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(5.2) ( | T (xqdw)? da) < olqp
X

for all dyadic cubes @ € D. To verify (5.2), let g(z} satisfy g > 0 and
llgllzo(ae) < 1, and consider § T"(xqdw)gdo. Assuming condition (1.15},
it follows from Theorem 1.1 that (1.4) holds. Then, by the same argument we
used to show that (1.4) implies (1.7) (but with B there replaced now by @),

[ 7 (xqdw)gdo < C1QLLY,
X

and (5.2) follows by taking the supremum in g. Also, by Theorem 1.1 applied
to T*{gdw), we see that (1.18) implies the weak type estimate

' ' /g’
supA{y € X : |T*(gdw)(y)| > MY/ < (| lol¥ dw)
A>0 X
This in turn implies (5.1) as usual, and the proof is complete.
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Amenability of Banach and C*-algebras
on locally compact groups

by

A.T-M. LAU (Edmonton, Alberta) R.J. LOY (Canberra, ACT), and
G.A. WILLIS (Newcastle, N.§.W.)

Abstract. Several resulis are given about the amenability of certain algebras defined
by locally compact groups. The algebras include the C*-algebras and von Newmann al-
gebras determined by the representation theory of the group, the Fourier algebra A(G),
and various subalgebras of these.

0. Introduction. A Banach algebra A is amenable if every (continuous)
derivation D : A — X* is inner, for every Banach A-bimodule X . In partic-
ular, if & is a locally compact group then L*(G) is amenable (as a Banach
algebra) if and only if @ is amenable as a topological group [27]. If one only
considers the bimodule X = A, one has the notion of weak amenability.

There are many alternative formulations of the notion of amenability;
gee [27, 23, 11].

Over recent years, various authors have considered the amenability of
Banach algebras constructed over locally compact groups and semigroups
[13, 20, 14, 18, 33]. In particular, the latter two papers show that amenability
of the second dual of such an algebra imposes finiteness conditions on the
underlying semigroup. The present paper continues these investigations, and
presents several results relating amenability and the representation theory
of the objects concerned.

This paper was written while the first author was visiting the Australian
National University and University of Newcastle in

May/June 1994. We acknowledge with thanks the support for this visit
provided by a Faculty Research Fund grant. The first author was also sup-
ported by an NSERC (Canada) grant.

1. Preliminaries. For a Banach algebra A, A* is a Banach algebra
under two Arens products, of which we will always take the first, or left,

1991 Muathematics Subject Classification: 46H20, 43A20.
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product. For further details see the survey article [12]. This product can be
characterized as the extension to A™* x A** of the bilinear map Ax A — A,
(z,y) — xy, with the following continuity properties: for fixed y € A,
o — gy is weak* continuous on A**; for fixed y € A, z r yz is weak*
continuous on A**. Here, as elsewhere, we identify 4 with its canonical
image in A**.

Of the many alternative formulations of the notion of amenability we
need the following; for further details see [2, 23, 11]. The Banach algebra A
is amenable if and only if A has an epprozimate diagonal, that is, a bounded
net (m;) C A® A such that for each z € A, myz — zm; — 0, 7(my)z — =
Note that here 7 : A® A — A is the natural product map. In the case
that A4 is finite-dimensional, this yields a diagonal in the obvious sense, and
amenability is equivalent to semisimplicity. The least 3 > 0 such that 4
bas an approximate diagonal bounded by M will be called the amencebility
constant of A, and denoted by M (A).

For a locally compact group @, set C*(G) to be the group C*-algebra
of @, that is, the completion of L*(G) under its largest C*-norm, B(G) =
C*HG)*, W*(G) = C*(G)**, and, for 7 a unitary representation of G, let
V Nz (Q) be the von Neumann algebra generated by the operators in n{G).
In the particular case of the regular representation 7; of G on L?(G), ie.
me(z)(f)(y) = F(z~1y), VN, (G) will be denoted by VN(G). The predual
VN(G), of VN(G) is the Fourier algebra A(G). This algebra is more directly
described as those functions on G of the form

g+ {£(g7 h)n(R) dh,

where £, 1 € L3(G) (cf. [15]).
B(G) is a Banach algebra under pointwise operations, and A(G) is a
closed ideal in B(G).

-~

Let UC(G) be the closed linear span of A(G)- VN(G) in VN(G). Here
(p-T.9) = (T,¢¢), ¢, ¢ €AG), T€VN(Q).

