Contents of Volume 119, Number 3

A. Youssfi, Regularity properties of singular integral operators	
HQ. Bui, M. Paluszyński and M. H. Taibleson, A maximal function char-	
acterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces	
C. MARTINEZ and M. SANZ, A note on a formula for the fractional powers of	
infinitesimal generators of semigroups	247 - 254
A. H. Fan, On uniqueness of G-measures and g-measures	255-269
G. R. Allan, Fréchet algebras and formal power series	271 - 288
K. Jarosz, Multiplicative functionals and entire functions	289-297

STUDIA MATHEMATICA

Executive Editors: Z. Ciesielski, A. Pełczyński, W. Żelazko

The journal publishes original papers in English, French, German and Russian, mainly in functional analysis, abstract methods of mathematical analysis and probability theory. Usually 3 issues constitute a volume.

Detailed information for authors is given on the inside back cover. Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997

Subscription information (1996): Vols. 117(2, 3)-121 (14 issues); \$30 per issue.

Correspondence concerning subscription, exchange and back numbers should be addressed to

Institute of Mathematics, Polish Academy of Sciences
Publications Department

Śniadeckich 8, P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997

© Copyright by Instytut Matematyczny PAN, Warszawa 1996

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset in TEX at the Institute
Printed and bound by

Incorporation & Incorporation:

PRINTED IN POLAND

ISSN 0039-3223

STUDIA MATHEMATICA 119 (3) (1996)

Regularity properties of singular integral operators

by

ABDELLAH YOUSSFI (Noisy-le-Grand)

Abstract. For s > 0, we consider bounded linear operators from $\mathcal{D}(\mathbb{R}^n)$ into $\mathcal{D}'(\mathbb{R}^n)$ whose kernels K satisfy the conditions

$$|\partial_x^{\gamma} K(x,y)| \le C_{\gamma} |x-y|^{-n+s-|\gamma|} \quad \text{for } x \ne y, |\gamma| \le |s|+1,$$

$$|\nabla_y \partial_x^{\gamma} K(x,y)| \le C_{\gamma} |x-y|^{-n+s-|\gamma|-1} \quad \text{for } |\gamma| = |s|, x \ne y.$$

We establish a new criterion for the boundedness of these operators from $L^2(\mathbb{R}^n)$ into the homogeneous Sobolev space $\dot{H}^s(\mathbb{R}^n)$. This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential spaces.

1. Introduction. Let T be a bounded linear operator from $\mathcal{D}(\mathbb{R}^n)$ into $\mathcal{D}'(\mathbb{R}^n)$ with distributional kernel K. That is, $K \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^n)$ and satisfies

$$\langle T(f), g \rangle = \langle K, g \otimes f \rangle, \quad f, g \in \mathcal{D}(\mathbb{R}^n).$$

We assume that the restriction of K to the open set

$$\Omega = \{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x \neq y\}$$

is a locally integrable function. Hence, if $f,g\in\mathcal{D}(\mathbb{R}^n)$ have disjoint supports, then

$$\langle T(f), g \rangle = \iint K(x, y) f(y) g(x) dx dy.$$

For $s \geq 0$ and $\delta > 0$, we say that T is a singular integral operator of type (s, δ) and write $T \in SIO(s, \delta)$ if the restriction of K(x, y) to Ω is a continuous function and has continuous partial derivatives in the variable x up to order $[\delta]$ which satisfy

$$(1.1) |\partial_x^{\gamma} K(x,y)| \le C_{\gamma} |x-y|^{-n+s-|\gamma|} \text{for } x \ne y, |\gamma| \le [\delta],$$

$$(1.2) |\partial_x^{\gamma} K(x,y) - \partial_x^{\gamma} K(x',y)| \le C_{\gamma} |x - x'|^{\delta^*} |x - y|^{-n + s - \delta}$$

for
$$|\gamma| = [\delta]$$
, $x \neq y$, $|x - x'| \leq \frac{1}{2}|x - y|$ and $\delta^* = \delta - [\delta]$.

¹⁹⁹¹ Mathematics Subject Classification: 42B30, 46E35.

Singular integral operators of type $(0,\delta)$ were introduced by Coifman-Meyer [5] to extend the classical Calderón-Zygmund operators. There it was shown that if $T \in SIO(0,1)$, $T^t \in SIO(0,1)$ and T is bounded on L^2 , then T is bounded on L^p for 1 . The problem to characterize the operatorswhich are bounded on L^2 was solved by David-Journé [6] by means of two necessary and sufficient conditions on T. The main condition is that T(1)and $T^{t}(1)$ must be in BMO.

A well-known example of a singular integral operator of type SIO (s, δ) is the Calderón commutator [A, H], where H is the Hilbert transform and A is a Lipschitz function. More generally, if $|A(x) - A(y)| \le C|x-y|^s$ $(0 < s \le 1)$ and $T \in SIO(0, s)$, then the commutator [A, T] is a singular integral operator of type (s, s). In [4], Calderón proved that if A is a Lipschitz function, then the commutator [A, H] is bounded from L^2 into the Sobolev space \dot{H}^1 . Our purpose in this paper is to give a necessary and sufficient condition for an operator $T \in SIO(s, \delta)$ to be bounded from L^2 into the Sobolev space \dot{H}^s , where $0 < s < \delta$. The criterion is a natural version of the David-Journé Theorem which involves the BMO-Sobolev spaces.

The paper is organized as follows. In Section 2 we recall some basic properties of the function spaces that will be used. In particular, we give the atomic decomposition of Besov and Triebel-Lizorkin spaces. In Section 3 we recall some characterizations of the BMO-Triebel-Lizorkin spaces. Section 4 is devoted to the study of singular integral operators of type (s, δ) . We formulate a criterion which implies the boundedness from $\dot{A}_{n}^{0,q}$ into $\dot{A}_{n}^{s,q}$, where $\dot{A}_{p}^{s,q}$ is either the Besov space or the Triebel-Lizorkin space. Section 5 is devoted to the study of Fourier multipliers and pseudodifferential operators.

In the sequel, C will denote a constant which may differ at each appearance, possibly depending on the dimension or other parameters. The symbols f will stand for the Fourier transform of f and f for the inverse Fourier transform of f. We also use:

- $\mathcal{D}(\mathbb{R}^n)$: the space of C^{∞} -functions with compact support, $\mathcal{D}'(\mathbb{R}^n)$ its dual.
 - $\mathcal{S}(\mathbb{R}^n)$: the space of Schwartz test functions.
 - $\mathcal{S}'(\mathbb{R}^n)$: the space of tempered distributions.
 - [s]: the greatest integer smaller than or equal to s and $s^* = s [s]$.

For $1 \le p \le \infty$, p' = p/(p-1). T^t is the formal transpose of T.

2. Function spaces

2.1. Definitions and preliminaries. Let $\varphi \in \mathcal{S}(\mathbb{R}^n)$ be supported in the ball $|\xi| \leq 1$ and satisfy $\varphi(\xi) = 1$ for $|\xi| \leq 1/2$. The function $\psi(\xi) = 1$ $\varphi(\xi/2) - \varphi(\xi)$ is C^{∞} , supported in $\{1/2 \le |\xi| \le 2\}$ and satisfies the identity $\sum_{j\in\mathbb{Z}}\psi(2^{-j}\xi)=1$ for $\xi\neq 0$. We denote by Δ_j and S_j the convolution operators with symbols $\psi(2^{-j}\xi)$ and $\varphi(2^{-j}\xi)$, respectively.

For $s \in \mathbb{R}$, $1 and <math>1 \le q \le \infty$ the homogeneous Besov space is defined by

(2.1)
$$||f||_{\dot{B}_{p}^{s,q}} = \left(\sum_{j \in \mathbb{Z}} 2^{sjq} ||\Delta_{j} f||_{p}^{q}\right)^{1/q}$$

with standard modifications if $q = \infty$. The inhomogeneous Besov space $B_v^{s,q}$ is defined by the finiteness of the norm

(2.2)
$$||f||_{B_p^{s,q}} = ||S_0(f)||_p + \left(\sum_{j>1} 2^{sjq} ||\Delta_j f||_p^q\right)^{1/q}.$$

For $s \in \mathbb{R}$, $1 \leq p < \infty$ and $1 \leq q \leq \infty$, the homogeneous and inhomogeneous Triebel-Lizorkin spaces, respectively, are defined by

(2.3)
$$||f||_{\dot{F}_{p}^{s,q}} = \left\| \left(\sum_{j \in \mathbb{Z}} 2^{sqj} |\Delta_{j} f|^{q} \right)^{1/q} \right\|_{p}$$

and

(2.4)
$$||f||_{F_p^{s,q}} = ||S_0(f)||_p + \left\| \left(\sum_{j>1} 2^{sqj} |\Delta_j f|^q \right)^{1/q} \right\|_p,$$

respectively, with usual modification if $q = \infty$. The BMO-Triebel-Lizorkin spaces $\dot{F}_{\infty}^{s,q}$ will be given in Section 3.

