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On differentiation of integrals
with respect to bases of convex sets

by

A. M. 8TOKOLOS (Odessa)

Dedicated to the memory of Antoni Zygmund

. . -2 .
Abstract. Differentiation of integrals of functions from the class Llp(l., (T ). W.lth
respect to the basis of convex sets is established. An estimate of the rate of differentiation
: ; i ions in Lip(1, 1)(IY), N > 3, and HY (I%)
is given. It ig also shown that there exist functions in ip(1, )( N 23, by
with w(6)/6 — oo as § — +0 whose integrals are not differentiated with respect to the

bases of canvex sets in the corresponding dimension,

1. Introduction. The theory of differentiation of integrals was devel-
oped in the thirties largely from A. Zygmund'’s works. In t.he most complete
way it is presented in M. Guzmdn’s books [2, 3]. A very 1r_nporta,nt part fJf
the theory—the strong differentiation of integrals—is optlmed perfectly in
the second volume of A. Zygmund’s “Trigonometric Series” [9].

In spite that the general theory evolved well enough, only three types of
bases with good properties are actually known. These are th-e bases of cubes,
multidimensional intervals and rectangles oriented along iterated lacunar
directions. These bases differentiate integrals of functions from LF, p > 1
(see [3]). o .

On the other hand, the basis of arbitrarily oriented rec.tangles. has no
longer good properties. Namely, this basis does not even differentiate the
characteristic functions of measurable sets, as had been found by A. Zyg-
mund in the course of investigation of the structure of one of Nikodym’s [6]
smg’_l[‘lilal:s,s exfz' restriction. on the global growth of functions is sufficient for
differentiation of integrals with respect to bases of convex sets. Consequently,
it seems natural to impose additional restrictions on the integral smoothness

of functions. o , L .
The prime object of this paper is just an investigation into the influence
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of smoothness on differentiation of integrals of functions with respect to
bases of convex sets.

2. Notation and definitions. Let IV = [0;1]"; < and > denote in-
equalities < and > with some constant.
A differentiation basis ® (see (2, 3]) is said to differentiate the integral
of f € L(I") if almost everywhere on IV,
lim Q7| fy)dy = f(a).

diam Q—0
R3Q2w @

Denote the basis of all convex sets by B. Let Mg f denote the associated
maximal operator:

Mpf(z) = J2up QI { 1£(w)i dy.

EINEL
e
We denote by M f the partial Hardy-Littlewood maximal operator

Mf(e)= sup |17 {|£(22)| dt,
'oloe I

where © = (21, x2) and I is a one-dimensional interval. It is well known (see
[2]) that M f has weak type (1,1):

(1) {z e I* : Mf(z) > A} < [|fl/A, A>0.
Define the jth partial modulus of continuity of f € L(I™) by

wi(f;8) = |Su£5 S |f(z1,. -y z5+ Ry 2n) — Flo, ..., 2n)|dey .. doyy,
with In ={e: 0 <2 < lfori#j 0<umz; £1—h} Then w(f;8) =
max;j—1,. N w;{f;6) is the modulus of continuity of f.

Let also Lip(1,1) = {f : w(f;8) = O(8)}.

Further, for a function ¢ on [a;b] denote by var ¢ the variation of ¢ on
la;b], and let

V{la38],6) = inf vary

denote the essential variation of ¢ on [a;b], where ~ means a.e. equality.
We denote by V([0;1], £(-,t)) and V([0;1], £(¢,-)) the essential variation of
f with respect to the first and second variable respectively, with the other
variable fixed. Lastly, W([a; 8], ¢) denotes the essential oscillation of ¢ on
a; b]. .

3. Main results. First we show that in dimension greater than.two
there exists no nontrivial restriction on smoothness guaranteeing the differ-
entiation of integrals with respect to bases of convex sets.
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THEOREM 1. For any N > 3 there exists f € L(IN) with

(2) w(f;h) = O(h)
such that
(3) limsup 1Q|™ | f(y) dy = o0
diam @—0 Q
Q3w
ae on IV,

Proof Without loss of generality we set N = 3. Divide I® into m® equal
cubes I7® with |I*| = m™3. In each cube IT* we place a concentric cube Q7
with |QT| = 273%™, and define

o m3
fr=2"xqp and f=) 3 "

m=1 k=1

Clearly,

o
1£la < 2mmP 273 < oo,
m=1
Let us show that for any © € I* we can construct a convex set Q(z) 3 =
such that diam Q(z) <« 1/n and

R | @) dy > m,
: Q=)
which gives (3).