Then UC(G) is a C"-subalgebra of V.N(G) invariant under the action of
A(G), and contains the operators my(z) for each # € G. If G is abelian,
then 7C(G) is precisely the C*-algebra of bounded uniformly continuous
functions on the dual group G. If G is amenable, then A(G) has a bounded
approximate identity, and hence UO(@) is precisely A(G) - VN(G) by the
Cohen factorization theorem [19]; the converse is also true [32].

Denote by C;(G) the reduced C*-algebra of G, that is, the C*-algebra
generated by {o(f) : f € L*(G)} C B(L*(G)), where o(f)(h) = f*h, and set
B,(G) = C3(G)*. In fact, B,(G) is the weak*-closure of A(@) in B(G). We
always have C3(G) C UC(G), and C*(G) = 02(Q) (and B(G) = B,(G)) if
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and only if G is amenable, if and only if A{®) has a bounded approximate
identity [19, 30].

The group G is [Moore] if every continuous, irreducible, unitary repre-
sentation of G is finite-dimensional; see [37].

2. Second duals of C"-algebras. Given a family (A))xea of Banach
algebras, define

£ he ) = {(@) € [T A+ (o)l = supfa| < oo,
and its closed subalgebra

co(Ax : A € 4) = {(za) € £2(A) : |zl = O}

In the case Ay = A for some fixed .4, we will write £°°(4, A), ¢y(4, A) and if
A = N the index set will be suppressed. Of particular importance is the von
Neumann algebra £>°(M,,(C} : n € N), for which we use the notation M,..

It is not difficult to see that co(A4y : A € A) is amenable if and only
if supy M(As) < oo. However, the question for £*°(4,.A} is much more
difficult. In this section we resolve this question in the case where 4 is a
('*-algebra; here the condition turns out to be equivalent to several other
important ones. Our first two results are essentially due to Wasserman {46],
we include proofs for completeness.

LemmMa 2.1. Let A be a C*-algebra which contains M,(C) as a *-sub-
algebra. Then there is a norm one projection of A onto M,(C).

Proof Consider A as a closed subalgebra of B(H), and let p be the
identity in M,,(C). Then B(pH) = pB(H)p 2 pAp, so by cutting down to
pAp acting on pH, we may suppose that p is the identity operator e on H.
Let ey, ..., e, be the minimal idempotents in M, (C), so that e = e;+. . .4ep,
and let e;; : ¢; H — e;H be the corresponding elementary operators, so that
e;; = g;. This gives a decomposition ey & ... e, H of H into n isomorphic
subspaces.

Thus T' € B{H) can be considered as the n x n-matrix (e;T'e;), and the
elements of M, (C) will be of the form (A;;e;;), where Ay; € C.

Let ¢;, ¢ = 1,...,n, be unit norm rank one prejections with range in
e; H such that g5 = €jidi€i;. Define iy = Qi€i;qj, and set q= E?:l ;. Then
llgll =1, ¢* = ¢, and P : T =~ (g;Tq;) is a norm one projection of B(H)
onto its subalgebra consisting of operators of the form (As;qi5), Aij € C
for 4,7 = 1,...,n. Now define a map from this subalgebra to M, (C) by
@ : (Aijgi;) — (Mg eiz). The restriction of Q o P to A gives the desired
projection. m :
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COROLLARY 2.2. Let A be a C*-algebra which contains M,(C) as o
*_subalgebra for ench n > 1. Then £°{A) contains My, as a complemented
subspace.

Proof One need only string together the projections givenr by Lem-
ma2l m

LEMMA 2.3. Let A be a C*-algebra such that A contains M, (C) as a
*_subalgebra. Then there is a projection of norm less than 2 of A onto a
subspace W whose Banach-Mazur distance to Mn(C) is at most 4.

Proof. By Lemma 2.1 there is a norm one projection p : A** — M, (C).
Necessarily p = Y28 | @ © a**, where {a}*} C A* and {aj**} C A**,
For convenience, set p. = p*|4-. By the principle of local reflexivity [47,
Theorem I1.E.14] there is a one-to-one mapping T : p*(A***) — A* with
[T - 1T < v2 and (T, g) = (g, f} for g € Mu(C), f € p*(A™*). Set
g=Top,: A* - A* so that ¢* Zfl ai* @ af, where now {af} < .A*
We also have ||¢*]} < \/52 and ¢*(A™) = M,(C). Set g = ¢*| 4.

