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Abstract. We give characterizations of weighted Besov-Lipschitz and Triebel-Lizor-
kin spaces with Aeo weights via a smooth kernel which satisfies “minimal” morent and
Tauberian conditions. The results are stated in terms of the mixed norm of a certain
maximal function of a distribution in these weighted spaces.

1. Introduction. We recall the definitions of the weighted Besov-Lip-
schitz and Triebel-Lizorkin spaces. We refer to [1] for references to the rel-
evant literature as well as proofs. Throughout this paper let § < p < oo,
0<g<oo —oo<a<oco andwé Ay, where Ay, is the Muckenhoupt
weight class. All functions and distributions are defined on E™ and explicit
reference to R® in the notation will be dropped. S is the usual space of test
functions for the space &' of tempered distributions.

To define the scales of spaces choose a function § € § such that

suppf C {1/2 < {€] < 2},

3 by =1, lg#0

=00

For each integer 7, let 4; € S be given by Pi(8) = é‘(z-ig). Following
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J. Peetre and H. Triebel, we define two scales of function spaces as follows:
Bew={fes:
>0 1/q

IFlage = (D @7+ fllow))

j=—00

<oo},

- F“’"’z{feS’:

p.q

Wiz = (3 @y ron) ™, <o},

where {(g]lpw = (g |9(z)[Pw(z) dz)*/P is the quasi-norm for the weighted
Lebesgue space Lf, Since the functions {b}- vanish in a neighbourhood of the
origin, we see that these spaces are quasi-Banach spaces that are continu-
ously embedded in §'/P, the space of tempered distributions modulo {all)

polynomials. Different choices of @ lead to the same spaces with equivalent
quasi-norms.

Py

These two scales of function spaces and their inhomogeneous counter-
parts (see Section 5) play an important role in various branches of analysis.
In particular, we have

By =HI, 0<p<,

where HY, denotes the weighted Hardy space of f € &' for which

[ fllez =1 sup |oe* F()llpuw < o0,
I<i<on

where ¢ is a fixed function in § with [, ¢(z)dz # 0, and ¢;(x) = t~"é(z/t).

By the fundamental work of C, Fefferman and E. M. Stein [6] adapted to
the weighted case, HE (or its local version hE, given in Section 5) does not
depend on the function ¢ used in its definition (see also [1, Theorem 1.2],
[12]). For the Besov-Lipschitz and Triebel-Lizorkin spaces, a basic result
by J. Peetre {11, Theorem 3.1] showed that they are independent of the
sequence {1;} entering in their definitions.

In our results we have restricted p to be finite, but this is a technicality
since for a non-trivial Ao weight w, LS = L*°. Observe that

Bw=4R, O<a<oo, 1<p<oeo,

where ./i{; is the homogeneous Hélder-Zygmund space of order «, and so

the results are well known. See [9] for a treatment of the unweighted Besov—
Lipschitz spaces.
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There is an equivalent family of quasi-norms in which the sums in (1.1)
are replaced by integrals. Thus if p € &,
suppP € {1/2<|€] 2}, and |B(€)| 2 e>0, 3/5< ¢ <5/3,

for some ¢ > 0, then the weighted homogeneous Besov—Lipschitz and Trie-
bel-Lizorkin spaces are characterized by

00 d 1/q
ez ~ (1 loe Sl £)
[}

- I7Lag ~ | (Tt s ) v

for all f € &/P. The fact that these quasi-norms are independent of the
choice of  and are equivalent to those given in (1.1) follows by standard
arguments that mimic the proof that the quasi-norms in (1.1} are indepen-
dent of the choice of 8. See [11] or [7] for details of this argument. More can
be found in Section 6(d).