The following properties are known:

1)
$$F_p^{s,q} = L^p \cap \dot{F}_p^{s,q}$$
 and $B_p^{s,q} = L^p \cap \dot{B}_p^{s,q}$ if $s > 0$;

2)
$$\dot{F}_{\mathfrak{p}}^{s,q} \subset \dot{B}_{\mathfrak{p}}^{s,q}$$
 and $F_{\mathfrak{p}}^{s,q} \subset B_{\mathfrak{p}}^{s,q}$ if $p \leq q$;

3)
$$B_p^{s,q} \subset F_p^{s,q}$$
 and $B_p^{s,q} \subset F_p^{s,q}$ if $q \leq p$;
4) $B_p^{s,q} \cup F_p^{s,q} \subset B_p^{t,1}$ if $t < s$.

4)
$$B_p^{s,q} \cup F_p^{s,q} \subset B_p^{t,1}$$
 if $t < s$

Note that the spaces $\dot{F}_{p}^{s,q}$ and $\dot{B}_{p}^{s,q}$ consist of distributions modulo polynomials. The realizations of these spaces can be found in [2]. In particular, for 0 < s < n/p, we have $\dot{F}_p^{s,2} = I_s(L^p(\mathbb{R}^n))$ (modulo polynomials), where

(2.5)
$$I_s(f)(x) = \int \frac{f(y)}{|x - y|^{n-s}} \, dy$$

denotes the Riesz potential.

2.2. The atomic and molecular decompositions. In [7], [8], Frazier and Jawerth have shown that the spaces $\dot{B}^{s,q}_p$ and $\dot{F}^{s,q}_p$ can be decomposed in terms of building blocks of smooth atoms, and similarly into more general building blocks of smooth molecules. This decomposition is related to wavelet theory [14]. For $j \in \mathbb{Z}$ and $k \in \mathbb{Z}^n$ we denote by $Q_{j,k}$ the dyadic cube

$$Q_{j,k} = \{x \in \mathbb{R}^n : 2^j x - k \in [0,1[^n]\}.$$

Let $s \in \mathbb{R}$, $j \in \mathbb{Z}$ and $k \in \mathbb{Z}^n$. A smooth s-atom associated with the cube $Q_{j,k}$ is a function $a_{j,k} \in \mathcal{D}(\mathbb{R}^n)$ with support in $3Q_{j,k}$ that satisfies

(2.6)
$$\int x^{\gamma} a_{j,k}(x) dx = 0 \quad \text{if } |\gamma| \le \max([-s], 0) + 1,$$

(2.7)
$$|\partial^{\gamma} a_{j,k}(x)| \leq 2^{j|\gamma|} \quad \text{if } |\gamma| \leq \max([s], 0) + 1.$$

Let M > n, $N \in \mathbb{N} \cup \{-1\}$ and $\delta > 0$. A smooth (δ, M, N) -molecule concentrated on $Q_{j,k}$ is a function $m_{j,k}$ which satisfies

(2.8)
$$\int x^{\gamma} m_{j,k}(x) dx = 0 \quad \text{if } |\gamma| \leq N,$$

(2.9)
$$|\partial^{\gamma} m_{j,k}(x)| \le C 2^{j|\gamma|/n} (1 + 2^{j}|x - x_{Q}|)^{-M}$$
 if $|\gamma| \le [\delta]$,

$$(2.10) |\partial^{\gamma} m_{j,k}(x) - \partial^{\gamma} m_{j,k}(x')| \le C 2^{j|\gamma|/n} |x - x'|^{\delta^*} (1 + 2^j |x - x_{j,k}|)^{-M}.$$

In [7] and [8] the following theorems may be found.

THEOREM 1. Let $s \in \mathbb{R}$ and $1 \leq p, q \leq \infty$. Then any element f of $\dot{B}_p^{s,q}$ and $\dot{F}_p^{s,q}$ can be decomposed as $f = \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^n} c_{j,k} a_{j,k}$, where $a_{j,k}$ is a smooth s-atom. Moreover,

(2.11)
$$\left(\sum_{j \in \mathbb{Z}} 2^{sqj} 2^{-njq/p} \left(\sum_{k \in \mathbb{Z}^n} |c_{j,k}|^p \right)^{q/p} \right)^{1/q} \le C \|f\|_{\dot{B}^{s,q}_p},$$

and for $1 \leq p < \infty$, we have

(2.12)
$$\left\| \left(\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^n} 2^{sqj} |c_{j,k}|^q |\chi_{Q_{j,k}}(x)|^q \right)^{1/q} \right\|_p \le C \|f\|_{\dot{F}_p^{s,q}}.$$

THEOREM 2. Let $N \in \mathbb{Z}$, M > n and $\delta > 0$. For any collection $(m_{j,k})_{j,k}$ of (δ, M, N) -molecules concentrated on $Q_{j,k}$ and for any $s \in \mathbb{R}$ and $1 \le p, q \le \infty$ with $-N-1 < s < \delta$ we have

$$(2.13) \quad \left\| \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^n} c_{j,k} m_{j,k} \right\|_{\dot{B}^{s,q}_p} \le C \left(\sum_{j} 2^{sjq} 2^{-njq/p} \left(\sum_{k} |c_{j,k}|^p \right)^{q/p} \right)^{1/q}.$$

If in addition $1 \le p < \infty$, then

$$(2.14) \qquad \left\| \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^n} c_{j,k} m_{j,k} \right\|_{\dot{F}_p^{s,q}}$$

$$\leq C \left\| \left(\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^n} 2^{sqj} |c_{j,k}|^q |\chi_{Q_{j,k}}(x)|^q \right)^{1/q} \right\|_p.$$

3. BMO-Triebel-Lizorkin spaces. To give the definition of the BMO-Triebel-Lizorkin space $\dot{F}^{s,q}_{\infty}$, let us recall at first the definition of Carleson measures. We shall say that a sequence of positive Borel measures $(\nu_j)_{j\in\mathbb{Z}}$ is a Carleson measure in $\mathbb{R}^n\times\mathbb{Z}$ if there exists a positive constant C>0 such that

$$(3.1) \sum_{j>k} \nu_j(B) \le C|B|$$

for all $k \in \mathbb{Z}$ and all euclidean balls B with radius 2^{-k} , where |B| is the Lebesgue measure of B.

The homogeneous BMO-Triebel-Lizorkin space $\dot{F}_{\infty}^{s,q}$ $(1 \leq q < \infty)$ is the space of all distributions b for which the sequence $(2^{sjq}|\Delta_j(b)(x)|^q dx)_j$ is a Carleson measure (see [8]). The norm of b in $\dot{F}_{\infty}^{s,q}$ is given by

(3.2)
$$||b||_{\dot{F}^{s,q}_{\infty}} = \sup \left(\frac{1}{|B|} \sum_{j>k} \int_{B} 2^{sjq} |\Delta_{j}(b)(x)|^{q} dx \right)^{1/q},$$

where the supremum is taken over all $k \in \mathbb{Z}$ and all balls B with radius 2^{-k} . For $q = \infty$, we set $\dot{F}_{\infty}^{s,\infty} = \dot{B}_{\infty}^{s,\infty}$. In the inhomogeneous case, the BMO-Triebel-Lizorkin spaces were studied using different methods in [20].

When q=2, the space $\dot{F}_p^{s,2}$ is the Sobolev space $(1 and the space <math>\dot{F}_1^{s,2}$ is the Hardy–Sobolev space. The space $\dot{F}_{\infty}^{0,2}$ is (modulo polynomials) the BMO space. More generally, $\dot{F}_{\infty}^{s,2}$ is (modulo polynomials) the BMO-Sobolev space considered by Strichartz [18].