To construct Q(z), we proceed as follows. Let x € I}*. Connect = and
the center of I7* with a segment J. Circumscribe a ball a_about QZ’r a_,nd
denote by @(z) the union of all balls with centers on J obtained by shifting
o (see Fig. 1). ‘

.8

Q"

Fig. 1
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Obvmusly, we have Q(z) D @7, diam Q(z) < diam I and |Q(z)| <«

(diam 0)?|J| < |Q1 /37| < |QF |2/3 =1, Then
_ 1Q
Q@)™ | fwdy> Wﬁk—’_’f =m,
Qfa) L

which proves the statement.

Now let us evaluate the modulus of continuity of f.

For 2™~ < b < 2™ we have

wi(fi h) < ZZ% (R h) +2 Z anknl

n=1 k=1 ne=m4-1 k=]

o0
<& h2n32n2—2n + Z n32n2—3n

n=1 n=m-+1

m oC
<hy nf2mem § pfpn
n=1 n=m-t1
which gives (2) and proves Theorem 1.

The two-dimensional case is completely different.
THEOREM 2. Let f € LY(I?) satisfy (2). Then
(4) Hzel’:Mpflz)> N < A"l[iggW(f; /At A>0.

Moreover, the integral of f is differentiated by the basis of convex sets and
for almost every z € I2,

5) 1R [ 1f@) - fla)l dy
Q
= Oy{diam Q¥ (diam @)} as diam@Q — 0, z € Q,
where ¥(t) is any nonincreasing positive function with
Codt
gm < 00

The proof of Theorem 2 is based on a sequence of preliminary statements.
We begin with a well-known theorem by Hardy and Littlewood.

THEOREM A (see e.g. [7, Section 4.8.2]). If f € L{I*) satisfies
w(f;h)<ah, 0<h<l,

then f 14s equivalent to sorne function, which we again denote by f, of
bounded variation on I* and with

var f < a.

icm
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For the proof of the following statement see [4, (4.27)].
LemMa A. Let f € L(IY). Then forj=1,...,N,

w;(f31)
i
<4 %S{ S {f ml,...,mj+h,...,$N)—f(:t:l,...,mN)ldwl...d:z:N}dh
0
K w;(fit), 0 <t<l/2.

LeMMA 1. Let f € Lip(1,1)(I%). Then there exists a nonnegative function
v(t) such that

(6) V01 FC,0) + V([0:2), £(2, ) o), te(051],
and
(7) Sv(t) dt < supw(f;h)/h.

k>0

0
Proof. Since w;(f;2h) < 2w;(f; ), the sequence 2™wy(f;2™") is non-
decreasing. Thus, taking into account Lemma A, we obtain
27"
22" | {1 f(@1, 22+ B) — f(z1,22)| v dh ds;
00

2"uwa(fi27) >

>\ 2%wo(f(z1, 127" dxy.

O ey ft (D e

Thus,
1
supS2 wa(f(@1,);27") dmy < supeo(fih)/h < oo.
> 0 >
Hence, by the Levi theorem, we obtain the existence of a function

va(t) = nlingo 2Mwa(f(2,-); 277}
such, that
1
Sfuz(t) dt < supw(f;h)/h
; h>0
and for a.e. t € [0;1],

supw (f(4,); h)/h <€ va(2).
h>0
By Theorem A the function f(t,-) has bounded essential variation for
a.e. t, and

V{[0; 1],.f(t, N L wa(t), telol]
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Similarly we can construct a function vy (%) for f(-,t). Then we set v =
v1 + vg. Lemma 1 is proved.

The following lemma is obvious.

LEMMA 2. For every bounded convex set (} on the plane there ezists a
parallelogram P with o pair of sides parallel to the y-amvis such that

(8) QcP |P|<2Q, diamP < 3diamQ.

Now, let us turn to the proof of Theorem 2. Let ) be a convex set with
z € Q. Find a parallelogram P as in Lemma 2. Denote by [a; b] the projection
of P to the z-axis and introduce the interval I, = {y2 : {y1,%2) € P}, where
y1 € [a;b] (see Fig. 2).