It is our purpose to find characterizations such as {1.2) but for kernels
that occur naturally and satisfy conditions simply stated and easily verified.
One such characterization is well known and it will be used in this paper.
We shall use C,¢,... to denote positive constants which may depend on
the parameters concerned, such as o,p,q,w,..., but not on the variable
quantity, usually a distribution f.

nw

THEOREM 1.1 (see [2], [3]). Let ~co < @ < oo, 0 < p < oo, 0 < ¢ < o0,
W E Ac, and ro = inf{r : w € A, }. Assume that k is o non-negative integer

with 2% > o, and ¢ € 8 is given by $(&) = (—|¢2)* e~ Then

o0 d 1/q
o{ ol L) < sy

0

oo 1/q
i C( S (7Nt * fllpw)” %E) '

0
(1.3) o
d(Teanr$) | <iflage
0 nw
oo 1/'1
<o|(Testonir )
4] puw

for all f € 8'/P, where A > max(nry/p,n/q) and
¢; f(z) = @3 f(x) = sup |6e % f(z — )11+ [l /2) 7
y n
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Remarks. (i) Let Wi(z) = W(z,t) = (47rt)"”/ze"!”]2/(4” be the
Gauss—Weierstrass kernel on ]R:‘_"'l. If we set v(z,t) = (8/0t)°W; * f(z),
then, since W;(£) = e~¢1" we have ¢, * f(z) = t25v(z, £2), and the theorem
above gives characterizations of the weighted homogeneous Besov—-Lipschitz
and Triebel-Lizorkin spaces via temperatures; i.e., solutions to the heat
equation.

(i) Since convolution with ¢ in (1.3) (unlike convolution with ¢ in (1.2))
does not annihilate all polynomials, one should interpret the left-hand side
inequalities in (1.3} as being valid for some representative in the eguivalence
class in §'/P. Similar conventions hold for the conclusions of Theorems 3.1
and 4.1. However, if fvanishes in a neighbourhood of the origin, then the
proof in [2] showed that these inequalities hold for the same representative f.

(iii) Notice that the left-hand side inequality for the Besov-Lipschitz
quasi-norms in (1.3) is stronger than that suggested by (1.2). Ideally one
would want the quasi-norm on the left-hand side to be as strong as possible
and that on the right-hand side as weak as possible. The role of the Hardy
quasi-norm in (1.3) is described in Section 4. A similar comment holds for
the Triebel-Lizorkin quasi-norms in (1.3).

(iv) Versions of Theorem 1.1 are valid for harmonic functions. That is,
derivatives of the Gauss—Weierstrass kernel can be replaced by derivatives of
the Poisson kernel, provided high enough orders of differentiation are used.
See Section 6(b) for details. This is an example of how removing the kernel
from & requires the imposition of “unnatural conditions”. These additional
conditions are imposed so that the various integrals and sums that oceur in
the proof converge.

There is nearly universal agreement on the minimum “natural condi-
tions” to be satisfied by a kernel ¢ in order to yield a characterization as in
(1.2). There are & “moment condition” to get size estimates, as in Lemma
2.1, used to get the left-hand side inequalities, and a “Tauberian condition”
(a non-degeneracy condition on the Fourier transform) as in Lemma 2.3,
used to get the right-hand side inequalities. Further requirements that the
kernel be in & or that it is a measure with compact support are imposed so
that the kernel and its derivatives have controlled growth at infinity and so
that its Fourler transform is a multiplier on S. One hopes to get a version
of (1.2) for kernels in § that satisfy these minimal conditions.

However, an examination of our main results: Theorems 3.1, 4.1, and 5.1
shows that we have fallen short of our goal. We have obtained versions of
{1.2) with ¢ # f replaced by the maximal function of Peetre and Triebel,
wif = i\ f (See the first paragraph of Section 3 below for the defini-
tion.) Since (¢} f)(z) dominates (w4 * f)(z) pointwise, the left-hand side
inequalities are better than what we are looking for, but the right-hand
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side inequalities are worse. The significant open problem is to close this gap.
Triebel [15] expressed some doubt about a complete solution to this problem
{in particular, when 0 < p < 1). In Section 6(d) we solve it for a number of
special cases, which include the spaces ngg" for0 <p<oo,1<g< oo (see
Theorem 6.1).

