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Regularity properties of singular integral operators
by

ABDRLLAH YOUSSEI (Noisy-le-Grand)

Abstract. For s > 0, we consider bounded linear operators from D(R®) into D'{R™)
whose kernels K satisly the conditions

DK ()| € Cole -7 forw g, ly| <8+ 1,
V0K (2,9)] < Oyl =y 7" 010 for ] =[],z #

We establish a new critorion for the boundedness of these operators from L* (R™) into
the homogencuus Sobolev space H*(R™). This i an extension of the well-known T'(1)
Theorem due to David and Jowné. Our arguments make use of the function T'(1) and the
BMO-Scholav space. We give some applications to the Besov and Tiiebel-Lizorkin spaces
as well as some other potential spaces,

1. Introduction. Let T be a bounded linear operator from D(R™) info
D'(R*) with distributional kernel K. That is, K € D'(R™ x R") and satisfies
(T(f), )= (K, 9@ f), [f.geDR").

We assume that the restriction of K to the open set
2= {(z,y) eR*" xRz #y}

is a locally integrable function. Hence, if f, g € D(R™) have disjoint supports,
then
(@), g) = | Kz, v) f()9(z) du dy.

For s > 0 and 6§ > 0, we say that 7' is a singular iniegral operator of
type (s,6) and write T & SIO(s,8) if the restriction of K(z,y) to 12 is a
continuous function and bag continuous partial derivatives in the variable =
up to order [§] which satisfy

1) 01K (@y)| € Colo— g fora £y, bl <16
(1.2) 167K (,y) ~ 01K (2',9)] < Cylz— o[ Jo - y| 7" ~°
for |y = [8], z #£ y, |& — 2’| € §jz —y| and 6" =& — [8].

1991 Mothematics Subject Classification: 42830, 46133,

[189]
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Singular integral operators of type (0,6) were introduced by Coifman—
Meyer [5] to extend the classical Calderén—Zygmund operators. There it was
shown that if T & SIO(0,1), T* € SI0(0, 1) and T is bounded on L?, then T
is bounded on LF for 1 < p < oo. The problem to characterize the operators
which are bounded on L? was solved by David-Journé [6] by means of two
necessary and sufficient conditions on 7. The main condition is that 7°(1)
and T*(1) must be in BMO.

A well-known example of a singular integral operator of type SIO(s, §) is
the Calderdén commutator {A, H], where H is the Hilbert transform and A is
a Lipschitz function. More generally, if |[A(z) —A(y)| < Clz—y|* (0 < s < 1)
and T & SIO(0, 5), then the commutator [A, T is a singular integral operator
of type (3,s}. In [4], Calderén proved that if A is a Lipschitz function, then
the commutator [4, H] is bounded from L? into the Sobolev space H1. Our
purpose in this paper is to give a necessary and sufficient condition for an
operator T € SIO(s, §) to be bounded from L? into the Sobolev space H¥,
where 0 < s < §. The criterion is a natural version of the David-Journé
Theorem which involves the BMO-Sobolev spaces.

The paper is organized as follows. In Section 2 we recall some basic
properties of the function spaces that will be used. In particular, we give
the atomic decomposition of Besov and Triebel-Lizorkin spaces. In Section
3 we recall some characterizations of the BMO-Triebel-Lizorkin spaces. Sec-
tion 4 is devoted to the study of singular integral operators of type (s, 6).
We formulate a criterion which implies the boundedness from Ag’q into A;’q,
where A;"f is either the Besov space or the Triebel-Lizorkin space. Section
5 is devoted to the study of Fourier multipliers and pseudodifferential oper-
ators.

In the sequel, C will denote a constant which may differ at each ap-
pearance, possibly depending on the dimension or other parameters. The
symbols f will stand for the Fourier transform of f and f for the inverse
Fourier transform of f. We also use:

o D(R"): the space of C*°-functions with compact support, D'{R") its
dual.

» S(R™): the space of Schwartz test functions.
» §’(R™): the space of tempered distributions.
® [5]: the greatest integer smaller than or equal to s and §* = s — [s].