[ N
o

Y1
Fig. 2

Since | P} = (b — a)|I,|, taking into account (8}, we cbtain

QI Y 17wl dy < [PI™* {17 (v)l dy
Q

V 1f (v, z2) — Fy1,92)| dy din

Iyl

!

b
1
+ m§|f(y1,$2)| dy.

As | f(y1, z2) — flyr,v2)| < V([0;1], f(w1, ), we have
(9) Mgf <« Mv+ MF.

Thus formula (4} follows from (1), (7) and (9).

We now show (5). Set f equal to zero outside I% and set Wy f(z) =
W((k—1)27"; k27", f(z1, ) for z = (z1,22) and 22 € [(k—1)27";k27™),
1 <k < 2™ Clearly, Wi f(z) < V([0;1], f(1,)) and W, f is a nonincreasing
sequence of summable functions. Let us estimate [Wy, fi|;. For a.e. z3 € [0;1]

icm
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we have
2" - 7
SW(((R— 127 k277, flay, )} £ 3 V([(k - 127" k277, £z, )
k=1 k=1
< V([0:1], f(z1,-)) < v(z1),
and thus
127
Waflle= 1§D W(l(k— 127 k27", f(e1,)) dar 27"
0k=1
< 27 olly < 27 supw(f; h)/h.
h>0
Now let
Sf(m)ﬁiwnf(xl’mz_ )+W fla, z2) + Wo fz1, 20 + 27 ”)
n=0 nw( )
Then
1
10 [8fh < Z 2”W“f"1 < Z e < o <
n=1

Now let ¢ € @ C P, where P satisfies (8) and diam @ < 273. Denote
by Pr the projection of P onto the y-axis. Then, for some n, 27" < |Prj <
277+ and for some k, (k—1)27" <z < k27",

Two cases are possible:

Prc [(k—2)27™ k2" or Prc[(k—1)27"%(k+ 1)27"].
Now let 41 € [0;1] and e & Pr. In the first case we obtain

|F w1, m2) — Flyr,y2)l < W{[(k—1)277; 827", f(y1,))
+W([(k - 2)27" (k- 1277, £, )

= an(yb 932) + an(yla Ty — 27 n)

In the second case, ‘
Fy,me) — Flyn, )| S W([(k—1)27™k277), Fy, )
+ W([k2™ (k +1)27"], fy1,))
= Wof(y1,22) + Wnflyr, 22 +277).
Finally,

1f(y1,-"32) - f(y1=y2)k
& Wy f(yr,32) + Waf{y1, 32 — 277) + Wan f(y1, 32 +277)

< 27278 fy1, w2).
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Taking into account (8), we obtain

QI | (=) - sl dy < 1P| [ 1£(2) - F()|dy
Q P
P
< S7—| V15 (v, 22) = flwr,v2)| dya dys
a Iy,
1 b
Ll S |f(y1, 22) = flzr,z2)ldyy = 21 + 5.

Now we have

b
5 i . VS 7y, 22) dys 2™(2

a

I £

) S M(Sf)(z)2"p(27).
Define
M* f(z) = sup V(T £, 22))/1.
Iszx

The function M™f has weak type (1, 1) being the Hardy-Littlewood maxi-
mal function (see e.g. [8, Section 4.1]) and thus

{z € I%: M*f(z) > A} < y22))dzy, A > 0.

> =

iV([o 1,
0

Then, taking into account Lemma 1, we obtain 2y < M* f(z)(b — a) with
M*f(z) < oo a.e. Finally,

QI 1 17(x) — £ ()| dy < M(SF)(z) diam Qu(diam Q) + M* f(z) diam .
Q

Since M(Sf)(z) and M* f(z) are finite almost everywhere, this proves The-
orem 2.

So in the two-dimensional case the smoothness condition (2) guarantees
the differentiation of integrals with respect to the basis of convex sets. Any
weaker smoothness condition appears to be insufficient.