‘We noted above that the independence of 8 for the definitions of the
Triebel-Lizorkin and Besov-Lipschitz spaces in (1.1) relies on a basic result
of Peetre. The weighted version of Peetre’s result is essential in what follows.
It is stated in the next theorem.

THEOREM 1.2 (see [1], [10]). Let —co < e < 00,0 < p< o0, 0 < g < o0,
W € Aeo, and 1o = inf{r :w € A;}. Let a > 0, and assume that {¢;}52_
is a sequence of functions in S such that supp Eﬁ?j C {27-¢ < |¢| < 27+a)
and | D*6;(&)] < Ce277I5 for all 5,k,6. For A > 0 and § = 0,41,%2, ...,
define
iaf(z) =5 flz) = sup |95 % flz —9)I(1+ 2|y,

fed, zelRr.
(i) If A > max(nro/p,n/q), then

I( i (274} (2))7) I/QHM <l pope
J=—00 1
foroll f€ 8.
(ii) If A > nro/p, then

oo . 1/
( E (zga[[qg;f”p,w)q) ! < C’||f|[s;:;;“

j=--00
forall fe &,

The rest of the paper is organized as follows: Section 2 contains five
technical lemmas needed for the proofs of the main results. Section 3 gives a
characterization of the weighted homogeneous Triebel-Lizorkin spaces, and
Section 4 a characterization of the weighted homogeneous Besov—Lipschits
spaces. In Section 5 these results are extended to the inhomogeneous spaces.
Section 6 is devoted to remarks and further results, as well as to a discussion
of the relation with other results in the literature.

Acknowledgements. The research in this paper began when the first
two authors were visiting Washington University in St. Louis. A first draft
of the paper was completed while the last author was visiting University of
Canterbury as an Erskine Visiting Fellow. Part of the research was also done
while the first author was a Visiting Fellow at the Centre for Mathematics
and its Applications at the Australian National University. All three authors
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2. Technical lemmas. In this section we gather a number of lemmas
needed in the proofs of our main results in Sections 3 and 4.

Let x be a measure either with density in & or with compact support
and ! be an integer. We say that u has moments of order up to [ that vanish
if

S z* dp(z) =0
R’n

for all |k| < 1, with the convention that no moment condition is required
when I < 0.

LeMMA 2.1 (size estimates of Heideman type). Let k,m and r be non-
negative integers, and assume that A 2> 0.

(i} Let n € S, and let p be o measure either with density in § or with
compact support. Assume that p has moments of order up to k — 1 that
vanish. Then there exists C > 0 such that

[ (e WY e i s o)

IR’N.
Jorall 0 < s <t < o0.

i) If u € 8, and n € S has moments of order up to m — 1 + 7 that
vanish and ¢ < A < r, then there exisis C > 0 such that

(1 2) s sy <o(t)”

R‘l‘l
Jorall 0 <t L s < o0,
(iii) If € S and p is o measure with compact support, then there exists

C > 0 such that
A
| (1 + Iyl) |7e * psly)| dy < C(%)

Jizeed
fora.l10<t§s<oo.
Proof. We shall prove (i) in the case p has density in &, since the

compactly supported case can be similarly handled. By Taylor’s formula
and the moment condition on y, we have, for every y € R?,
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T * s (y) =R§nt—nn(% _z)u(%z) G)”dz
S (e

= Z celw(y,8,t).

lw]=k
Since 17 € S, we see that

DFq (% - Q.Z)

for all |2| < |y|/(2t) and 0 < p < 1, and

Dfq (% - gz)

for all ¥, ¢, z and ¢. It follows that, for each x,

j (1+ ‘y') L3, 5,1) dy

(i) 10
" { {l-’—\Slyl/(ﬂ)}_i_{lz|>|1§/(2t)}) (éékml
x ,u,(zz) G) dz}dy
<o) {(1 02 (+8) )
(I
STRCh:
< c( ) [ (14202 %z k p,ez)

asp€cSands <t Thus (i) follows.