Now repeat the same process for g, to obtain § : M, (C) — A satisfying
8] - 157} < v2 and (Sf,g) = (g, f) for g € ¢*(A™) = span{a}}, f €
M,(C). The map Sog.: A — Ais an idempotent map of norm less than
2; set W to be its range.

COROLLARY 2.4. Let A be a C*-algebra such that A** contains M,(C) as
a *-subalgebra for each n > 1. Then £%°(A) contains Me as a complemented
subspace.

Proof. Once again, one need only string together the projections given
by Lemma 2.3. »

In preparation for Theorem 2.5 we note the following results, all except
the first of which are decidedly non-trivial. The net implication is that M,
fails the approximation property and is not amenable.

* For a C™-algebra A, A** is a von Neumann algebra.

e A C*-algebra is amenable if and only if it is nuclear [9, 21].

¢ A nuclear C*-algebra has the approximation property [5].

» B({*) fails to have the approximation property [42].

» My is completely boundedly isomorphic to B(£2) (cf, [6]).
THEOREM 2.5. For a C*-algebra A the following are equivalent:
Properties of A**: '

(A1) A** does not contain My, as a *-subalgebra;
(A2) A** is amenable;
(A3) £°°(A*) is amenable;
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(Ad) A™ = 2?21 C(X;) ® My, (C) for some stonean spaces X1, ..., Xg;
(AB) A*™ has the approzimation property;
(A6Y A** has the Dunford-Pettis property.

Properties of representations:

(R1) for any representation = of A, VN (A) s amenable;

(R2) the irreducible representations of A have bounded degree;

(R3) the irreducible representations of £2°(.A) have bounded degree;

(R4) for some infinite index set A the irreducible representations of
£°(A, A) have bounded degree;

(R5) for every index set A the irreducible representations of £°(4, A)
have bounded degree.

Properties of A:

U1) £°(A) has the approzimation property;

2) £7°(.A) is amenable;

3) £°(A, A) is amenable for every index set A;

U4) £°(A, A) is amencble for some infinite index set A;
U5) every ultrapower of A is amenable.

(
(U
(U
(
(

g =
=T =
S -

Implications for Theorem 2.5

Proof (Ad)=-(Al) and (A2)<(A4) are Corollary 1.9 of {46]. In fact,
(Al)&(A4) and (A2)<(A4) follow from [41, Proposition 6.6, Corollary 6.8].

{A4)=(Ab) is obvious.

(A4)=(A3) follows. since £2°(A*) = T £2°(C(X;)) ® M, (C).

{A3)=(A2) is obvious.

(AB)=(A1). If (Al) fails then A** contains My as a —subalgebra It
Prn is the identity in the nth summand M, (C), then Lemma 2.1 gives a
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projection P, of p, A**p, onto M,(C). Setting Qn : a — P,p.ap,, the
weak operator limit of Y1 @, gives a projection of A** onto M. Since
My fails the approximation property, (A5) fails.

(A4)<(AB) is Theorem 3 of [7].

(A4)=-(R2) As noted in (8], representations of A correspond to sum-
mands of A**,

(R2)=-(A4) is essentially [22, Lemma 5], or follows on noting that the
universal representation yields that .4 is isomorphic to a subalgebra of a
product B of matrix algebras of bounded order. Since the bicommutant of
B is A*, A™ is also isomorphic to a subalgebra of a product of matrix
algebras of bounded order and hence cannot contain M.

(Ad}=>(R5). By (A4),

k
£2(4,4%) = > 12 (C(Y:)) ® M, (€)
=1

for some stonean spaces Y;, and (R5) is immediate.

(R5)=>(R4) is obvious. (R4)=>(R3) follows since any irreducible repre-
sentation of £°°(A) extends to one of £°(4,.A).

{(A2)«<(R1). If 7 is the universal representation, then VN, (A) = A** (cf.
[43, Theorem 2.4]), so (R1) implies (A2). Conversely, for any representation
7, VNz{A) is a homomorphic image of A** (cf. [43, Lemma 2.2]), so (A2)
implies (R1).

(R3)=>(U2), (R5)=-(U3). If (R3) holds then £>°(A) has a finite compo-
sition series of C*-algebras with continuous trace [39, §6.2]. Each of these
is {strongly) amenable by (27, Lemma 7.13), and so induction on [27, Lem-
ma 5.1] shows that £°°(.4) is amenable.

(U3)=(U4)=(U2) and (U3)«(U5) are obvious.

(U2)=-(U1) as noted above.