In the tradition of the theory of singular integral operators, the space BMO is characterized in terms of the paraproduct π of J. M. Bony, which is defined for two functions f, g by

(3.3)
$$\pi(g,f) = \pi_g(f) = \sum_{j \in \mathbb{Z}} \Delta_j(g) S_{j-3}(f).$$

It is a well-known fact that, for $b \in \dot{B}_{\infty}^{0,\infty}$, π_b is bounded on L^2 if and only if $b \in \dot{F}_{\infty}^{0,2}$. The connection between the paraproduct π and $\dot{F}_{\infty}^{0,p}$ is the following [25].

THEOREM 3. Let $s \in \mathbb{R}$, $b \in \dot{B}_{\infty}^{s,\infty}$ and 1 .

- 1) If $b \in \dot{F}_{\infty}^{s,p}$, then π_b is bounded from L^p into $\dot{B}_{p}^{s,p}$.
- 2) If π_b is bounded from $\dot{B}_p^{0,1}$ into $\dot{B}_p^{s,p}$, then $b \in \dot{F}_{\infty}^{s,p}$.

COROLLARY 1. Let $s \in \mathbb{R}$, $b \in \dot{B}_{\infty}^{s,\infty}$, $1 and <math>1 \le q \le 2$. Then $b \in \dot{F}_{p}^{s,p}$ if and only if the operator π_{b} is bounded from $\dot{F}_{p}^{0,q}$ into $\dot{B}_{p}^{s,p}$.

Remark 1. Note that $\dot{F}_{\infty}^{s,q} \subset \dot{B}_{\infty}^{s,\infty}$ and $\dot{B}_{\infty}^{0,\infty} \cap \dot{B}_{\infty}^{t,\infty} \subset \dot{F}_{\infty}^{s,q}$ if 0 < s < t. In particular, $L^{\infty} \cap \dot{B}_{\infty}^{t,\infty} \subset \dot{F}_{\infty}^{s,q}$ if 0 < s < t. More generally, if 0 < s < t

and $b \in \dot{B}_{\infty}^{0,\infty} \cap \dot{B}_{\infty}^{t,\infty}$, then π_b is bounded from L^p into $\dot{B}_p^{s,1}$. In fact,

$$\sum_{j \in \mathbb{Z}} 2^{sj} \|\Delta_j(b) S_{j-3}(f)\|_p \le C \|f\|_p \sum_{j \in \mathbb{Z}} 2^{sj} \|\Delta_j(b)\|_{\infty}.$$

Furthermore, $\|\Delta_j(b)\|_{\infty} \leq C2^{-tj}\|b\|_{\dot{B}^{t,\infty}_{\infty}}$ for $j \geq 0$, and $\|\Delta_j(b)\|_{\infty} \leq C\|b\|_{\dot{B}^{0,\infty}_{\infty}}$ for $j \leq 0$. Since 0 < s < t, it follows that

$$\|\pi_b(f)\|_{\dot{B}^{s,1}_p} \le C(\|b\|_{\dot{B}^{0,\infty}_{\infty}} + \|b\|_{\dot{B}^{t,\infty}_{\infty}})\|f\|_p.$$

Remark 2. The paraproduct π_b is bounded from $\dot{A}_p^{s,q}$ into $\dot{A}_p^{s+t,q}$ if $b \in \dot{B}_{\infty}^{t,\infty}$ and s < 0. In fact, for the Besov spaces we obtain, in view of the almost orthogonality [21],

$$\|\pi_b(f)\|_{\dot{B}^{s+t,q}_p} \le C\Big(\sum_{j\in\mathbb{Z}} 2^{(s+t)jq} \|\Delta_j(b)S_{j-3}(f)\|_p^q\Big)^{1/q}.$$

Moreover, $||S_{j-3}(f)||_p \leq \sum_{k \leq j} ||\Delta_k(f)||_p$. Hence

$$\|\pi_b(f)\|_{\dot{B}^{s+t,q}_p} \le C\|b\|_{\dot{B}^{t,\infty}_\infty} \Big(\sum_{j\in\mathbb{Z}} 2^{sjq'} \Big(\sum_{k\le j} \|\Delta_k(f)\|_p\Big)^q\Big)^{1/q}.$$

The condition s < 0 guarantees that $\|\pi_b(f)\|_{\dot{B}^{s+1,q}_p} \le C\|b\|_{\dot{B}^{s,q}_\infty}\|f\|_{\dot{B}^{s,q}_p}$. Finally, one can prove the boundedness in the case of Triebel–Lizorkin spaces in the same way.

4. Singular integral operators

4.1. Weak boundedness properties. We denote by \mathcal{G} the group of affine transformations $\lambda(x) = u + tx$ with t > 0 and $u \in \mathbb{R}^n$. The action of λ on $\mathcal{D}(\mathbb{R}^n)$ is defined by

$$f_{\lambda}(x) = f(\lambda^{-1}(x)) = f\left(\frac{x-u}{t}\right).$$

Let T be a bounded linear operator from $\mathcal{D}(\mathbb{R}^n)$ into $\mathcal{D}'(\mathbb{R}^n)$. Then T_{λ} is defined by $\langle T_{\lambda}f,g\rangle = t^{-n}\langle Tf_{\lambda},g_{\lambda}\rangle$, and the kernel of T_{λ} is given by $K_{\lambda}(x,y) = t^n K(tx+u,ty+u)$.

In Lemma 2 below, we shall establish that if $T \in SIO(s, \delta)$ is bounded from L^2 into $\dot{F}_2^{s,2}$, then T has the following well known "weak boundedness property": For each bounded subset \mathcal{B} of $\mathcal{D}(\mathbb{R}^n)$ there exists a constant $C_{\mathcal{B}} > 0$ such that

$$(4.1) |\langle T_{\lambda}f, g \rangle| \le t^{s}C_{\mathcal{B}} \text{for } f, g \in \mathcal{B}, \ \lambda \in \mathcal{G}.$$

If (4.1) holds for T, we say that T has the weak boundedness property of order s, or simply, T has WBP(s). We write $T \in \text{WBP}(s)$. Note that for s > 0,

the pointwise multipliers do not have WBP(s). This is natural because the pointwise multipliers from L^2 to $\dot{F}_2^{s,2}$ are trivial if s > 0.

LEMMA 1. If $T \in SIO(s, \delta)$ where s > 0, then $T \in WBP(s)$ if and only if

$$(4.2) T(f)(x) = \int K(x,y)f(y) dy$$

for all $f \in \mathcal{D}(\mathbb{R}^n)$. Further, the integral is absolutely convergent.

Proof. We prove the "if" part. Let \mathcal{B} be a bounded subset of $\mathcal{D}(\mathbb{R}^n)$ and $\lambda \in \mathcal{G}$ with $\lambda(x) = tx + u$. By (4.2) we have

$$|\langle T_{\lambda}(f), g \rangle| \leq Ct^{s} \iint |x - y|^{-n+s} |f(y)|g(x)| dx dy.$$

Since s > 0, it follows that $|\langle T_{\lambda}(f), g \rangle| \leq Ct^s C_{\mathcal{B}}$ for $f, g \in \mathcal{B}$. Next we prove the "only if" part. We shall show that

$$\langle K, g \otimes f \rangle = \iint_{x \neq y} K(x, y) g(x) f(y) dx dy$$

for $f,g \in \mathcal{D}(\mathbb{R}^n)$, where the integral on the right hand side is absolutely convergent. Let $\theta \in \mathcal{D}(\mathbb{R}^n)$ with $\theta = 1$ on the ball B(0,1). Further, we suppose

$$\theta(x) = \theta_1 * \theta_2(x) = \int \theta_1(x-z)\theta_2(z) dz,$$

where $\theta_i \in \mathcal{D}(\mathbb{R}^n)$, i = 1, 2. We set $\omega_{\varepsilon}(x, y) = \theta((x - y)/\varepsilon)$ for $\varepsilon > 0$. Then $\langle T(f), g \rangle = \langle K, \omega_{\varepsilon} g \otimes f \rangle + \langle K, (1 - \omega_{\varepsilon}) g \otimes f \rangle$.