<o)
’ 2t

< C(x,m)

—z
8

o]

i
—Z
§

i
Z

() )
() er=el)

{lvl/e<|zl}
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Using Taylor’s formula and the moment condition on n in a similar way
to the proof of (i), we get

| ( v I) Ine * s ()] dy

B

-

>

o1 (i

[sl==mtr  {jz|<|y1/(26)}  {l=[>]y]/(29)}

o(32)|(5) %}

< O(E)MRS (1 + %)As_“{...}dy

for0 < t/s < landr > A > 0. The last integral can be seen to be dominated
by a positive constant by an argument similar to that in the proof of (i} (by
interchanging ¢ with s and » with u). Note that, although the proofs of (i)
and (ii) are rather similar, part (it} does not follow from part (i).

For (iii), rote that

| (1+ ‘y') e s () ly

| (1+ 1y|> ( o
L v i) (Lhe-2)
= ( § @)+ |y|)"d.u)( \ (1+§*z!)/\dlul<z))

R~ Rn

< Cn,h ) (%)A

asneS and s/t > 1.

IA

AN
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Remarks. (a) Parts (i) and (iii) when A = 0 are due to N. J. H. Hei-
deman [8].

(b) By mimicking the proof of the above lemma, we can prove that,
under the same assumptions as in part (ii), and for every b > 0, there exists
a constant C such that

e * pa(w)] < Gs‘”(z) (1 + |y‘)

for all 0 < ¢ < bs and y € R*. In particular, if n has infinitely many vanishing
moments, then for every N > 0, there exists a constant C such that

e * pa(y)] < Cs™" G)N (1 N Iyl)

for all 0 <t < bs and y e &".

LemMa 2.2 ([3, Proposition 1.1]). Let ~oc < a < oo, 0 < p < oo,
0<g=ocand we€ Ae. If fE B or f € F;,"qw, then there exist
polynomials P, Py, Po, Py, ... such that

Fop= i (3 vns =)

j=—m
in &, and deg(Py,) < [a] for all m.

LeEMMA 2.3 (Calderén representation theorem ([8], [9])). Let p be @ mea-
sure either with density in S or of compact support. Assume that p satisfies
the Tauberian condition, i.e.,

for all £ # 0 there exists t > 0 such that L(t€) £ 0.

Then there exists n € S with supp 7 contained in an annulus about the origin
such that

o0
§ ae)m (E) =1 forall#0,
0
and for every f € &', there is a non-negative integer k for which
T dt
f= e r &
0
in 8"/ Py, the space of tempered dzstmbutzons modulo polynomiels of degree
at most k.

Remark. The use of the Calderén representation theorem in the theory
of function spaces originated with A. P. Calderdn, and the idea was devel-
oped further by N. J. H. Heideman ([8]), by A. P. Calderén and A. Torchin-
sky {[5]), and by S. Janson and M. H. Taibleson ([9]). The formulation of
our Lemma 2.3 is taken from [9]. Note also that the integer % in the lemma
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depends on the order of f as a distribution or on the growth of f at infinity.
See [9] for details.

We shall need the following special case of a result by J.-O. Strémberg
and A. Torchinsky (see [12, Chap. V, Theorem 2(b)]). Since the proof of
this special case is somewhat simpler, we include an outline for the reader’s
convenience.

LEMMA 2.4 (sub-mean value property). Let ¢ € S satisfy the Tauberian
condition in the sense of Lemma 2.3. Assume that  is supported in an
annulus about the origin. Then for every v > 0 and N > 0, there exists
C > 0 for which

lipe * g(z)|"
T x - N ds
<0 {leasgl (14 Z22) e /) ay
0 R
forall ge &,z €R” and t > 0.
Proof. Let n € 8 be the function given in Lemma 2.3 for ¢. Let > 0.