(Ul)=(A1). X (A1) fails then A** contains M., whence by Corol-
lary 2.4, £%°(A) coutains a complemented subspace isomorphic to M, and
so (U1) fails. w

Remark. The equivalence of (A6) and (R4) is a mild sharpening of [22,
Corollary to Theorem 2.

In particular, (U1) and Coroliary 2.2 show that £%(K), with & the al-
gebra of compact operators, cannot be amenable. Note that the U equiva-
lences give the only known examples of infinite-dimensional Banach algebras
A with £°°(.4) amenable.

It is worth noting that a slight weakening of the conditions yields the
following situation.
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THECREM 2.6. Let A be a C*-algebra. Then the following are equivalent:

(a) For every irreducible representation = of A, VN (A} is amenable;
(b) Every irreducible representation of A is fintte-dimensional;

(c) A* has the Dunford-Pettis property:;

{d) A has the Dunford-Pettis property;

(e) A™ is a finite von Neumann algebra;

(f) A™ is a finite von Neumann algebra of type I

Proof. (a)=+(b). If 7 is irreducible then VN, (A) = B(H,) by the double
commutant theorem, so amenability implies that H, is finite dimensional.

(f)=(a) is clear. Theorem 1 of [22] is the equivalence of {b), {c), (e) and
(f); and the equivalence with (d) is shown in [8].

3. Subalgebras of VN(G). We now apply the results of 82 to the
C*-algebra C* (@) of a locally compact group G. By Theorem 2.8, and the
correspondence between continuous, irreducible, unitary representations of
a locally compact group G and irreducible representations of C*(G), we have
the following (see also [1]).

THEOREM 3.1. For a locally compact group G the following are equiva-
lent:

(a) G € [Moore];
(b) for every continuous, irreducible, unitary representation of G,
VN (G) is amenable;

(c) for every continuous, irreducible, unitary representation T of G,
VN:(G) is finite-dimensional. m

THEOREM 3.2. For a locally compact group G the following are equiva-
lent:

(a) W*(G) is amenable;

(b) VN(G) is amenable;

(c) each (not necessarily continuous) irreducible, unitary representation
of G is finite-dimensional;

(d) for each (not necessarily continuous) wrreducible, unitary represen-
tation m of G, V.N,(G) is amenable;

(e) for each continuous, unitary representation = of G, V N.(G) is amen-
able;

(f) for each (not necessarily continuous) unitary representation 7 of G,
VN (G) is amenable;

(8) W*(Gy) is amenable;

(h) G contains an abelian subgroup H of finite indez.
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Proof (a)=(b) by Theorem 2.5, by (A2)=(R1), or by Theorem 2.6,
(e)=>(a). '

(b)<(h). By [46], (b) is equivalent to VN(G) being a direct sum of
the form }:Ll C{X;) ® My, (C) for some stonean spaces Xi,..., Xz The
equivalence with (h) is now [44, Theorem 2].

(h)=+(a) by [36] and Theorem 2.5.

(a)«<(e) by Theorem 2.5,

The equivalence of (a), (f), (g) now follows via (h).

{c)=(d) is clear.

{g)=(c) follows from Theorem 2.5.

{d)=-(h). Theorem 2.6 and (d) imply that C*(G4)*" is a finite von Neu-
mann algebra of type I, so (h) holds by [45]. »

COROLLARY 3.3. For a connected locally compact group G, VN(G) is
amenable if and only if G is abelion.

Proof The subgroup H of Theorem 3.2(h) can be taken to be closed.
Being of finite index it is thus also open, and hence is all of G if G is
connected. m

Recall that G is inner amenable if L°(G) admits a mean m invariant
under conjugation, that is, such that (m,7,f) = {m, f), where (7.f)(y) =
fla=tyz).

PROPOSITION 3.4. (i) UC(G) is amenable if and only if Cy{(G) and
UC’(@)/C’;’,‘(G) are amenable.

(ii) If UC(G) is amenable and G is inner amenable, then G is amenable.

-~

(i) For G discrete, UC(G) is amenable if and only if G is amenable.

(iv) For G compact, UC(G) is amenable if and only if G contains an
abelian subgroup of finite indez.

Proof (i) C;(G) is an ideal in U C(G) with a bounded approximate
identity [19].

(ii) If UC(G) is amenable, then so is C3(G), so its ultraweal closure
VN(G) is injective. Thus VN(G) has property (P) and so & is amenable
by [34, 29].

(iif) UC(G) = C2(G) when G is discrete [30]. Now use [4].

(iv) Compactness gives UC(G) = VN(G), now apply Theorem 3.2.