For1<p< oo, p =p/(p—1). T is the formal transpose of T

2. Function spaces

2.1. Definitions and preliminaries. Let ¢ € S(R™) be supported in the
ball |§] < 1 and satisfy @(¢) = 1 for |¢| £ 1/2. The function (£) =
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w(£/2) — p(£) is C°°, supported in {1/2 < [¢| < 2} and satisfies the iden-
tity 3 ep¥(27 ig) = 1 for £ # 0. We denote by 4A; and §; the convolution
operators with symbols (277¢) and ©(279€), respectwely

Fors€R, 1 < p < oo and 1 < g < oo the homogeneous Besov space is
defined by

: 1/q
(21) £ 530 = (32 249904£13)
JjEZ
with standard modifications if ¢ = co. The inhomogeneous Besov space By*
is defined by the finiteness of the norm

. i
(22) I Fmge = ISPl + (32990 4511)

jzl
Forse R, 1<p < ocoandl < g < oo, the homogeneous and inhomogeneous
Triebel-Lizorkin spaces, respectively, are defined by

23 1 lage = | (E;"”lﬂjfiq)mwp
JE
and L
(2.4) 1 e = 1S6(H)llp + H(\; 29914, F) /a
izl

respectively, with usual modification if ¢ = co. The BMO-Triebel-Lizorkin
spaces F2% will be given in Section 3.
The following properties are known:

1) F29 = [P N F$4 and B39 = [P N By if 5 > 0;

2) F“‘"’"I C B‘* % and Fj? C Bp?ifp <g;

3) Bs’q - Fs 9 and B“'q C FW if g <p;

4) B5=’?UF3"1 C B*1 1ft <s

Note that the spaces F"’q and B;;q consist of distributions module poly-

nomials. The realizations of these spaces can be found in [2]. In particular,
for 0 < s < n/p, we have F52 = I,(LP(R*)) (modulo polynomials), where

fy)
=\ 4
(2.5) Is(f)(m) S immyln_s Y
denotes the Riesz potential.

2.2. The atomic and molecular decompositions. In [7], (8], Frazier and
Jawerth have shown that the spaces B“’ 2 and F; ? can be decomposed in
terms of building blocks of smooth atoms, and similarly into more gen-
eral building blocks of smooth molecules. This decomposition is related to
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wavelet theory [14]. For j € Z and k € Z" we denote by @ the dyadic
cube

Qik == {z cR": ¥z~ k€ [0,1["}.
Let sc€ R, j € Z and k € Z". A smooth s-atom associated with the cube
Qj.% is a function a;,; € D(R™) with support in 3@, that satisfies
(2.6) So:"’aj,k(:c) de =0 if |y| < max{[—s],0) + 1,
(2.7) 107, (x) <277 if |y] < max([s],0) + 1.

Let M >mn, N € NU{-1} and § > 0. A smooth (§, M, N)-molecule
concentrated on @, x is a function m; ; which satisfies

(2.8) Sm"mj,k(m) dr =0 if |y| <N,

(29)  [8"myn(a)] < CYIVM(1 4 Plo — )™M if|y] < 18],

(2.10) |07y p(z) — 87my ()| < CPM g — o/ (1 + 2|z — ;)™
In (7] and [8] the following theorems may be found.

THEOREM 1. Let s € R and 1 < p,qg < oc. Then any element f of Bs'q

8,
ond F @ can be decomposed as f = 3. 53 1czn Gk, where ajp is a
smooth s-atom. Moreover,

N a/py 1/
(2.11) (szz "”/P( > Ic,-,k]?’) ) < Clfllgees
JEL kEZN
and for 1 < p < oo, we have

e12) (X #lastier) | <ol

JEZ kel

ALt NS
Fp

'THEOREM 2. Let N € Z, M > n and § > 0. For any collection (mj )ik
of {8, M, N}-molecules concentrated on Qik and for any s € R and 1 <
P,g < oo with ~N —1 < 85 < § we have

(2.13) H Z Z &5, kma, | . = 0(223.3;‘12—”{,"(;/;)(2 |Cj,kip) q/p) 1/q-
i k

JjeZ keZn

If in addition 1 < p < oo, then

(2.14) H Z Z i kT 1 l

JEL keZ™

F"q

<0|( 3 29 el ina, @17)

JEZ kel

‘P
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3. BMO-Triebel-Lizorkin spaces. To give the definition of the BMO-
Triebel-Lizorkin space F3%, let us recall at first the definition of Carleson
measures. We shall say that a sequence of positive Borel measures (v;)iecz
is a Carleson megsure in R" x 7Z if there exists a positive constant C' > 0
such that

(3.1) > vi(B)<CIB
Jizk
for all k¥ € Z and all euclidean balls B with radius 27%, where |B| is the
Lebesgue measure of B.
The homogeneous BMO- Triebel-Lizorkin space F39 (1 < g < co) is the
space of all distributions b for which the sequence (249 A;(b)(z)|4dz); Is a
Carleson measure (see [8]). The norm of b in F%? is given by

1 33? q lfq
““P(w%iz 14;(8)()] dm) ,

where the supremum is taken over all k € Z and all balls B with radius
2=k, For ¢ = oo, we set F;;‘” = Bgf". In the inhomogeneous case, the
BMO-Triebel-Lizorkin spaces were studied using different methods in [20].