Since ¢, has infinitely many vanishing moments, Lemma 2.3 implies that

> o]

ds
pu % 9(2) = | ou e % 0% 9(2) —
0

forall z € R*. By considering the supports of §, and 7, we can find a,b > 0
such that ¢, *n; = 0 unless au < s < bu. By using Remark (b) after Lemma
2.1, we deduce that

N ~N
lpu # 75 (€)} < Cu™ (%) (1 + |—i—|)

for all 0 < s < buand £ € R™. It follows that
bu

(1) pura(e) | | lowrnsle =)l lpo = oa)ldy &
au Rr
bu -N N
<scf | (1+ l}"“—;—ﬂ isos*g(y)l(%) u‘”dyflf-

If > 1, then by using (2.1) for N +n + 1 (in place of N) and Holder’s
inequality, we obtain

r T r |m—y| - (8 T ds
o * g{z)| SC{S)RSJ%*Q(P)\ 1"‘“*3—— s 7 dy—s",

which implies the conclusion of the lemma in this case.

A mazimal function characterization 229

Assume next that 0 < » < 1. For z € R" and ¢ > 0, define
ER AN N
My{z,t)= sup |os=*g{y)] l—l——-———) min{s/t,t/s)" .
yER®, 80 ]

Then by using this “maximal function” My, together with (2.1) and the
obvious inequality

(E)N&1+WLZEQGﬂﬂZ-MﬁQTTZEﬁﬂiiﬁlwS0

for all au < s € bu, t > 0, and z, ¥, z in B™, we can mimic the proof of
Theorems 1 and 5 in [12] to obtain the desired result in this case.

Remark. Note that the vector-valued versions of Lemmas 2.1, 2.3 and
2.4 also hold.

Let W(-,t) = Wy be the Gauss—Weierstrass kernel on RTI (as in Sec-
tion 1). For A > 0 and g € &', following C. Fefferman and E. M. Stein we
define

oY

*k *ok X -

B =@ = sw WA e (1+221)
yeR™ 0>0 [

z € R™. Note then that [|g**||p,w = ||gllge if A > nro/p, where rg == inf{r :

we A} (see e.g. [1, p. 584]).

LEMMA 2.5. (i) Let k be o non-negative integer, and let ¢ € 8 be given
by (&) = (—|§|2)ke_|§’2. Suppose A > 0 and M > 1. Then there exists
C > 0 such that

(s % f)"(2) < C(g * f)™ ()
forallt<s< Mt fe& and z € R™.

(i) Let 8 and 1 be functions in S. Assume that § < a < b < 00 and
A > 0. Then there exists C > 0 such that

—X —x
T — @ -
sup lgs*nt*g(y)|<1+lTy|) < C sup lm*g(y)l(1+ \ yl)
yER" yERn

i
forallat<s<bt,ge & and r ¢ R,

Proaof. We shall prove (i) only, as the proof of (if) is similar. Since
W, * W, = Wa.py for all u,v > 0, by writing s = vi#? +¢?t? with0 < a <
v M2 — 1, we deduce that

W(': 92) * ¢s * f = (1 + 0’2)kw(') 92 + a2t2) * ¢t * .f
=1+ W(, 0B« W(,0%) * ¢y * f,
where, o > 0 is given by 20? = o2 + a?#2. It follows that
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W) o S (14 2 gy')

— A
< 1% | Wi )WLt » g iy = )| (14 ZTEEE)

Jird

A —A
(oo ) (i 220) "
g 2

<@y @ § (1+ 'z‘)_k_”al(u 'Z')

o
R=

(1+1 Jyl) (1+‘$; 1)_ka—”dz

< Clge x )™ ().
Taking the supremum of the left-hand side with respect to y and g, we
obtain (i).