A von Neumann algebra A will be said to have non-trivial amenable part
if it has a non-zero central projection z such that z.4 is amenable. Such zA
is of course of finite type L. The following result is just a restatement of
[44, Theorem 3]. Recall that G'ro- is the normal subgroup of & of those
elements whose orbits under inner automorphisms are relatively compact.
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THEOREM 3.5. VN(G) has a non-trivial amenable part if and only if
Gre- has finite index in G and the commutator subgroup of Gpe- is rela-
tively compact. m

COROLLARY 3.6 (Formanek [16]). If G is discrete, then VN(G) has a
non-trivial amenable part if and only if G has a finite normal subgroup N
such that G/N has an abelian subgroup of finite index. w

4. The Fourier algebra A(G). B. E. Johnson showed in [28] that
when G is a compact non-abelian group, the Fourier algebra A(G) need
not be amenable. For much of this section we will be concerned with finite
subgroups of a compact group G where A(G) is amenable. In particular,
we are able to answer a question raised in [28] regarding the growth of the
amenability constants for A{G) with G finite.

THEOREM 4.1. Suppose that G is o locally compact group, and H an

open subgroup of finite index. Then A(G) is amenable if and only if A(H )
is amenable.

Proof Since the restriction map A(G) — A(H) is surjective by Proposi-
tion 3.21 of {15], amenability of A(G) necessitates that of A(H). Conversely,
first note that H is clopen in G. Let € = 2y, zg,. ..,z be left coset repre-
sentatives for H. Define a map

k
7 PAH) - AG), fie...®furLloh+.. + L fr.
i=1

Since £y, fi1,...,£a, fr lie on disjoint clopen sets, ¥ is a homomorphism,
clearly continuous, and onto as noted above. But A(H) is amenable by
assumption, and so A(G) is amenable. m

COROLLARY 4.2. Suppose that G is a locally compact group. Then A(G)
is amenable if G has an abelian subgroup of findte index. In particular, if the
continuous, irreducible, unitary representations of & are of bounded degree,
then A(G) is amenable.

Proof If H is an abelian subgroup of finite index, then the closure of
H has the same properties, so is clopen in G, and Theorem 4.1 applies. By
[36, Theorem 1], the second hypothesis implies the first. m

The compact case of the second statement was proved in [28, Theo-
rem 5.3] by a different method. We do not know whether amenability of
A(@) necessitates that the continuous, irreducible, unitary representations
of G have bounded degree.

COROLLARY 4.3 ({28, Theorem 4.5)). If G =[], Gi is a product of finite
groups, then A(G) is amenable if all but finitely many G; are abelian. m
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The converse of this is also true [28].

Before turning to considering finite subgroups, we give some results on
the implications of amenability of A(G). Reczﬂl that a compact group G is
tall if for each positive integer n, the set {r € (7 : dr = n} is finite [35]. Thus
Theorem 6.1 of [28] shows that A(G) is not amenable if ¢ is non-discrete
and tall. The following (compact) groups are tall:

(i) any compact semisimple Lie group; cf. [25, Theorem 3.2];
(1) [To2, SU(n); cf. [25, Example 4.1};
(iti) TISo, SO(n); cf. [25, Example 4.2];
(lV) H:.o=5 An'
PROPGSITION 4.4. Let G be an almost connected semisimple Lie group
with A(G) amenable. Then G is finite.

Proof Being amenable, A(G) has a bounded approximate identity, so
that G is amenable [38, 4.34(ii)], and hence compact [38, Theorem 3.8]. Thus
@ is tall, and hence A{G) cannot be amenable unless @ is finite. w

ProrosITION 4.5. Let G be a connected SIN-group such that B(G) is
amenable. Then G is compact.

Proof If ¢ is not compact, then G = V x K is the direct product
of a non-trivial vector group V and a compact group K (cf. [37]). The
restriction map B(G) — B(V) is a continuous surjection [10], whence B(V)
is amenable, But B(V) & M(V), which is only amenable if trivial. =

We finally remark that if A(G)** is amenable then G is compact by [31,
Proposition 3.2(b)].

Just before Theorem 4.4 in [28], a question is raised concerning the
amenability constant of finite groups. To make this precise let us set up
some notation.

For a compact group G, let & be the set of (equivalence classes of) con-
tinuous, irreducible, unitary representations of G. For ¢ ¢ @’, 7 will denote
the contragredient of o, d, the degree of o, and d(z : g) the multiplicity of
o in the representation p.