When q = 2, the space 1—;;:,2 is the Sobolev space (1 < p < oo) and the
space £+ is the Hardy-Sobolev space. The space F%;? is (modulo polyno-
mials) the BMQ space. More generally, F"" 2 ig (modulo polynomials) the
BMO-Sobolev space considered by Stricharts [18].

In the tradition of the theory of singular integral operators, the space
BMO is characterized in terms of the paraproduct = of J. M. Bony, which
is defined for two functions f, g by

(3.3) w9, f) =7 (£) =D Aj(9)Si-3(f)

JEG

(3.2)

Tt is a well-known fact that, for b € B%™, w, is bounded on L? if and only
if b € F%?. The connection between the paraproduct = and EOP is the
following [20}

THEOREM 3. Let s € R, b€ B4 and 1 < p < co.

1) If b e FiP, then m is bounded from LP into B’;'p .

2) If m, is bounded from BY* into B®, then b e e,

CoroLLARY 1. Let s € R, beB”" l<p<ooand 1 <q<2 Then
b e FLP if and only if the operator my 15 bounded from F°=q into B‘g’p

Remark 1. Note that Fi57 C B3 and BEPNBY® C B if0 < s < t.
In particular, L N B> C Fs’q if0 < s <t More genera,lly, if0 <5<t
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and b € BY™ N B4, then m is bounded from LP into B!, In fact,
> 2[4 ®)Si=a(Fllp < ClFllo D271 450) o-
JEZ €L
Furthermore, ||4;(b)]lec < CZ“”Hb”Bg&m for j > 0, and |4;(0)|c <

C||B]| goee for § < 0. Since 0 < s < £, it follows that
Imo(£) 21 < CUBlLgem + 1l 322171

Remark 2. The paraproduct m, is bounded from Ag’q into A;’“"q if

be Bf;o“’ and s < 0. In fact, for the Besov spaces we obtain, in view of the
almost orthogonality [21],

7o)l g < O 32099 45(8) ;5 (A1)
JEZ
Moreover, [[S;-s(£)lp < Fi<; 14(F)lp. Hence
o ay 1/
()l ggren < Cllbllzees (D029 ( Y14k (Do) )
J€Z k<j
The condition s < 0 guarantees that |[ms(f)]gete < Clloff geye 11 2o

Finally, one can prove the boundedness in the case of Triebel-Lizorkin spaces
in the same way.

1/q

4. Singular integral operators

4.1. Weak boundedness properties. We denote by G the group of affine
transformations A{z) = u + tz with ¢ > 0 and u € R™. The action of A on
D(E™) is defined by

fl) = FAHz)) = f(“ = “).

Let T be a bounded linear operator from P(R™) into D'(R"™). Then T3
is defined by (I f,9) = t7™"(Tfy, g}, and the kernel of T is given by
Ki(z,y) =t"K{z +u,ty + u).

In Lemma 2 below, we shall establish that if T € SIO(s,6) is bounded
from I? into 22, then T has the following well known “weak bounded-
ness property”: For each bounded subset B of D(R™) there exists a constant
Cg > 0 such that

(4.1) - D9 stCs  for fgeB, Ae g

If (4.1) holds for T', we say that T has the weak boundedness property of order
s, or simply, T has WBP(s). We write T € WBP(s). Note that for s > 0,
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the pointwise multipliers do not have WBP(s). This is natural because the
pointwise multipliers from L? to F* are trivial if s > 0.

LEMMA 1. If T € S10(s,8) where s > 0, then T € WBP(s) if and only
if
(4.2) T(f)(z) = | K (z,y)f(y) dy
for all f € D(R™). Further, the integral is absolutely convergent.

Proof. We prove the “if” part. Let B be a bounded subset of D(R™)
and X € G with A{z) = tz + u. By (4.2) we have

(D), 9)] < O L1z =y "7 | £ ()9 (x)| de dy.

Since s > 0, it follows that [{Ta\(f), g}| < Ot°Cg for f,g € B.

Next we prove the “only if” part. We shall show that

(K.9® )= || K(z,1)g(z)f(v)dedy
TFEY

for f,g € D(R"), where the integral on the right hand side is absolutely

convergent. Let § € D(R™) with § = 1 on the ball B(0,1). Further, we
suppose

B(z) = 0y % Oa(z) = | b1 (z — 2)Ba(z) dz,
where 6; € D(R"), i = 1,2. We set w.(z,y) = ((z - y)/¢) for £ > 0. Then
(T(f),g) = (K weg ® f) + (K, (3 —we)g & f).
Hence we must show that lim._o(K,w:g ® f} = 0. Now we observe that