3. Characterization of the weighted homogeneous Triebel-Li-
zorkin spaces. Let A > 0 and u € 8. For f € & and ¢t > 0, following
J. Peetre and H. Triebel, we define a version of the Fefferman-Stein maximal
function by

Mnf(m)wsuplm*f(mvy)l(Hlyl) . cem

In the sequel, as we shall fix a A (satisfying some additional assumption),
we write u; f for up; f-

THEOREM 3.1. Let —~co < @ < 00, 0 < p < 00,0 < g <00, uw € Ag,
ro = inf{r : w € A}, and A > max(nro/p,n/q). Assume that u € &
satisfies the moment condition, i.e.,

S z®u(z)de =0

[R'ﬂ.
for all |k| < [a, and that v € § satisfies the Touberian condition, i.e., for
all ¢ # 0 there exists t > 0 such that P(t€) # 0. Then there exist positive
constants ¢ and C for which

(Tewsen ) -

(31) < < 1flpe.

pyw

<¢| (C’S:(r“v:ﬂw))q %’f)/

p?w

forall fe&'/P.
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Proof. Assume that f € Fg;}”. By subtracting a suitable polynomial
from f and using Lemma 2.2, we deduce that there exists a sequence of
polynomials { Py, } such that

f=Jim { 3 wxf-Pn}
j=—mn

in &', and deg(P,,) < [e] for all m. Hence it follows from the fact that p € §
and the moment condition on w that

Frm@)= Y px;*f()
j=—co
for all z € R™ and ¢ > 0. Let ¢ be a function in & with the following
properties: @(&) = 1 for 1/2 < [¢] € % suppqS C {1/3 < |£] € 3}, For
g = 0,41,%£2,..., let ¢; € S be given by qﬁj( ) = ¢>(2‘-”£) Then, since
Py = h; * ¢; for all 7, the above can be rewritten as

f* Zm*%*%*ﬂ)

j=—o00

By an argument similar to the Gaussian case given in 2, p. 56] we see that,
for each integer [, and 27171 <t € 274,

f(w) < Z 2(I—J)cx + g{l~ii(a— A))23a¢*f(m)
j==—00
where
aj= sup | lm.*x;@IQ+2 Y dy, =0%1,%2,...,
1/2<s<k g
and

¢;fz) = ysélug{m' * flz— 1+ 2w}

(as in Theorem 1.2). It follows that, with ¢ = min(1, q),

(Temsen )"

0
(8T et

I=—00 2—1-1

< C( i [a,(2‘1‘1+2_:““_)‘))]9)1/9( i (2ja¢}f(m))q)1/q

l=—o0 j=—c0
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by using well-known inequalities. The first inequality in (3.1) follows from
Theorem 1.2 if we can show that

S= 3 w27 V)e < oo

I=—co
Noting that ¢;{¢) = #(27€) with & € S supported in {1/2 < €] < 2} (cf.
Section 1), we deduce from (i), (ii) of Lemma 2.1 that

ap = SsuUp S ]Pﬂs*wl(y)f(l+2l|yi))‘dy
1/2€s<1 gn

Iyi)" {2““ if1<0
= sup o O 1+ =] dy<C =
1/25351525“ i * B !(y)l( 2-1) =M 2m 15,
where k = [a] +1ife >0, k = 0if @ < 0, and m is chosen so that
m+ o~ X > 0. The above estimates imply the finiteness of S

Next we shall prove the second inequality in (3.1). Let € S be the
function given by Lemma 2.3 for ». Assume that supp# C {274+ < |¢] <
24711 where A > 1. As each ¥; has moments of all orders which vanish,
Lemma 2.3 implies that, for every z € R®,

T dt

(3.2) i *® flz) = S vy ® 1 % 45 * f(z) 5= S e % Mg % 4y fx)

0

dt

]

I t
because ny *1; = 0 unless t € I; = [277—4 277+4] Note also that v x
satisfles the Tauberian condition by Lemma 2.3. Let r > 0 and ¢ € I;.
Choose N = A+ (n+1)/r. Applying Lemma 2.4 to ¢ = vin and g = ;% f,
we obtain

v xme x4y 5 F(2) " S O § | v m s 9py % £()|" min(s/2, t/5)™
0

_]Rn
_ —Ar _ —n~-1
(ae k) (12t} 7 gy
3 5 8§
ds
==CSS...dy?
I; R

because 7, *4; = 0 unless s € I;. Since t = s ~ 279 for ¢, 5 € I;, Lemma
2.5(ii) implies that