Now let G be finite. Theorem 4.1 of [28] shows that the amenability
constant Mg = M{A(G)) is given by

5 ds
Mom s

the sums being over 7 € @, and the question is whether

sup{dy : 7 € G} — 0o = Mg — co.

‘We now show that this is indeed the case.
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Let M(G) denote the set of measures on G, and, for p in @, denote by
6, the point mass at p. Then G is a commutative hypergroup, that is, there
is a commutative convolution defined on M(G), namely

1
dnd; Z;drd(f : (e® )6,
red

This convolution of point masses extends by linearity to a commutative and
associative product on M(G).

Define a measure m in M(G) by

. 1 2
m= Z;d,raf.
reG

b6, =

Then, since 3 __= d2 = |G|, m is a probability measure on &. This measure
is the Haar measure on G, that is,
brxm=m (red).
The proof of this fact requires the identities d{o®0) = d;(3® T) and
dg = dﬁ.
For n > 1, define

S(Gn)={rel:d,<n} and k(G,n)= > {d2 : dr € 5(G,n)}.

THEOREM 4.6. Let G be a finite group and let n be such that k(G,n) >

$|G|. Then
sup{d, : 7w € @} < n

Proof Let x denote the characteristic function of S(G,n). Then xm
is a positive measure on , where ym denotes the measure whose Radon—
Nikodym derivative with respect to m is y. Also, xm is dominated by m
and xm(G) > 1/2.

Take m € G. Then &, * {)m) is a positive measure on G, §, * (xm)
is dominated by & * m = m and &, * (xm){G) > 1/2. It follows that
(xrm) A (6 * {xm}) 3 0. Let o € supp(xm) N supp(by * (xrm)), so that o €
§(G,n) and there is a representation o € S(G,n) such that g is contained
in 7 ® . Therefore = i contained in 7 ® o and so has degree at most n2. u

A slight variant of the above argument in fact shows the following,

COROLLARY 4.7. Let G be a finite group and 5 be o subset of G such that
2{d2 i me 8} > L|G|. Then for every o & G there are 0,7 € § such that g
is contained in T Q0. w

Laci Kovdcs has pointed out to us that in an extraspecial 2-group G of
order 22™+1 there are 22 linear characters, and 1 irreducible representation



icm

172 A, T-M. Lau et al.

of order 2™ ([24], Satz 16.14). Thus the factor of 1/2 is the best possible in
the above results and “>" cannet be replaced by “>7”.

LemmMma 4.8. Let G be a finite group, and take M > Mg. Then

> @zt
TeS(G, kM)

In particular, 8(@G,|GIM) = G.
Proof. Set &' = G\ S(G,kM). Then

S (k)Y a2 =kM(|G| - 3% di).

TES xES! TES(G, kM)
Thus
Gl > S a3 >3 d > kM(|G| - ¥ df;).
el res! TES(G, kM)

It follows that
Gl>kGI~k Y &,
TE5(G kM)
whence the desired inequality.
In the case k = |G|, we have

Gl=Y d> Y &>|0-1
rel TES(GRM)

Thus equality holds at the left. =

THEOREM 4.9. For o finite group G, let n ¢ N satisfy 2Mea < n. Then

sup{d, : 7 € @} < n2
Proof With k =2, M = n/2, Lemma 4.8 shows that
> &>l
wES(Gm)

But then &(G,n) > |G|, so by Theorem 4.6, d, < n? for all = & &, w

COROLLARY 4.10. There 4s a function f : N — N such that if G isa
finite group, and n € N satisfies 2Mg < n, then G has an abelian subgroup
of index at most f(n).

Proof By [26, Theorem 1] there is a function g N — N such that
for each finite group G, k(G,n) = |G| only if G has an abelian subgroup of
index at most g(n). By Theorem 4.9, f(n) = g(n?) suffices. m
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CoroLLARrY 4.11. Suppose G is o compact group with A(G) amenable
and amenability constant Mg. Then there isn € N such that any finite
subgroup of G has an abelian subgroup of index at most n.

Prootf By (28, Theorem 4.4] any closed subgroup H satisfies My < M.
Any finite subgroup is closed, so apply Corollary 4.8. In fact, n = F[2Meg]
+ 1) suffices. m

We have no example of 4(G) amenable with A(G/H) not amenable for
some normal closed subgroup H. In fact, we conjecture that A(G) amenable
implies that A(G/H) is amenable with lower amenability constant. If this
conjecture holds then the above results show that the converse to Corol-
lary 4.2 holds for G compact and profinite.