— z —
we(z,y)=¢e" S 91(936 )GQ(ZEy) dz
lzj< A

for some A > 0. Thus it follows that
(K,weg® fl <™ | [(T(fez)s 9ol do,
[zi£A4

where fe . (3) = 02((z — ¥)/e)f(y) and g..(z) = 2((z — 2)/e)g(x). In addi-
tion, we have

(T(fs,z)ags,z> = En(TA(Fs,z)a Gs,z):
where A(z) = ex+2, Fe,.(y) = ba(—y) f(ey+2) and G, (z} = 8. (2) fezt2).
But the set

{Fo.:0<e<], |z| <AYU{G:.:0<e <], |7 < A}
is a bounded subset of D(R"). By WBP(s) we obtain
{T(fe2)s Geye)| < Ce™,
which implies [{K,w.g ® f}| < Ce”. Hence lim._o(K,weg ® f} = 0.
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Remark 3. Let s > 0 and T € WBP(s). In the same way as above, one
can prove that

(K, Fy= \| K(z,y)F(z,y) dzdy
TFY

for all FF &€ D{R™ x R™). The integral on the right-hand side is absolutely
convergent.

LEMMA 2. For ¢ > 0 we have the following.

1) Let b€ B&®, 6 > 0, N € N and |y| < [s]. Then m, € SIO(s,6) N
WBP(s) and (87m)t € SIO(s — ||, N). ’

2) Let L€ R, 1 <p,g <o ond T € SI0(s5,6). If T' is bounded from ALS
into AST49, then T € WBP(s).

Proof We prove m, € SIO(s,§). Observe that the kernel of 7 has the
form

K(z,y) =Y 2YA;(0)(=)¢(2 (z - v))-
JjezZ
Hence the proof is the same as in the case s = 0 {see [23]). By Remark 2
the operator w, i3 bounded from Af;q into Af,*“q, where [ < 0. Therefore it
will be sufficient to establish part 2).
In the case 0 < 84+ < n/p, we have

({Ta(F). 9l < CEl Nl agellgll 4o

for all f, g € D(R™). Hence T' € WBP(s). In the case s +{ > n/p, note that
a necessary condition for g € A;,s_l’q N D(R") is {g(z)dz = 0. Therefore
it is not possible to obtain an estimate as in the first case. To aveid this
difficulty we proceed as follows. Let B be a bounded subset, of D(R™). There
exists r > 0 such that supp f C B(0,r) for all f ¢ B. Fix a € R* with
|a| = 3r and define
A3(9)(@) = g(z) — gz ~a),  AZ(g) = (A5 (g))-

We set v = [s+ 1 —n/p] and g = ATHg). It is easy to show that
{z%g¥(z) dz = 0 for |a| < v. Thus g € A;,S_l’q . Now we have

(T (A2 950 < CllAAll agallgRl] j-omrar < CE"F
p!
for f,g € B. From supp f Nsupp(g, — g) = 0 it follows that

(TA(f)gw —g) = SSKA(E, y)f(w)lg. — g)(z) dz dy.

Moreover, if 2 € supp(g, — ¢) and y € supp f, we have |z ~ y| > r. Now

T € BIO(s,8) implies that [(T5(f),g. — g} < Ct*||fll1]lgl1- The proof is
finished. ' '
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4.2. Action on polynomials. Let p € N. We denote by D, the function
space consisting of all f € D(R™) such that | f{z)z¥de = 0 for |o| < p.

LEMMA 3. Let 0 < s < §. Assume that T € SIO(s,8) N WBP(s) and
g € D, with either p<[8] for bgNorp<bd—1 for 6 eN. Then

(4.3} TH(g)(g)l < Cly| "7
where either r=p+1if p<bd—Lorr=256if p=[4].

as |y — oo,

Proof. Let 2o € suppg be fixed. Then we define
x— x)°
Ko(o9) = K(o,9) — 3 EoI (02K 00, 0)
e < )

Now let y € R® be such that |zp| < §|y| and |z—zo| £ 3|z—y|for z € suppg.
The hypothesis T € SIO(s,§} implies that

| Kp(z,9)| < Cle — ol w0 — |~ < Clo — @[y 77"

for € supp f. Indeed, we have T (g)(y) = G(y) = {K(z,y)g(z) dr for
y ¢ supp g. Using the fact that g € Dp, we obtain G{y) = { Ky(z,9)g(z) dz.
Thus

1G(y)| < Clyl™" " "*{lg(2)! - |& — ol"dz  as Jy| — 0.
The lemma is proved.
Next we define the natural action on polynomials. We put
0% = {f € C®(R") : | ()| < Clz|? as |a| — co}.