THEOREM 3. Let w(h) be o modulus of continuity (that is, a nonnega-
tive nondecreasing subadditive function with limp—,ow(h) = 0) such that
w(h)/h — oo as h — +0. Then there exists f € L{I*) with

w(f;h) = O(w(h))
such that almost everywhere on I2,
(11) limsup |@Q|™* S Fly)dy = +oo.
diam Q—0 o
Q3z
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Proof We choose a sequence ay decreasing to zero and such that
(12) aw=1, a,< 1/’1’1.,

We divide I? into n? equal squares I? with |IP| = n~2. In each I} we place
a concentric square Q7 with |QF| = a2. Define

.. .—1 . = 1
Ji =ay xqp and fuZka‘

n=1 k=1

wlan) > ann®,  20m41 < G-

Then, bearing in mind (12), we obtain

£ <Y n*an < o0,

n=1
It is not difficult to verify that for every x € I} it is possible to choose a
rectangle R with z € R, diam R « 1/n and |R| < a,/n such that
R A dy> =
; k \Y)OY a,n/n t

which gives (11).
Let us estimate the smoothness of f. Let am+1 < ki < @ Then

wi(fih) <3N wilisk+2 Y IR

n=1 k=1 n=m+1 k=1
1
<<hZa.n—n + z a2 —--n < hm® + Z ann?.
n=1 n=m+1 n=m-t1

From {12) we have

>
Z ann? € ama1(m+1)° < hm®,
n=m-pl

and, consequently, w;(f; ) <« m3h. Moreover, taking into account (12), we

have
olh) | wlam) o s
h 7 on
which gives w;(f; A) < w(h). Theorem 3 is proved.

4. Remarks. 1. It would be interesting to clarify whether the coefficient
Y(diam Q) is relevant in the estimate of the rate of differentiation (Theo-
rem 2).

2. Note that actually we have proved a statement considerably stronger
than Theorem 2, since in the proof we have only used information concerning
the second partial modulus of continuity of f. Bearing In mind the rotation-
invariance of the basis, it is sufficient for differentiation of integrals with
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respect to the basis of convex sets to have the best smoothness condition in
some direction. This in no way restricts the global growth of a function.

3. As we have already noted, A. Zygmund proved nondifferentiation of
the class of characteristic functions of measurable sets with respect to the
basis of arbitrarily oriented rectangles. At the same time, he established dif-
ferentiation with respect to this basis of the class of characteristic functions
of open and closed sets. As far as we know, other classes of sets have not
been considered yet.

Our Theorem 2 makes it possible to introduce one more class: the class
of sets of finite perimeter in the sense of De Giorgi and Caccioppoli (see [1]).
Let us denote this perimeter of a set E by wn(F). Since [5, p. 238]

7(E) < supw(xe; h)/h,
h>0

differentiation of integrals of the characteristic functions of such sets is a
direct consequence of Theorem 2.

To conclude, the author would like to express his gratitude to the referee
for his deep analysis of the article, useful advice and editorial work.
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On the axiomatic theory of spectrum
by

V. KORDULA and V. MULLER {Praha)

Abstract, There are a number of spectra studied in the literature which do not fit
into the axdomatic theory of Zelagko, This paper is an attempt to give an axiomatic theory
for these spectra, which, apart from the usual types of spectra, like one-sided, approximate
point or essential spectra, inclode also the local spectra, the Browder spectrum and various
versions of the Apostol spectrum (studied under various names, e.g. regular, semiregular
or essentially semiregular).

I. Basic properties of regularities. All algebras in this paper are
complex and unital. Denote by Inv(A) the set of all invertible elements in
a Banach algebra A and by o(a) = {A € C:a — A ¢ Inv(A)} the ordinary
spectrum of an element a € A. The spectral radius of & £ A will be denoted
by r(a). _

The axiomatic theory of spectrum was introduced by W. Zelazko [23]
(see also [19]). He gave a classification of various types of spectra defined for
commuting n-tuples of elements of a Banach algebra. The most important
notion is that of subspectrum.

DerintTiON 1.1, Let A be a Banach algebra. A subspectrum & in Ais a
mapping which assigns to every n-tuple (a1, ..., an) of mutually commuting
elements of A a non-empty compact subset 7{ay,...,a,) C C" such that

(1) 7(a1,...,6n) Cola1) X ... x olan),
(2) F{play, ..., an)) = p{c(ai,...,an)) for every commuting ay,...,an €
A and every polynomial mapping p = (p1,...,Pm) : C* = C™.

This notion has proved to be quite useful since it includes for example
the left (right) spectrum, the left (right) approximate point spectrum, the
Harte (= the union of the left and right) spectrum, the Taylor spectrum
and various essential spectra.

1991 Muthematics Subject Classification: Primary 47A10; Secondary 47A1l, 4}7A53.
Key words and phrases: axiomatic theory of spectrum, local spectrum, semiregular
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