Hence we must show that $\lim_{\varepsilon\to 0}\langle K, \omega_{\varepsilon}g\otimes f\rangle=0$. Now we observe that

$$\omega_{\varepsilon}(x,y) = \varepsilon^{-n} \int_{|z| \le A} \theta_1 \left(\frac{x-z}{\varepsilon} \right) \theta_2 \left(\frac{z-y}{\varepsilon} \right) dz$$

for some A > 0. Thus it follows that

$$|\langle K, \omega_{\varepsilon} g \otimes f \rangle| \le \varepsilon^{-n} \int_{|z| \le A} |\langle T(f_{\varepsilon,z}), g_{\varepsilon,z} \rangle| dz,$$

where $f_{\varepsilon,z}(y) = \theta_2((z-y)/\varepsilon)f(y)$ and $g_{\varepsilon,z}(x) = \theta_2((x-z)/\varepsilon)g(x)$. In addition, we have

$$\langle T(f_{\varepsilon,z}), g_{\varepsilon,z} \rangle = \varepsilon^n \langle T_{\lambda}(F_{\varepsilon,z}), G_{\varepsilon,z} \rangle,$$

where $\lambda(x) = \varepsilon x + z$, $F_{\varepsilon,z}(y) = \theta_2(-y)f(\varepsilon y + z)$ and $G_{\varepsilon,z}(x) = \theta_1(x)f(\varepsilon x + z)$. But the set

$$\{F_{\varepsilon,z}: 0<\varepsilon<1, \ |z|\leq A\}\cup \{G_{\varepsilon,z}: 0<\varepsilon<1, \ |z|\leq A\}$$

is a bounded subset of $\mathcal{D}(\mathbb{R}^n)$. By WBP(s) we obtain

$$|\langle T(f_{\varepsilon,z}), g_{\varepsilon,z} \rangle| \leq C \varepsilon^{n+s},$$

which implies $|\langle K, \omega_{\varepsilon} g \otimes f \rangle| \leq C \varepsilon^s$. Hence $\lim_{\varepsilon \to 0} \langle K, \omega_{\varepsilon} g \otimes f \rangle = 0$.

207

Remark 3. Let s>0 and $T\in \mathrm{WBP}(s).$ In the same way as above, one can prove that

$$\langle K, F \rangle = \iint_{x \neq y} K(x, y) F(x, y) dx dy$$

for all $F \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R}^n)$. The integral on the right-hand side is absolutely convergent.

LEMMA 2. For $s \ge 0$ we have the following.

1) Let $b \in \dot{B}_{\infty}^{s,\infty}$, $\delta > 0$, $N \in \mathbb{N}$ and $|\gamma| \leq [s]$. Then $\pi_b \in SIO(s, \delta) \cap WBP(s)$ and $(\partial^{\gamma}\pi_b)^t \in SIO(s - |\gamma|, N)$.

2) Let $l \in \mathbb{R}$, $1 \leq p, q \leq \infty$ and $T \in SIO(s, \delta)$. If T is bounded from $\dot{A}_p^{l,q}$ into $\dot{A}_p^{s+l,q}$, then $T \in WBP(s)$.

Proof. We prove $\pi_b \in \mathrm{SIO}(s,\delta)$. Observe that the kernel of π_b has the form

$$K(x,y) = \sum_{j \in \mathbb{Z}} 2^{nj} \Delta_j(b)(x) \check{\varphi}(2^j(x-y)).$$

Hence the proof is the same as in the case s = 0 (see [23]). By Remark 2 the operator π_b is bounded from $\dot{A}_p^{l,q}$ into $\dot{A}_p^{s+l,q}$, where l < 0. Therefore it will be sufficient to establish part 2).

In the case $0 \le s + l < n/p$, we have

$$|\langle T_{\lambda}(f), g \rangle| \leq C t^s ||f||_{\dot{A}^{l,q}_p} ||g||_{\dot{A}^{-s-l,q'}_{p'}}$$

for all $f,g \in \mathcal{D}(\mathbb{R}^n)$. Hence $T \in \mathrm{WBP}(s)$. In the case $s+l \geq n/p$, note that a necessary condition for $g \in \dot{A}_{p'}^{-s-l,q'} \cap \mathcal{D}(\mathbb{R}^n)$ is $\int g(x) \, dx = 0$. Therefore it is not possible to obtain an estimate as in the first case. To avoid this difficulty we proceed as follows. Let \mathcal{B} be a bounded subset of $\mathcal{D}(\mathbb{R}^n)$. There exists r > 0 such that $\sup f \subset B(0,r)$ for all $f \in \mathcal{B}$. Fix $a \in \mathbb{R}^n$ with |a| = 3r and define

$$\Delta_a^1(g)(x) = g(x) - g(x - a), \qquad \Delta_a^k(g) = \Delta_a(\Delta_a^{k-1}(g)).$$

We set $\nu=[s+l-n/p]$ and $g^{\nu}=\Delta_a^{\nu+1}(g)$. It is easy to show that $\int x^{\alpha}g^{\nu}(x)\,dx=0$ for $|\alpha|\leq \nu$. Thus $g^{\nu}\in \dot{A}_{p'}^{-s-l,q'}$. Now we have

$$|\langle T(f_{\lambda}), g_{\lambda}^{\nu} \rangle| \le C ||f_{\lambda}||_{\dot{A}_{p}^{l,q}} ||g_{\lambda}^{\nu}||_{\dot{A}_{p'}^{-s-l,q'}} \le C t^{n+s}$$

for $f, g \in \mathcal{B}$. From supp $f \cap \text{supp}(g_{\nu} - g) = \emptyset$ it follows that

$$\langle T_{\lambda}(f), g_{\nu} - g \rangle = \iint K_{\lambda}(x, y) f(y) (g_{\nu} - g)(x) dx dy.$$

Moreover, if $x \in \text{supp}(g_{\nu} - g)$ and $y \in \text{supp } f$, we have $|x - y| \ge r$. Now $T \in \text{SIO}(s, \delta)$ implies that $|\langle T_{\lambda}(f), g_{\nu} - g \rangle| \le Ct^s ||f||_1 ||g||_1$. The proof is finished.

4.2. Action on polynomials. Let $p \in \mathbb{N}$. We denote by \mathcal{D}_p the function space consisting of all $f \in \mathcal{D}(\mathbb{R}^n)$ such that $\int f(x)x^{\alpha} dx = 0$ for $|\alpha| \leq p$.

LEMMA 3. Let $0 \le s < \delta$. Assume that $T \in SIO(s, \delta) \cap WBP(s)$ and $g \in \mathcal{D}_p$ with either $p \le [\delta]$ for $\delta \notin \mathbb{N}$ or $p \le \delta - 1$ for $\delta \in \mathbb{N}$. Then

$$(4.3) |T^t(g)(y)| \le C|y|^{-n-r+s} as |y| \to \infty,$$

where either r = p + 1 if $p \le \delta - 1$ or $r = \delta$ if $p = [\delta]$.

Proof. Let $x_0 \in \text{supp } g$ be fixed. Then we define

$$K_p(x,y) = K(x,y) - \sum_{|\alpha| \le p} \frac{(x-x_0)^{\alpha}}{\alpha!} (\partial_x^{\alpha} K)(x_0,y).$$

Now let $y \in \mathbb{R}^n$ be such that $|x_0| \leq \frac{1}{2}|y|$ and $|x-x_0| \leq \frac{1}{2}|x-y|$ for $x \in \text{supp } g$. The hypothesis $T \in SIO(s, \delta)$ implies that

$$|K_p(x,y)| \le C|x-x_0|^r|x_0-y|^{-n-r+s} \le C|x-x_0|^r|y|^{-n-r+s}$$

for $x \in \text{supp } f$. Indeed, we have $T^t(g)(y) = G(y) = \int K(x,y)g(x) dx$ for $y \notin \text{supp } g$. Using the fact that $g \in \mathcal{D}_p$, we obtain $G(y) = \int K_p(x,y)g(x) dx$. Thus

$$|G(y)| \le C|y|^{-n-r+s} \int |g(x)| \cdot |x-x_0|^r dx$$
 as $|y| \to \infty$.

The lemma is proved.