Now we choose ¢ € R such that g+s—~7r < 0, where either r =p+1forp <
§~1lorr=_6forp=[6.1f f € OFand g € D, then (Tf,g) can be defined
as follows. Let ¢ +b = 1 be a partition of unity, where a € D(R") with a =1
on a neighbourhood of supp g. Writing (f, T*(g)} = (T(af), g} + (bf, T*(9))
we see that {T'(af), g} is well defined and, by Lemma 3, the integral

(b£,T%g)) = {b(2) f(2)T*(g) () de

is absolutely convergent. It is easy to show that {f,T%(g) is independent of
the choice of a and b. Now we put (T'f,g) = {f,T%(g)). In the particular
case g = 0, we conclude that T'(1) is defined modulo polynomials of degree
at most [s].

To obtain the regularity of T(1) we apply the following result.

LEMMA 4. Let T € SIO(s, §)NWBP(s), where s > 0. Then T(1) € B3>,
Proof. Let h € D(R") be supported in the unit ball, and sastisfy
S h(z)e"dz =0
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for |y| < [s] + 1 and h(£) # 0 for 1/2 < ¢} < 2. It is a well known fact
that the space BS? can be characterized by the operators (Hj);ez, where

H;(f)=hy * f and h;(z) = 2™ h(2z) (see [16], pp. 155-158). We have
; 1/q
£ gpe = (S 27NE;(NNE)
€%
In particular, | f]l gee = 8uP;ez(2% || H;(f)]|oo)- Replacing h{z) by A{—2),
we shall show that
(T(1),Uzhs)| £ C27%7  for j € Z and z € R™,

where U, (f)(z) = f{z — z). Let us go back to the definition of T'(1). Let
a € D(R™) be given such that a(z) = 1 for |z| < 2 and a(z) = 0 for [z| = 3.
We have (T(1),U-h;) = 2 [(T(ax), ha) + (bx, TH(Aa))] if Mz) = 2 + 277z
Now T' € WBP(s) implies |{T'(ay), ha)| < €C27"+¢)J. The same arguments
as in the proof of Lemma 3 yield

T () ()] < ly — 2178 jo — 2 |h(2 (2 - 2))| da

and |(by, T*(hy)}| € ©2~(n+9)i The proof is finished.

for 27|y —z| >3

4.3. Characterizations of boundedness

THEOREM 4. Let 0 < s < 6 and 1 < p,q < oo. Assume that T belongs to
S10(s, 6) "WBP(s) and satisfies (871" € SIO(s — [s], & — [s]} for |v] = [s].
If T(1) =0, then T is bounded from A3 into A3

Let T € SIO(s,8) N WBP(s) with s > 0 and b = T(1) € B>, If the
operator Ty = T — m, satisfies the hypothesis of Theorem 4, then we obtain
the following corollary.

THEOREM 5. Let 0 < 8 < § and 1 < p,qg < oo. Suppose that T €
SI10(s, 8) and (87T)* € SIO(s — [3],8 — [s]) for |y| = [s]. Then T is bounded
from Ada into Ayt if and only if T € WBP(s) and my is bounded from
f.lg’z into Ay9, where b = T(1). In partz"cy,lar, T is bounded from L? inio
B3* if and only if T € WBP(s) and b € Fi’.

Note that P C Bg’?’ “ if p > 2. In view of Theorem 3, we obtain

COROLLARY 2. Assume that T € SIO(s, 8) and (871t € SIO(s—[s],6—
[s]) for (vl = [s], where 0 < 5 < 6.

1) Let 2 < p < co. Then T is bounded from LP into B;’P if and only if
T € WBP(s) and be F%P.

2) Let 1 < p < 2. Then T is bounded from B%* into B3P if and only if
T ¢ WBP(s) and be F%P.
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COROLLARY 3. Let 1 < p < oo and 0 < ¢ < 4. Suppose that T' €
SIO(s,6) and (87T)* € SIO(s — [s],§ — [s]) for 1y| = [s], where s > 0. IFT
is bounded from BQ* into ByP, then T(1) € FgP. Moreover, T is bounded
from. L into F;’g,?’ . Here L™ is equipped with the weak topology o (L™, Y
and FSP is equipped with the weak topology a(F5p, FrsP ’).

4.4. Proof of Theorem 4. Before proceeding to the proof of Theorem 4,
we observe that if ' € SIO(s, §) N WBP(s) and 0 < s < 1, then

44  T(N) = | Klz,n)(Fly) - F(z))8) dy

+{ K20 )1 - 0) dy + F(=)T(O)(=)

for all 8, f € D(R™), where all integrals on the right-hand side are absolutely
convergent. The following lemma is due to Meyer [14] for s =0, and it is a
corollary of (4.4) for 0 < s < 1.