5. The algebra UC(G)*. For f € VN(G) and ¢ € A(G) define ¢ - £
VN(G) by (¢- f,9) = (f, ¢} for o € A(G). A subspace X of VN(G) is
A(G)-invariant if, given f € X and ¢ A(G), it follows that ¢ - f € X. A
closed A(G)-invariant subspace X of VN(G) is left introverted if given m €
X* and f € X the functional m- f on A(G), defined by (m-f,¢) ={(m,¢-f)
for ¢ € A(G), lies in X. This is exactly the statement that the left Arens
product inherited from A(G)** defines a product on X*. In particular, the
above applies to UC(G) and C7(G) (cf. [30)).

Note that if G is abelian, and X is a closed subspace of VN(G), then X
being A{G}-invariant means that the corresponding subspace of Lw(@) is
mmvariant under the action of Ll(é). If X is weak*-closed, this is equivalent
to X being invariant under &.

We will consider A(G) as a subalgebra of UC(G)* via the restriction

o~

map ¢ QMUO(E)' Since UC(G) 2 C3(G), and
6]l = sup{|&{f)i : f € C3(G), |Ifll < 1},

the Kaplansky density theorem shows that the restriction map is an isometry
[30]. The following is similar to Lemma 1.4 of [17].

LemMMa 5.1. A weak*-closed right ideal in UC(G)* is also a left sdeal.

Proof. Let J be a weak*-closed right ideal, take n € Jandm € UC’(@)*.
It suffices to consider the case when m > 0, |ml| = 1. Let # be a norm
preserving extension of m to VN(G), and take a net (6,) € A(@) with
(ba > 0: “Cba“ =1 and

weak® _
oy — 1.

Then {¢q, f) — {(m, f) for f € UC(G). Since A(G) C centre UC(G)*,
(m-n,f)=(m,n. f)= lim(ga,n - f) = lm(ge - n, f) = hm(n - g, f).
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But n-¢, c Jloreach o, sothat m-neJ. n
Define
Jo(G) = {m e UC(G)" : {m,o(f)) =0, f € L}G)}.
This is clearly a weak*-closed subspace of UC (@)*

o~

LEMMA 5.2. Jo(G) is a weak®-closed ideal in UC(G)* which contains
Rad(UC(G)*). Further, UC(G)* = B,(G) & J,(G), isometrically on each
summand.

Proof. Since C,(G) is a closed ideal in UC(G)*, we see that J,(G) is a
right ideal, hence also a left ideal by Lemma 5.1. R

Now J,(G) = C;(G)™*, the annihilator in UC(G)*, so there is a natural
linear isometry of UC(G)*/J,(G) onto C(G)* = B,((G). A straightforward
calculation shows that this is an algebra isomorphism with the left Arens
multiplication on C(G)*, pointwise product on By(G) (cf. [30]).

Now for any locally compact group G there is an isometric linear map

-~

T Bo(G) = UC(G)* such that

(r(¢), o(£)) =\ £(t) b (2) dt

for f € LY(G), ¢ € B,(G). Indeed, 7(¢) is the unique norm preserving exten-
sion of ¢ from C;(G) to UC(G). The mapping T is an algebra isomorphism
into, and we will identify B,(G) with its image. See [32].

Further, the map m mlc;(c) is a projection of UC’(@’)* onto B,(G)
with kernel J,(G). So we have the indicated direct sum decomposition, with
isometries on each summand.

Finally, B,(G) is semisimple, so the radical inclusion is clear. w

LrmMma 5.3. Suppose that UC(@)* is amenable. Then G is amenable and
Jo(G) has an identity which is central in UC(G)*.

Proof. By Lemma 5.2, B,(G) is amenable, and so has a bounded ap-
proximate identity (eq). If e is a weak*-cluster point of (e, ) in B(G), then,
as noted earlier, e € By{G), and so e is an identity for B,(() by the separate
weak”-continuity of multiplication in B(G). Since A(G) ¢ B,(G) separates
points of G, it follows that e = 1 on G. But B,{G) is an ideal in B(G),
hence B,(G) = B(G), and so @ is amenable.

Finally, since J,(G) is a weak*-closed complemented ideal by Lemma 5.2,
the second assertion follows by the argument of (18, Theorem 1.3]. m

The map 7 : B,(@) — UC(G)* defined above maps into the centre of
UC{G)*. The hypotheses of the next result ensure that this map is surjective.
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THEOREM 5.4, Let G be a locally compact group that is either abelian,
or is second countable and connected with a proper normal subgroup having
abelian quotient. Suppose that UC(G)* is amenable. Then @ is finite.