Next we define the natural action on polynomials. We put

$$\mathcal{O}^q = \{ f \in C^\infty(\mathbb{R}^n) : |f(x)| \le C|x|^q \text{ as } |x| \to \infty \}.$$

Now we choose $q \in \mathbb{R}$ such that q+s-r < 0, where either r=p+1 for $p \le \delta-1$ or $r=\delta$ for $p=[\delta]$. If $f \in \mathcal{O}^q$ and $g \in \mathcal{D}_p$, then $\langle Tf,g \rangle$ can be defined as follows. Let a+b=1 be a partition of unity, where $a \in \mathcal{D}(\mathbb{R}^n)$ with a=1 on a neighbourhood of supp g. Writing $\langle f, T^t(g) \rangle = \langle T(af), g \rangle + \langle bf, T^t(g) \rangle$ we see that $\langle T(af), g \rangle$ is well defined and, by Lemma 3, the integral

$$\langle bf, T^t(g) \rangle = \int b(x)f(x)T^t(g)(x) dx$$

is absolutely convergent. It is easy to show that $\langle f, T^t(g) \rangle$ is independent of the choice of a and b. Now we put $\langle Tf, g \rangle = \langle f, T^t(g) \rangle$. In the particular case q = 0, we conclude that T(1) is defined modulo polynomials of degree at most [s].

To obtain the regularity of T(1) we apply the following result.

LEMMA 4. Let $T \in SIO(s, \delta) \cap WBP(s)$, where s > 0. Then $T(1) \in \dot{B}_{\infty}^{s,\infty}$.

Proof. Let $h \in \mathcal{D}(\mathbb{R}^n)$ be supported in the unit ball, and satisfy

$$\int h(x)x^{\gamma}\,dx=0$$

for $|\gamma| \leq [s] + 1$ and $\hat{h}(\xi) \neq 0$ for $1/2 \leq |\xi| \leq 2$. It is a well known fact that the space $\dot{B}_p^{s,q}$ can be characterized by the operators $(H_j)_{j\in\mathbb{Z}}$, where $H_j(f) = h_j * f$ and $h_j(x) = 2^{nj}h(2^jx)$ (see [16], pp. 155–158). We have

$$||f||_{\dot{B}^{s,q}_{p}} \simeq \Big(\sum_{j\in\mathbb{Z}} 2^{sjq} ||H_{j}(f)||_{p}^{q}\Big)^{1/q}.$$

In particular, $||f||_{\dot{B}^{s,\infty}_{\infty}} \simeq \sup_{j\in\mathbb{Z}} (2^{sj} ||H_j(f)||_{\infty})$. Replacing h(x) by h(-x), we shall show that

$$|\langle T(1), \mathcal{U}_z h_j \rangle| \le C 2^{-sj}$$
 for $j \in \mathbb{Z}$ and $z \in \mathbb{R}^n$,

where $\mathcal{U}_z(f)(x) = f(x-z)$. Let us go back to the definition of T(1). Let $a \in \mathcal{D}(\mathbb{R}^n)$ be given such that a(x) = 1 for $|x| \leq 2$ and a(x) = 0 for $|x| \geq 3$. We have $\langle T(1), \mathcal{U}_z h_j \rangle = 2^{jn} [\langle T(a_\lambda), h_\lambda \rangle + \langle b_\lambda, T^t(h_\lambda) \rangle]$ if $\lambda(x) = z + 2^{-j}x$. Now $T \in \mathrm{WBP}(s)$ implies $|\langle T(a_\lambda), h_\lambda \rangle| \leq C2^{-(n+s)j}$. The same arguments as in the proof of Lemma 3 yield

$$|T^t(h_{\lambda})(y)| \le |y-z|^{-n-\delta+s} \int |x-z|^{\delta} |h(2^j(x-z))| dx$$
 for $2^j |y-z| \ge 3$ and $|\langle b_{\lambda}, T^t(h_{\lambda}) \rangle| \le C2^{-(n+s)j}$. The proof is finished.

4.3. Characterizations of boundedness

THEOREM 4. Let $0 < s < \delta$ and $1 \le p, q \le \infty$. Assume that T belongs to $SIO(s,\delta) \cap WBP(s)$ and satisfies $(\partial^{\gamma}T)^t \in SIO(s-[s],\delta-[s])$ for $|\gamma|=[s]$. If T(1)=0, then T is bounded from $A^{0,q}_p$ into $A^{s,q}_p$.

Let $T \in SIO(s, \delta) \cap WBP(s)$ with s > 0 and $b = T(1) \in \dot{B}_{\infty}^{s,\infty}$. If the operator $T_0 = T - \pi_b$ satisfies the hypothesis of Theorem 4, then we obtain the following corollary.

THEOREM 5. Let $0 < s < \delta$ and $1 \le p,q \le \infty$. Suppose that $T \in SIO(s,\delta)$ and $(\partial^{\gamma}T)^{t} \in SIO(s-[s],\delta-[s])$ for $|\gamma|=[s]$. Then T is bounded from $\dot{A}_{p}^{0,q}$ into $\dot{A}_{p}^{s,q}$ if and only if $T \in WBP(s)$ and π_{b} is bounded from $\dot{A}_{p}^{0,q}$ into $\dot{A}_{p}^{s,q}$, where b=T(1). In particular, T is bounded from L^{2} into $\dot{B}_{2}^{s,2}$ if and only if $T \in WBP(s)$ and $b \in \dot{F}_{\infty}^{s,2}$.

Note that $L^p \subset \dot{B}^{0,p}_p$ if $p \geq 2$. In view of Theorem 3, we obtain

COROLLARY 2. Assume that $T \in SIO(s, \delta)$ and $(\partial^{\gamma} T)^{t} \in SIO(s - [s], \delta - [s])$ for $|\gamma| = [s]$, where $0 < s < \delta$.

- 1) Let $2 \leq p < \infty$. Then T is bounded from L^p into $\dot{B}_p^{s,p}$ if and only if $T \in \mathrm{WBP}(s)$ and $b \in \dot{F}_{\infty}^{s,p}$.
- 2) Let 1 . Then <math>T is bounded from $\dot{B}^{0,p}_p$ into $\dot{B}^{s,p}_p$ if and only if $T \in \mathrm{WBP}(s)$ and $b \in \dot{F}^{s,p}_{\infty}$.

COROLLARY 3. Let $1 and <math>0 < s < \delta$. Suppose that $T \in SIO(s,\delta)$ and $(\partial^{\gamma}T)^t \in SIO(s-[s],\delta-[s])$ for $|\gamma|=[s]$, where s>0. If T is bounded from $\dot{B}^{0,1}_p$ into $\dot{B}^{s,p}_p$, then $T(1) \in \dot{F}^{s,p}_\infty$. Moreover, T is bounded from L^{∞} into $\dot{F}^{s,p}_\infty$. Here L^{∞} is equipped with the weak topology $\sigma(L^{\infty},L^1)$ and $\dot{F}^{s,p}_\infty$ is equipped with the weak topology $\sigma(\dot{F}^{s,p}_\infty,\dot{F}^{-s,p'}_1)$.

4.4. Proof of Theorem 4. Before proceeding to the proof of Theorem 4, we observe that if $T \in SIO(s, \delta) \cap WBP(s)$ and 0 < s < 1, then

(4.4)
$$T(f)(x) = \int K(x,y)(f(y) - f(x))\theta(y) \, dy + \int K(x,y)f(y)(1 - \theta(y)) \, dy + f(x)T(\theta)(x)$$

for all $\theta, f \in \mathcal{D}(\mathbb{R}^n)$, where all integrals on the right-hand side are absolutely convergent. The following lemma is due to Meyer [14] for s = 0, and it is a corollary of (4.4) for 0 < s < 1.

LEMMA 5. Let $0 \le s < 1$ and $s < \delta$. Assume that $T \in SIO(s, \delta) \cap WBP(s)$ with T(1) = 0. Let $x, x' \in \mathbb{R}^n$, $x \ne x'$, and let $\theta \in \mathcal{D}(\mathbb{R}^n)$ be such that $\theta(y) = 1$ for $|x' - y| \le 2t$ and $\theta(y) = 0$ for $|x' - y| \ge 4t$, where t = |x - x'|. Then

$$(4.5) T(g)(x) - T(g)(x')$$

$$= \int K(x,y)(g(y) - g(x))\theta(y) dy$$

$$- \int K(x',y)(g(y) - g(x'))\theta(y) dy$$

$$+ \int (K(x,y) - K(x',y))(g(y) - g(x'))(1 - \theta(y)) dy$$

$$+ (g(x) - g(x'))T(\theta)(x)$$

for all $g \in \mathcal{D}(\mathbb{R}^n)$, where all integrals are absolutely convergent.