LEMMA 5. Let 0 < s < 1 and s < §. Assume that T € SIO(s, §)NWBP(s)
with T(1) = 0. Let x,2' € R*, x # ', and let 8 € D(R™) be such that
8(y) =1 for |2’ —y| < 2t and B(y) =0 for |o' —y| = 4, where t = [z —z'|.
Then
(45)  T(g)(=) - T(g)(=")

= | K(z,9)(g(y) - 9(=))8(y) dy
~ K (=", 1) (o) — 9(="))8(y) dy
+{(K(e,y) - K@, 9))(a(v) - 9(=")(1 — 0(y)) dy

+ (9(z) - g(=")T(6)(2)

for all g € D(R™), where all integrals are absolutely convergent.

Proof of Theorem 4. First note that if o € N?, |a] < [s], and
T € SI0(s,8) N WBP(s), then

T € SIO(s — [8],6 — |a|) NWBP(s — lex]).

Hence we have to prove the theorem in the case 0 < s < 1. If 5 = 1, then the
proof is a corollary of the David—Journé Theorem [9]. In fact, fori=1,...,n,
we have T, = 65T & SI0(0,6 — 1) N WBP(0) and T} € SIO(0,§ — 1).
Moreover, T;(1) = 0 and Tf(1) = (Tt9°)(1) = 0. Therefore T; is bounded
on Ag=‘?. It remains to prove the theorem when 0 < s < 1. To prove the
boundedness of T from Ag,q into A;’q, we use the decomposition of the
spaces A,? by smooth atoms and similarly by smooth molecules. Hence it
is sufficient to show that T maps a “smooth atom” of Ag,q into a (8, M, 1)-
molecule. Applying translation and dilation we shall show that if a is a
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“smooth atom” associated with the unit cube Qg, then T'(a) is a (6, M, 0)-
molecule also associated with Qq.

We assume § = 1 and set M = n — s+ 1. We show that

(4.6) T(a)(z)] < C(1+ )™,
(47 |[T(a)(z) - T(a)z)| < Clz - :L"Il sup ,‘(1 +lz~ )7,

First we prove (4.6). Let |z| > 4y/n. Then from the equality {a(y)dy = 0
we obtain

[T{a)(2)| < € | 1K (z,9) - K(2,0)| - aly)| dy.
30
We have |y| < |z|if y € 3Qg and T € SIO(s, 1), thus
K(w,y) - K(2,0)] < Clyl -] — g™+,
It follows that
[T{a)(2)] < Cla| " "*71 < O(1+ |2f) ™.
If |z| € 4y/7, then we write
[T @) <C | sy dy<C | i dy.
3Q0 8Q0
Hence |T'(a)(z)| < C(1 + lz|)~M.
Now we prove {4.7). Note that for |z — z'| = 1 we have
1T (a)(z) — T(a)(a")] < |[T(a){z)| + |T(a){z")
< Clz —2'[((1+fe)) ™ + (1 +[2')7M),
In the case | — 2'| < 1, we consider the following distinct possibilities:
1) |z| > B4/, 12'] > 6+4/n. Then if ¥ € 3Q0, we have
20z — 2’| <5y < Ja — gl
‘and |z —y| = |2]/2. Thus we get
T(e)(z) = T(a)(')| < Clz —a'| | |z -y ay
3o
< Ol — o' (1 4+ |z[) M.
2) |z| > 6y/n, |z'| < 6+/m. If y € 3Qy, we have
2e -2l S BV < |z -y
and |z — y| > |z|/2. As in Case 1) we obtain
T)(e) - T@)@E) < Clz—2/|(L+ o)™,
3) |z| < 64/, |2'| > 6+/n. The proof is the same as in Case 2).
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4) |z| < 6y/n, |2'| £ 6/n. We consider f € D(R*) with support in the
ball B(0,4), and f(y) = 1 for y € B(0,2). Now we choose t = |z ~ z'| and
we define fot(y) = f((z' —y)/t} for ¢ > 0. Since 7(1) = 0, it follows from
Lemma 5 that

T(a)(i‘) - T(Cl.)(ﬁ;") =0 +IL+ I3+ 1
where
L = K(z,9)(al) — a(2)) £ (v) dy,

I = = K(=',)(aly) - (@) ") dy,
I = [(K(e,9) - K (&', 9)(ay) — a(e))(L - /¥ () dy,
I = (a(®) - a(e))T (%) (@)

Observe that
L] <C |

o —y] <djz—2’|

|z —y| " dy < Clz — /P < Clz — 2|,

and |T;| can be estimated in the same way. On the other hand,
T )@ < Cflo =yl ™17 (w) dy.