Proof. For 7 abelian, UC(@l = LUC(G), so that [33, Lemma 1.4]
shows that G is compact with M(G) amenable. By 3], G must be discrete,
hence finite, and thus @ is finite. :

In the other case, the identity of J,(Q), being central, lies in B,(G)
and this latter equals B(G) by amenability guaranteed by Lemma 5.3. Thus
UC(B)* = B(G). But this implies UC(G) = C*(G), so that G is discrete
by [30, Proposition 4.5]. Being connected, G must be the trivial Zroup. m

COROLLARY 5.3. For G the three-dimensional Heisenberg group, the

o~

‘az +b” group, and the motion group, UC(G)* is not amenable. m
THEOREM 5.6, UC’(@)"‘ is semisimple if and only if G is discrete.

Proof. If G is discrete then UC(G) = C3(G) and so UC(G)* = B,(G),
which is semisimple. See 31, Proposition 4.5] and [15].
For the converse, consider

J={neUC(E)*:n(1)=0, ¢ -n=nfor ¢ € AG), ¢ >0, le]l =1}

Then J is a closed ideal in UC(G)*. Further, for ¢ € A(G) with ¢ > 0,
qu” =Lnmed, fe VN(G)*, we have

<¢> mf) = (ma ¢f> = (‘;bm: f) = (m? f) = (¢': 1>(m:f>
But taking a net (¢q) C A(G) with ¢q > 0, [[¢a]] = 1 and

weak*
o —— 1,

we conclude that

(n,m.f} = {n,1){m, f) = 0.
Thus J2 = 0. But then, by semisimplicity, J = 0.

Now VN(G) has a topologically invariant mean m (cf. [40]). Thus m €
VN(G), m 2 0,||m| =1 and (m,é- f) = {m, f) for all ¢ € A(R) with
¢ >0, ||¢]] = 1. Restricted to the subalgebra 7C(&), m is still a topological
mean. Since the difference of any two topologically invariant means lies in
J, it follows that U/C(G) has a unique topological mean.

Now for any distinct topologically invariant means mi,mge on VN(G),
and suitable f € VN(G), we have 0 # (my — mg, f} = (my —ma, ¢ j) for
all ¢ € A(G) with ¢ > 0, ||¢}| = 1, so that m; and mq differ on UC(G).

We conclude that V N{G) has a unique topologically invariant mean, so
that G must be discrete by [32). (Note that the proof in [40] is only valid
for metrizable groups.) =
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Added in proof {May 1996). The conjecture at the conclusion of Section 4 is now
known to be false, In the notation of the Atlas of Finite Groups (Clarendon Press, 1985),
the group 6.A6 has amenability constant 21/2, whereas its quotient 3.A6 has larger
amenability constant 1468/135. It then follows from {28, Corollary 4.2] that there are
finite groups with quotients where the ratio of the amenability constants is as large as we
please.
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Existence, uniqueness and ergodicity for
the stochastic quantization equation

by

DARIUSZ GATAREXK' and BENIAMIN GOEDYS (Sydney, N.S.W.)

Abstract. Existence, uniqueness and ergodicity of wealk solutions to the equation
of stochastic quantization in finite volume is obtained as a simple consequence of the
Girsanov theorem.

0. Introduction. In this paper we discuss the stochastic quantization
equation in a two-dimensional finite area D:

(1) dX = [— %AX - /\A'ZC":XB:] dt + A~ *dW,

where A is a properly chosen power of the operator I — A (see Section 2
for details) and W is a cylindrical Wiener process in the space L2(D). The
nonlinear term in this equation is the so-called Wick power (for definition
see Section 2). This equation is of some importance in quantum field theory.

Since the nonlinear term in (1) is highly irregular the question of exis-
tence and uniqueness of solutions to this equation was an open problem for
some time. For the first time a positive answer has been given in [JM] for
sufficiently large positive a. The main idea of that paper was to apply the
change of drift method which proved to be successful in handling measurable
drifts in finite-dimensional equations. Ergodicity was proven by methods of
functional analysis. Recently the change of measure method has been applied
to equation (1) in [HK], where the main tool to show uniform integrability
of the family of Girsanov exponentials is the Kazamaki criterion.

A different approach has heen taken in [BCM], where the starting point
is an appropriate symmetric Dirichlet form on an infinite-dimensional space.
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