Proof of Theorem 4. First note that if $\alpha \in \mathbb{N}^n$, $|\alpha| \leq [s]$, and $T \in SIO(s, \delta) \cap WBP(s)$, then

$$\partial^{\alpha} T \in SIO(s - |s|, \delta - |\alpha|) \cap WBP(s - |\alpha|).$$

Hence we have to prove the theorem in the case $0 < s \le 1$. If s = 1, then the proof is a corollary of the David–Journé Theorem [9]. In fact, for $i = 1, \ldots, n$, we have $T_i = \partial^{e_i} T \in \mathrm{SIO}(0, \delta - 1) \cap \mathrm{WBP}(0)$ and $T_i^t \in \mathrm{SIO}(0, \delta - 1)$. Moreover, $T_i(1) = 0$ and $T_i^t(1) = (T^t \partial^{e_i})(1) = 0$. Therefore T_i is bounded on $\dot{A}_p^{0,q}$. It remains to prove the theorem when 0 < s < 1. To prove the boundedness of T from $\dot{A}_p^{0,q}$ into $\dot{A}_p^{s,q}$, we use the decomposition of the spaces $\dot{A}_p^{s,q}$ by smooth atoms and similarly by smooth molecules. Hence it is sufficient to show that T maps a "smooth atom" of $\dot{A}_p^{0,q}$ into a $(\delta, M, 1)$ -molecule. Applying translation and dilation we shall show that if a is a

Regularity of singular integral operators

211

"smooth atom" associated with the unit cube Q_0 , then T(a) is a $(\delta, M, 0)$ -molecule also associated with Q_0 .

We assume $\delta = 1$ and set M = n - s + 1. We show that

$$(4.6) |T(a)(x)| \le C(1+|x|)^{-M},$$

$$(4.7) |T(a)(x) - T(a)(x')| \le C|x - x'| \sup_{|z| \le |x - x'|} (1 + |z - x|)^{-M}.$$

First we prove (4.6). Let $|x| > 4\sqrt{n}$. Then from the equality $\int a(y) dy = 0$ we obtain

$$|T(a)(x)| \le C \int_{3Q_0} |K(x,y) - K(x,0)| \cdot |a(y)| \, dy.$$

We have $|y| \leq \frac{1}{2}|x|$ if $y \in 3Q_0$ and $T^t \in SIO(s,1)$, thus

$$|K(x,y) - K(x,0)| \le C|y| \cdot |x-y|^{-n+s-1}$$

It follows that

$$|T(a)(x)| \le C|x|^{-n+s-1} \le C(1+|x|)^{-M}$$
.

If $|x| \leq 4\sqrt{n}$, then we write

$$|T(a)(x)| \le C \int_{3Q_0} |x-y|^{-n+s} dy \le C \int_{6Q_0} |y|^{-n+s} dy.$$

Hence $|T(a)(x)| \leq C(1+|x|)^{-M}$.

Now we prove (4.7). Note that for $|x - x'| \ge 1$ we have

$$|T(a)(x) - T(a)(x')| \le |T(a)(x)| + |T(a)(x')|$$

$$\le C|x - x'|((1+|x|)^{-M} + (1+|x'|)^{-M}).$$

In the case |x - x'| < 1, we consider the following distinct possibilities:

1)
$$|x| > 6\sqrt{n}$$
, $|x'| > 6\sqrt{n}$. Then if $y \in 3Q_0$, we have

$$2|x - x'| \le 5\sqrt{n} \le |x - y|$$

and $|x-y| \ge |x|/2$. Thus we get

$$|T(a)(x) - T(a)(x')| \le C|x - x'| \int_{\Im Q_0} |x - y|^{-n+s-1} dy$$

 $\le C|x - x'|(1 + |x|)^{-M}.$

2)
$$|x| > 6\sqrt{n}$$
, $|x'| \le 6\sqrt{n}$. If $y \in 3Q_0$, we have

$$2|x - x'| \le 5\sqrt{n} \le |x - y|$$

and $|x-y| \ge |x|/2$. As in Case 1) we obtain

$$|T(a)(x) - T(a)(x')| \le C|x - x'|(1 + |x|)^{-M}.$$

3) $|x| \le 6\sqrt{n}$, $|x'| > 6\sqrt{n}$. The proof is the same as in Case 2).

4) $|x| \leq 6\sqrt{n}$, $|x'| \leq 6\sqrt{n}$. We consider $f \in \mathcal{D}(\mathbb{R}^n)$ with support in the ball B(0,4), and f(y) = 1 for $y \in B(0,2)$. Now we choose t = |x - x'| and we define $f^{x',t}(y) = f((x'-y)/t)$ for t > 0. Since T(1) = 0, it follows from Lemma 5 that

$$T(a)(x) - T(a)(x') = I_1 + I_2 + I_3 + I_4,$$

where

$$I_{1} = \int K(x, y)(a(y) - a(x)) f^{x',t}(y) dy,$$

$$I_{2} = -\int K(x', y)(a(y) - a(x')) f^{x',t}(y) dy,$$

$$I_{3} = \int (K(x, y) - K(x', y))(a(y) - a(x'))(1 - f^{x',t}(y)) dy,$$

$$I_{4} = (a(x) - a(x'))T(f^{x',t})(x).$$

Observe that

erve that
$$|I_1| \le C \int_{|x'-y| \le 4|x-x'|} |x-y|^{-n+s+1} dy \le C|x-x'|^{s+1} \le C|x-x'|,$$

and $|I_2|$ can be estimated in the same way. On the other hand,

$$|T(f^{x',t})(x)| \le C \int |x-y|^{-n+s} |f^{x',t}(y)| dy.$$

We have $|x| \le 6\sqrt{n}$ and $|x'| \le 6\sqrt{n}$. If $|x'-y| \le 4|x-x'|$, then we get $|x-y| \le 5|x-x'|$ and

$$|T(f^{x',t})(x)| \le C \int_{|x-y| \le 24\sqrt{n}} |x-y|^{-n+s} dy.$$

Thus $|I_4| \leq C|x-x'|$. Finally, we write

$$|I_3| \le C \int_{|x'-y| \ge 2|x-x'|} |x-x'| \cdot |x'-y|^{-n+s-1} |a(y)-a(x')| \, dy$$

$$\le C|x-x'|(A_1+A_2),$$

where

$$A_1 = \int_{|x'-y| \le 2} |x'-y|^{-n+s-1} |a(y) - a(x')| \, dy,$$

$$A_2 = \int_{|x'-y| \ge 2} |x'-y|^{-n+s-1} |a(y) - a(x')| \, dy.$$

From

$$A_1 \le C \|\nabla a\|_{\infty} \int_{|x'-y| \le 2} |x'-y|^{-n+s} \, dy,$$

$$A_2 \le 2 \|a\|_{\infty} \int_{|x'-y| \ge 2} |x'-y|^{-n+s-1} \, dy,$$

it follows that $|I_3| \le C|x - x'| \le C|x - x'|(1 + |x|)^{-M}$.

5. Applications

5.1. Fourier multipliers. Let $u \in \mathcal{S}'(\mathbb{R}^n)$ and T be the convolution operator T(f) = u * f. In order to show that $T \in SIO(s, \delta)$ we use the following lemma [14].

Lemma 6. Let s < n and suppose that \hat{u} is a C^{m+n+1} -function in $\mathbb{R}^n \setminus \{0\}$ which satisfies

(5.1)
$$|\partial^{\alpha}\hat{u}(\xi)| \leq C|\xi|^{-|\alpha|-s}$$
 for $\xi \neq 0$ and $|\alpha| \leq m+n+1$.

Then u is C^m in $\mathbb{R}^n \setminus \{0\}$, and $|\partial^{\alpha} u(x)| \leq C|x|^{-n-|\alpha|+s}$ for $x \neq 0$, $|\alpha| \leq m$.

The boundedness of T is given by the following result.

THEOREM 6. Let 0 < s < n, m > s and suppose that u satisfies (5.1). Then T(1) = 0, and T is bounded from $\dot{A}_p^{0,q}$ into $\dot{A}_p^{s,q}$.