We have |z| < 64/ and |2/l < 6y/n. If |2' — | < 4je — 2/, then we get
|z —y| < 5lz— 2’| and

T Y@ < | syl Ty
le—y|<24/
Thus |I4! € Clz — z'|. Finally, we write
|Ia] < C | jz— 2|z’ — o7 a(y) ~ a(z’)| dy

o —y|22le o]

< CE$ — m’l(Al + Ag),

where
Ar= | 12—y aly) — ale’)] dy,
f! —y|L2
dp= | 1 —y7"aly) - ala’)| dy.
' —y]22
From
A <0 Valee | e -yl dy,
|/ —y|<2
Ar € 2lallee | & —wlTT Ty,
Jm! —y|22

it follows that |I3] < Clz — 2| < Cle — z'|(1 + lz])™.
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5. Applications

5.1. Fourier multipliers. Let w € &'(R™) and T be the convolution oper-

ator T'(f) = wx f. In order to show that T & SIO(s, §) we use the following
lemma [14].

LEMMA 6. Let s < n and suppose that 4 is a C™" Tl function in
R™ \ {0} which satisfies

(5.1)  |8%u(€)| < ClE|TI#™ for££0 and o] < m+n+ 1.
Then w is C™ in B"\ {0}, and |6%u(z)| < Cla|~™"1%1+2 for 2 £ 0, |a| < m.
The boundedness of T is given by the following result.

THEOREM 6. Let 0 < s < m, m > s and suppose that w satisfies (5.1).
Then T(1) =0, and T is bounded from AJ? into A5,

By Theorem 4 we are led to prove that T(1) == 0. To do so, we only
need show that (7(1), f) = 0 for all f € Dy,). Let 6 € D{R™) be such that
8(z) = 1 for [z| <1 and 6(z) = 0 for |z| > 2. We write §;(z) = 8(z/7) for
J = 1 and observe that (T(l),f) = lim; oo (T'(8;), f). But

{T(67), f) = Cng™ \ u(£)B(j€) F(£) de.

Since f € Dy it follows that Baf(O) = 0for |a < [s] and |f(£)] < Cl¢|lE+L,
Hence
NT(6:), £} < 05" el 18(5)) de.

In particular, we have lim;_,o(T(8;), f) = 0.

ExAMPLE. Let 0 < & < n. We consider the Riesz potential

L)) = | m_-m“ dy.

yln—s

Then {‘s(f) = wu+* f, where 4({) = ¢, 4|€|™*. By Theorem 6, I, is bounded
from A9 to A%9. Now let s > n, and we consider I,(f) for f € D(R™). To
prove that I, is bgunded from Ag,q to A;"f it is sufficient to show that 8%I,
is bounded from A7 into AS~™4, for o € N* with || = m, 0 < s ~m < n.
But %I, has the form

= Z Ve, s % f)

Bsm

(8%L)(f)

where uqo g satisfles (5.1). Hence %I, is bounded from Ag,q to A;‘m"f .

5.2. Pseudo-differential operators. Let m € R, 0 < g < 1. The Hérman-
der class Op(ST",) is the class of operators whose symbols satisfy
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(5.2) (@28 o)z, &)l
< Cop(l+je)mAltelal (z ¢) e R x R™, B € N™.

It has been proved in {15] and [21] that pseudodifferential operators in
the class Op(ST,) are bounded on Triebel-Lizorkin spaces F3 provided
that ¢ < 1. For some particular values of s, p and ¢, the case ¢ = 1 has also
been considered by Bourdaud [3], Runst [17] and Torres [22] (see also [19]).
In the case g = 2 (the case of Sobolev spaces F2*?), Bourdaud [3], Meyer [13]
and Hérmander {10}, [11] have shown that every pseudodifferential operator
in the class Op(S74) maps Ft™2 into Fg? if s > 0. Here we only consider
the cases s = 0 and m < 0 for homogeneous spaces.

Similarly for r € ]0,00] and m € R we say that T' € Op(S74)(C") if for
all 3 € N and (z,£) € R™ x R", one has

(5-3) (8282 0)(2,€)] < Cap(1+ €)™ AT for all o] <[r],
and
(5.4) |(828f0)(z,£) — (830£0)(x', £)] < Cuople — /|7 (L ¢y 1A
for all |a| = [r].

I T € Op(Sy")(C"), then it was shown in [1] that the kernel of T’ satisfies
(5.5) (8208 K) (2, )| < Clz — y| ™ Iel-1Pl

for o < [r] and
(5.6) |(8205K)(z,y) — (020K) (2’ 9)| < Cle -/ e~y
for |a| = [r].

THEOREM 7. Let > 0,0 <m <7, T € Op(S;7")(C") and 1 < p < 00.
Then T' is bounded from LP into A™P if p > 2, and from BY® into Amop if
p < 2. In particular, T' is bounded fmm FP into Fm'q for all 1<q<2.

