
Ri14

no yes no yes no no
g0

Ris 10 7 no yes no no

Comments. 1) It is well known that 011(7") and ¢12(7") are closed for
every I' € L{X)}, o1:(T") D 8¢(T) and g13(T") > 8o,(T), so that both spectra
are non-empty (for infinite-dimensional Banach spaces). Here o denotes the
essential spectrum: go(T) = {A : I — X is not Fredholm}.

For property (C) for Ry and Rys see [15].

2) Since 0 € R4, Ri5, one can easily see that (A), (C), (E) and (F) fail
for R14 and R15.

3) Observation 2 after Table 1 shows that (D) and (E) fail for semiregular
operators.

4) As in observation 8 after Table 1, one can easily see that Rq3 and Ris
are closed under finite-dimensional perturbations. For essentially semiregu-
lar operators this was proved in [13], for quasi-Fredholm operators this will
be shown below. Also the non-emptiness of o3 will be proved below.

5) Semiregular and essentially semiregular operators are stable under
commuting quasinilpotent perturbations by [14].

6) The stability of essentially semiregular operators under commuting
compact perturbations was shown in [7], Theorem 5.9. By Theorem 4.7 of
the same paper, 014(T") is closed (moreover, Ry1(T) \ R14(T") consists of at
most countably many isolated points}.

The boxes marked by 7 represent open problems. An especially interest-
ing question is whether Ry3(T) is closed (our conjecture is yes).

Note also that Tables 1 and 2 (as far as the latter is filled in) are quite
similar, with only two differences.

We finish with the two promised results:

TueOREM 15. Let T € L(X) be a quasi-Fredholm operator (i.e. T € Ri4)
and let F &€ L(X) be a finite-dimensional operator. Then T + F is also
quasi-Fredholm,
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Proof. Clearly it is sufficient to consider the case of dim R(F) = 1.

Since R((T + F)*) = R(T™) for every n (see observation 8 following
Table 1), R((T + F)™) is closed if and only if R{T™) is closed and it is
sufficient to show the algebraic condition of Ry4 for T'+ F.

Since T is quasi-Fredholm, there exists d € N such that N(T)NR(T?) C
R (T) and R(T?) and R(T%+!) are closed. Set M = R(T?) and T} = T| M.
Then N(T1) = N(TYNR(T?) ¢ R*®(T) = R>(T}) so that T} is semiregular.

It is sufficient to show that N(T1) € R*®(T + F). Indeed, since

N(Ty) = N(T)n R(T%) £ N(T + F)N R((T + F)?),
we have .
N(T+F)NR((T+ F)*) C R°(T + F),
ie. N(T+F)NR{(T+ F)) = N(T+F)NR®(T + F).
This means that N(T+F)NR{(T +F)") = N(T+ F)NR® (T + F) for

some n > d.
Let zp € N{T1). We prove the following statement:

(a)  For every m there exist vectors z, . .., %, € R*(T3) such that T'z; =
ziqand Fog; =0 (i=1,...,n).

If (a) is proved then of course
(T + F)'2p = (T + F)" tgpy = ... = (T+ F)z1 = 2o,

so that =g € R(T + F)" for every n. Thus N(T1) € R®(T + F) and the
theorem is proved. o

We prove {a) by induction on n. For n = 0 the statement is trivial
Suppose (a) is true for n, i.e. there are vectors #y,...,zn € R (1Y) such
that Tz; = z;—1 and Fz; =0 (i =1,...,n). Since T} is semiregular, we can
find zp41 € R°(Th) such that T1Ty41 = T

If Fz,41 = 0 then we have statement (a) for n + 1. Let Faniq1 7 0.

Let k& be the smallest integer with N(TF) ¢ N(F) (clearly k < n +1
since @npp1 € N(TPH}\ N(F)). Since F is one-dimensional, we can find
z € N(T*) € R*®(T1) such that F(zn4: —z) = 0. Set

Tl = Tnsl — % &y, = Ty, Ty = T3$L+1; sy

$L+1—k = lem:'n-i-l = Tf$n+1 = Tntl—ks Ty = By oo @) = T1.
Clearly 2, € R®(T), Tyzi = 2}_ (i=1,...,n+1), Fzy , = O0and Fz; =0
for1<i<n-+1—k.Ifn+2-~k<i<nthen Fz}= F(x] — ;) + Fx; =
F(zl ~z;) =0 since z, —z; € N(T¥~1), by the definition of .

This finishes the proof of (a} and also of the theorem.

THEOREM 16. Let T € L{X). Then 80o(T) C 013(T).

Proof We use the construction of Sadovskii [22] (see also [3]). Denote
by 1°°(X) the Banach space of all bounded sequences of elements of X with
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the sup-norm and let J(X) be the closed subspace of [°°(X) consisting of
all sequences {@n}oe; such that the set {z, : n = 1,2,...} is precompact.
Set P(X) = 1°(X)/J(X).

An operator T' defines pointwise an operator T : [*(X) — [*(X)
such that T°J(X) C J(X), so that we can define naturally an operator
P(T): P(X) — P(X). For properties of the functor P, see [3], [4] or [22].

Let T € Ry3. Then R(T™) is closed for every n, so that R((P(T))™) =
R(P(T™}) is closed.

It is easy to verify that NV (P(I")) = I**(N(T")) + J(X) and

R(P(T™)) = I®°(R(T™)) + J(X).
Since dim[N(T) /(N (T) N R(T™))] < oo for every n, we have
N(P(D) =Z(N(T)N R(T™)) + J(X) € N(P(T)) N R(P(T™)),
so that P(T") is semiregular.

If A € Boe(T) = do(P(T)), then P(T) — Mp(xy = P(T — Mx) is not
semiregular, so that 7' — Alx € Ry3(X).
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