By Theorem 4 we are led to prove that T(1)=0. To do so, we only need show that $\langle T(1), f \rangle = 0$ for all $f \in \mathcal{D}_{[s]}$. Let $\theta \in \mathcal{D}(\mathbb{R}^n)$ be such that $\theta(x) = 1$ for $|x| \leq 1$ and $\theta(x) = 0$ for $|x| \geq 2$. We write $\theta_j(x) = \theta(x/j)$ for $j \geq 1$ and observe that $\langle T(1), f \rangle = \lim_{i \to \infty} \langle T(\theta_i), f \rangle$. But

$$\langle T(\theta_j), f \rangle = C_n j^n \int \hat{u}(\xi) \hat{\theta}(j\xi) \check{f}(\xi) d\xi.$$

Since $f \in \mathcal{D}_{[s]}$ it follows that $\partial^{\alpha} \check{f}(0) = 0$ for $|\alpha| \leq [s]$ and $|\check{f}(\xi)| \leq C|\xi|^{[s]+1}$. Hence

$$|\langle T(\theta_j), f \rangle| \le Cj^n \int |\xi|^{-s+[s]+1} |\hat{\theta}(j\xi)| d\xi.$$

In particular, we have $\lim_{j\to\infty} \langle T(\theta_j), f \rangle = 0$.

Example. Let 0 < s < n. We consider the Riesz potential

$$I_s(f)(x) = \int \frac{f(y)}{|x - y|^{n-s}} dy.$$

Then $I_s(f) = u * f$, where $\hat{u}(\xi) = c_{n,s} |\xi|^{-s}$. By Theorem 6, I_s is bounded from $\dot{A}_p^{0,q}$ to $\dot{A}_p^{s,q}$. Now let $s \geq n$, and we consider $I_s(f)$ for $f \in \mathcal{D}(\mathbb{R}^n)$. To prove that I_s is bounded from $\dot{A}_p^{0,q}$ to $\dot{A}_p^{s,q}$ it is sufficient to show that $\partial^{\alpha} I_s$ is bounded from $\dot{A}_p^{0,q}$ into $\dot{A}_p^{s-m,q}$, for $\alpha \in \mathbb{N}^n$ with $|\alpha| = m$, 0 < s - m < n. But $\partial^{\alpha} I_s$ has the form

$$(\partial^{\alpha} I_s)(f) = \sum_{\beta \le m} u_{\alpha,\beta} * f,$$

where $u_{\alpha,\beta}$ satisfies (5.1). Hence $\partial^{\alpha}I_s$ is bounded from $\dot{A}^{0,q}_p$ to $\dot{A}^{s-m,q}_p$.

5.2. Pseudo-differential operators. Let $m \in \mathbb{R}$, $0 \le \varrho \le 1$. The Hörmander class $Op(S_{1,\rho}^m)$ is the class of operators whose symbols satisfy

 $(5.2) \quad |(\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma)(x, \xi)|$ $< C_{\alpha, \beta} (1 + |\xi|)^{m - |\beta| + \varrho|\alpha|}, \quad (x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n, \beta \in \mathbb{N}^n.$

It has been proved in [15] and [21] that pseudodifferential operators in the class $\operatorname{Op}(S^m_{1,\varrho})$ are bounded on Triebel–Lizorkin spaces $F^{s,q}_p$ provided that $\varrho < 1$. For some particular values of s,p and q, the case $\varrho = 1$ has also been considered by Bourdaud [3], Runst [17] and Torres [22] (see also [19]). In the case q=2 (the case of Sobolev spaces $F^{s,2}_p$), Bourdaud [3], Meyer [13] and Hörmander [10], [11] have shown that every pseudodifferential operator in the class $\operatorname{Op}(S^m_{1,1})$ maps $F^{s+m,2}_p$ into $F^{s,2}_p$ if s>0. Here we only consider the cases s=0 and m<0 for homogeneous spaces.

Similarly for $r \in]0, \infty]$ and $m \in \mathbb{R}$ we say that $T \in \operatorname{Op}(S^m_{1,1})(C^r)$ if for all $\beta \in \mathbb{N}^n$ and $(x, \xi) \in \mathbb{R}^n \times \mathbb{R}^n$, one has

 $(5.3) |(\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma)(x,\xi)| \le C_{\alpha,\beta} (1+|\xi|)^{m-|\beta|+|\alpha|} \text{for all } |\alpha| \le [r],$ and

 $(5.4) \quad |(\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma)(x,\xi) - (\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma)(x',\xi)| \le C_{\alpha,\beta} |x - x'|^{r^*} (1 + |\xi|)^{m - |\beta| + |\alpha|}$ for all $|\alpha| = [r]$.

If $T \in \operatorname{Op}(S^m_{1,1})(C^r)$, then it was shown in [1] that the kernel of T satisfies

$$(5.5) |(\partial_x^{\alpha} \partial_y^{\beta} K)(x, y)| \le C|x - y|^{-n - m - |\alpha| - |\beta|}$$

for $|\alpha| \leq [r]$ and

 $(5.6) \quad |(\partial_x^{\alpha} \partial_y^{\beta} K)(x,y) - (\partial_x^{\alpha} \partial_y^{\beta} K)(x',y)| \le C|x-x'|^{r^*}|x-y|^{-n-m-r-|\beta|}$ for $|\alpha| = [r]$.

THEOREM 7. Let r > 0, 0 < m < r, $T \in \operatorname{Op}(S_{1,1}^{-m})(C^r)$ and 1 .Then <math>T is bounded from L^p into $\dot{A}_p^{m,p}$ if $p \geq 2$, and from $\dot{B}_p^{0,p}$ into $\dot{A}_p^{m,p}$ if $p \leq 2$. In particular, T is bounded from $\dot{F}_p^{0,q}$ into $\dot{F}_p^{m,q}$ for all $1 \leq q \leq 2$.

The proof follows from the fact that $T \in WBP(s)$, $T(1)(x) = \sigma(x, 0)$, and $b(x) = \sigma(x, 0) \in L^{\infty} \cap \dot{B}_{\infty}^{r,\infty} \subset \dot{F}_{\infty}^{m,p}$.

5.3. Commutators. Our criterion does not apply to the Calderón commutators. Indeed, let $A \in \dot{B}_{\infty}^{s,\infty}$, 0 < s < 1, and let $T = R_j$ be one of the Riesz transforms in the *n*-dimensional euclidian space \mathbb{R}^n . The commutator [A,T](f) = AT(f) - T(Af) is of type SIO(s,s) but, in general, is not of type $SIO(s,\delta)$ with $0 < s < \delta$. For the study of these commutators the reader is referred to [24] and [25]. On the other hand, Theorem 4 can be applied as follows.

THEOREM 8. Let $0 \le s < 1$, $0 \le \varrho \le 1$ and $T \in \operatorname{Op}(S_{1,\varrho}^{1-s})$. Let A satisfy $\nabla A = (\partial A/\partial x_j)_j \in (L^{\infty})^n$. Then the commutator [A,T] is bounded from L^2 into $\dot{F}_2^{s,2}$.

For the case s=0 and $\varrho<1$ the proof is a consequence of David-Journé's Theorem (see [1], [14]). Using the same method as in the case s=0 and applying Theorem 4 we establish the result for the case 0< s<1. For this, it is enough to consider only the case $\varrho=1$. We will use the following lemma (see [1] and [14]).

LEMMA 7. Each $T \in \operatorname{Op}(S_{1,1}^{1-s})$ can written in the form

$$T = \sum_{j=1}^{n} T_j \circ \frac{\partial}{\partial x_j} + R,$$

where $T_j \in \operatorname{Op}(S_{1,1}^{-s})$ and R is an operator whose kernel H(x,y) satisfies

$$|\partial_x^{\alpha} \partial_y^{\beta} H(x,y)| \le C_{\alpha,\beta,N} (1+|x-y|)^{-N}$$

for $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$, $\alpha, \beta \in \mathbb{N}^n$ and $N \in \mathbb{N}$.

Proof of Theorem 8. The kernel K(x, y) of T satisfies

$$|\partial_x^{\alpha}\partial_y^{\beta}K(x,y)|$$

$$\leq C_{\alpha,\beta}|x-y|^{-n+s-1-|\alpha|-|\beta|}$$
 for $\alpha,\beta\in\mathbb{N}^n,(x,y)\in\mathbb{R}^n\times\mathbb{R}^n$.