The proof follows from the fact that T € WBP(s), T'(1)(z) = o(z,0),
and b(z) = o(z,0) € L® N BL™ C FP.

5.3. Commutators. Qur criterion does not apply to the Calderén com-
mutators. Indeed, let A € B2, 0 < s < 1, and let I" = R; be one of the
Riesz transforms in the n-dimensional euclidian space R". The commutator
[4, T)(f) = AT(f)—T(Af) is of type S10(s, s) but, in general, is not of type
SIO(s, §) with 0 < s < §. For the study of these commutators the reader is
referred to [24] and [25]. On the other hand, Theorem 4 can be applied as
follows.

THEOREM 8. Let 0 <5< 1,0< p<1 and T € Op(S13°). Let A satisfy
VA = (0A/0z;); € (L=)". Then the commutator [A,T] is bounded from
L? into Fy*,

|—n—m-r—{/3|
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For the case s = 0 and ¢ < 1 the proofis a consequence of David—-Journé’s
Theorem (see [1], [14]). Using the same method as in the case s = 0 and
applying Theorem 4 we establish the result for the case 0 < s < 1. For this,

it is enough to consider only the case ¢ == 1. We will use the following lemma,
(see [1] and [14]).

LEMMA 7. Each T € Op(S17°) can written in the form

n

Z &
Tz. 1}'05;3'-4-R,
J:l

where T; € Op(S17) and R is an operator whose kernel H(x,y) satisfies
070 H(z, )| < Capn(1+ |z —y))™
for (z,y) e R" xB*, o, S € N* gnd N e N.
Proof of Theorem 8. The kernel K(z,y) of T satisfies
028)K (2, )|
< Caplz —y[ e =1el=80 for o, 8 € N*, (z,9) € R* x R™,

It follows that [A, T] € SIO(s, 1) and [A, T]* € STO(s, 1). On the other hand,

the property WBP(s) for [4,T] is a consequence of Lemma 1. Since s > 0,
we have in analogy to [19],

(M) =lm |  Ky)fy)dy
|z—yl=e

for all f € D(R™). We show that [4,T](1) € F52. We write

470 = YA TI(ph ) + > (E85) +1aa)
- z

7 J

It follows that

4TI = =31 (2 ) + (R A

j J

By Corollary 3 and the hypothesis 84/8z; € L*°, we deduce T;{0A/0z;) €
F&:2, Moreover,

IR, A1) (=) < §14(2) - A)] - [H (z,y)|dy
S C[VA Iz~ 31+ |z - 4) ™V dy < VAl .

Regularity of singuler integral operators 215

Since

OlA, RI(f), | _ 3] _ 8A

etl@) = |4, 5 0 B (1)) - G @RUNE)
for j=1,...,n, it follows .thﬂt 6[A,R](1)/5$J € L. Using Remark 1 we
conclude that [4, R](1) € F22.

6. Observations and remarks. Let 0 < s < §. Tt is possible to study
the boundedness of SIO(s,8) from A%¥ into A3the for ¢ > —s. In fact, in
this case we assume that s + ¢ < &. Using the same arguments as in [9],
[12] and [23], we can define T(z*) for |a| < §. Two possibilities have to be
considered.

a) The case t < 0. Then property WBP(s) shows that b= T(1) € B,
If T(1) = 0 and T € WBP(s), then arguments similar to those used in the
proof of Theorem 4 show that T is bounded from A;;q into A;“’q . Moreover,
from the almost-orthogonality and the fact that ¢ < 0 we obtain

()l g < Obll e iz
Finally, we deduce that T is bounded from A'fu’q into A;“’q if and only if
T € WBP(s).

b) The case ¢t > 0. This case is more difficult than a). The first problem
is the use of the function T(z®) for |a| < [¢]. In general, this function is not

regular. To avoid this difficulty, we denote by M the multiplier operator by
z; and consider the commutator

re(Ty =1, j=1,-..,n
By induction we put
rete(T) = [I(T), My).
Lemma 4 and [23] show that if T € SIO(s, 6) N WBP(s), then
re(T(1) e Bylebee

for all |a < 6. Next we consider the case b € Blate® o e N, and the
generalized paraproduct
a2 (F) =Y Ai(6)8;-s(8")-
it

Then 7 belongs to WBP(s, N) forall N € N. The criterion of the bounded-
ness is the following. Suppose that T € SI0(s, 8), (97T)* & SIO(s—(s], 6 [s])
for |y| = [s] and 0 < s + ¢ < &, where ¢ > 0. Then the following properties
are equivalent:
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(i) T is bounded from A% into A5T9,
(i) T € WBP(s) and the operator

S

laf 1]

is bounded from A};q into A§+*=q, where b, = I'*(T)(1).
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