It follows that $[A, T] \in SIO(s, 1)$ and $[A, T]^t \in SIO(s, 1)$. On the other hand, the property WBP(s) for [A, T] is a consequence of Lemma 1. Since s > 0, we have in analogy to [19],

$$T(f)(x) = \lim_{\varepsilon \to 0} \int_{|x-y| \ge \varepsilon} K(x,y) f(y) \, dy$$

for all $f \in \mathcal{D}(\mathbb{R}^n)$. We show that $[A, T](1) \in \dot{F}_{\infty}^{s,2}$. We write

$$[A,T](f) = \sum_{j=1}^{n} [A,T_j] \left(\frac{\partial f}{\partial x_j} \right) + \sum_{j=1}^{n} T_j \left(\frac{\partial A}{\partial x_j} f \right) + [A,R](f).$$

It follows that

$$[A,T](1) = -\sum_{j=1}^{n} T_j \left(\frac{\partial A}{\partial x_j} \right) + [R,A](1).$$

By Corollary 3 and the hypothesis $\partial A/\partial x_j \in L^{\infty}$, we deduce $T_j(\partial A/\partial x_j) \in \dot{F}^{s,2}_{\infty}$. Moreover,

$$|[R, A](1)(x)| \le \int |A(x) - A(y)| \cdot |H(x, y)| \, dy$$

$$\le C ||\nabla A||_{\infty} \int |x - y| (1 + |x - y|)^{-N} \, dy \le C ||\nabla A||_{\infty}.$$

Since $\partial [A,R](f)_{(n)} = \begin{bmatrix} A & \partial & B \end{bmatrix}_{(f)(n)} = \partial A_{(n)} B(f)$

$$\frac{\partial [A,R](f)}{\partial x_j}(x) = \left[A, \frac{\partial}{\partial x_j} \circ R\right](f)(x) - \frac{\partial A}{\partial x_j}(x)R(f)(x)$$

for $j=1,\ldots,n$, it follows that $\partial[A,R](1)/\partial x_j\in L^{\infty}$. Using Remark 1 we conclude that $[A,R](1)\in \dot{F}_{\infty}^{s,2}$.

- 6. Observations and remarks. Let $0 < s < \delta$. It is possible to study the boundedness of $SIO(s,\delta)$ from $\dot{A}_p^{t,q}$ into $\dot{A}_p^{s+t,q}$ for t > -s. In fact, in this case we assume that $s+t < \delta$. Using the same arguments as in [9], [12] and [23], we can define $T(x^{\alpha})$ for $|\alpha| < \delta$. Two possibilities have to be considered.
- a) The case t < 0. Then property WBP(s) shows that $b = T(1) \in \dot{B}_{\infty}^{s,\infty}$. If T(1) = 0 and $T \in \text{WBP}(s)$, then arguments similar to those used in the proof of Theorem 4 show that T is bounded from $\dot{A}_p^{t,q}$ into $\dot{A}_p^{s+t,q}$. Moreover, from the almost-orthogonality and the fact that t < 0 we obtain

$$\|\pi_b(f)\|_{\dot{A}_p^{s+t,q}} \le C\|b\|_{\dot{B}_{\infty}^{s,\infty}}\|f\|_{\dot{A}_p^{t,q}}.$$

Finally, we deduce that T is bounded from $\dot{A}_p^{t,q}$ into $\dot{A}_p^{s+t,q}$ if and only if $T \in \mathrm{WBP}(s)$.

b) The case t > 0. This case is more difficult than a). The first problem is the use of the function $T(x^{\alpha})$ for $|\alpha| \leq [t]$. In general, this function is not regular. To avoid this difficulty, we denote by M_j the multiplier operator by x_j and consider the commutator

$$\Gamma^{e_j}(T) = [T, M_j], \quad j = 1, \dots, n.$$

By induction we put

$$\Gamma^{\alpha+e_j}(T) = [\Gamma^{\alpha}(T), M_j].$$

Lemma 4 and [23] show that if $T \in SIO(s, \delta) \cap WBP(s)$, then

$$\Gamma^{\alpha}(T)(1) \in \dot{B}^{s+|\alpha|,\infty}_{\infty}$$

for all $|\alpha| < \delta$. Next we consider the case $b \in \dot{B}_{\infty}^{|\alpha|+s,\infty}$, $\alpha \in \mathbb{N}^n$, and the generalized paraproduct

$$\pi_b^{\alpha}(f) = \sum_{j \in \mathbb{Z}} \Delta_j(b) S_{j-3}(\partial^{\alpha} f).$$

Then π_b^{α} belongs to WBP(s, N) for all $N \in \mathbb{N}$. The criterion of the boundedness is the following. Suppose that $T \in SIO(s, \delta)$, $(\partial^{\gamma} T)^t \in SIO(s-[s], \delta-[s])$ for $|\gamma| = [s]$ and $0 < s + t < \delta$, where t > 0. Then the following properties are equivalent:

- (i) T is bounded from $\dot{A}_{p}^{t,q}$ into $\dot{A}_{p}^{s+t,q}$,
- (ii) $T \in WBP(s)$ and the operator

$$\sum_{|\alpha| \leq [t]} \frac{1}{\alpha!} \pi_{b_{\alpha}}^{\alpha}$$

is bounded from $\dot{A}_{p}^{t,q}$ into $\dot{A}_{p}^{s+t,q}$, where $b_{\alpha} = \Gamma^{\alpha}(T)(1)$.

References

- [1] G. Bourdaud, Analyse fonctionnelle dans l'espace Euclidien, Publ. Math. Paris VII 23, 1987.
- [2] -, Réalisation des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54.
- [3] —, Une algèbre maximale d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations 13 (1988), 1059-1083.
- [4] A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099.
- [5] R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
- [6] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397.
- [7] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
- [8] —, —, A discrete transform and applications to distribution spaces, J. Funct. Anal. 93 (1990), 34–170.
- [9] M. Frazier, R. Torres and G. Weiss, The boundedness of Calderón-Zygmund operators on the spaces $\hat{F}_p^{\alpha,q}$, Rev. Math. Iberoamericana 4 (1988), 41-72.
- [10] L. Hörmander, Pseudo-differential operators of type 1,1, Comm. Partial Differential Equations 13 (1988), 1085-1111.
- [11] —, Continuity of pseudo-differential operators of type 1,1, ibid. 14 (1989), 231–243.
- [12] M. Meyer, Une classe d'espace fonctionnels de type BMO. Application aux intégrales singulières, Ark. Mat. 27 (1989), 305-318.
- [13] Y. Meyer, Régularité des solutions des équations aux dérivées partielles non linéaires, in: Lecture Notes in Math. 842, Springer, 1980, 293-302.
- [14] —, Ondelettes et Opérateurs, I, II, Hermann, 1990.
- [15] L. Päivärinta, Pseudo-differential operators in Hardy-Triebel spaces, Z. Anal. Anwendungen 2 (1983), 235-242.
- [16] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976.
- [17] T. Runst, Pseudo-differential operators of the "exotic" class L⁰_{1,1} in spaces of Besov and Triebel-Lizorkin type, Ann. Global Anal. Geom. 3 (1985), 13-28.
- [18] R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558.
- [19] M. S. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991.
- [20] R. Torres, Continuity properties of pseudodifferential operators of type 1,1, Comm. Partial Differential Equations 15 (1990), 1313-1328.
- [21] H. Triebel, Theory of Function Spaces, Geest & Portig, Leipzig, and Birkhäuser, 1983.

- [22] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
- [23] A. Youssfi, Continuité-Besov des opérateurs définis par des intégrales singulières, Manuscripta Math. 65 (1989), 289-310.
- [24] —, Commutators on Besov spaces and factorization of the paraproduct, Bull. Sci. Math. 119 (1995), 157-186.
- [25] —, Regularity properties of commutators and BMO-Triebel-Lizorkin spaces, Ann. Inst. Fourier (Grenoble) 43 (1995), 795–807.

Equipe d'Analyse et de Mathématiques Appliquées Université Marne-la-Vallée 2, Rue de la Butte Verte 93166 Noisy-le-Grand Cedex, France E-mail: youssfi@math.univ-mlv.fr

Received December 19, 1994
Revised version April 1, 1996

(3393)