- X
s 22207}

< CSEP{|”3 * () (1 + Ji”_g_}ﬂ) W\} = Ov; f(a).
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It follows from all the above that

s 1/r
(3.3 wief@lsc ] (Josrayr 2) 4

t
I M1

for every z and j.
Assume first that 0 < ¢ < 1. Letting r = ¢ in (3.3) we obtain

s\ /e
s« f) < o Jossenr 2)

I
On the other hand, if g > 1, then by taking r = 1 in (3.3) we get

s s\ /e
[y = fl2)l < € {55 (@) -if < 0( {@ifle))e d—) :
I;

s
I;

Hence it follows that

o0 o0

(2 @owxiand) "o X ey i)/

j=—00 j=—DO Ij

< C24) (E(S"“v:f(m))q d—) v

for all ¢ > 0. Thus we obtain the desired inequality by taking the LP -quasi-
norms on both sides of the above.

Remark Note that if the second inequality in (3.1) holds for a Ag, then
it holds for all A < Ap. Hence, that inequality holds for all A e R

4. Characterization of the weighted homogeneous Besov—Lip-
schitz spaces. We shall keep the same notations as in Section 3 with regard
to the maximal functions g} f, vy f.

THEOREM 4.1, Let —~co < a < o0, 0 < p <00, 0 < g < o0, weé
Ago, 7o = inf{r : w € A}, and A > nro/p. Assume that p € § satisfies
the moment condition and v € § satisfies the Tauberian condition (as in
Theorem 3.1). Then there ezist positive constants ¢ and C for which

o0

/g
(4.1) c( S(t‘a”m * fllmz)® %—t«) Sl sew

0
<o

d 1/9
il )

w3

forall fe&/P.
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Remark. Since

Jus % £ (x — )I(HM) = lig \W(,g)*#t*f(m__y)|(1+|y|) -

T
QSt
.Y
< sup iW(’ 92) * foy % f(m — y)l (1 + M)
<t 0
< (e x f)™(z)

for every z,y,t, we deduce that

lli2¢ fllpao < Cliges * fll gz,

where C' is independent of ¢ > 0 and f € &'. Hence the first inequality
in (4.1) is stronger than the corresponding result for the Triebel-Lizorkin
spaces in Theorem 3.1.

Proof of Theorem 4.1. Since the proof of the second inequality in
(4.1) is similar to that of the corresponding result in Theorem 3.1, we shall
only give the details for the other inequality in (4.1). Let & be a non-negative
integer such that 2k > a, and let ¢ € S be given by ¢(£) = (—|£[2)ke~l¢I°,
Clearly ¢ satisfies the Tauberzan condition. Let 7 be the function given by
Lemma 2.3 for ¢. Let f € B°‘ 0, Assume first that f = 0 in a neighbourhood
of the origin. Then it is easy to see from Lemma 2.3 that we have the

representation
o0

dt
F=\enmns T
0
in &'. Tt follows from the above and the semigroup property of the Gaussian
kernel (as in the proof of Lemma 2.5(i)} that, for every ¢>0,s>0and
x,z € R®,
(W (-, 0%) # s * £(2)]
KT 2 g2 di
=14 S W (., 0 + 3t%/4) * e o *f*"?t*.“a(z)T
0

sC| { § 1 * al2)| - W, 0%+ 382/4) % (Bo2 * F)(z — v)]
0 “En

|:c—z+y|)“*( |m—z|)*( |y!)*} dt
X 14—t I+ (142 vay—,
( V& 32/ ¢ ) %%

o — 2\
(s 1™ (5) = smp W (%) = s )i 1+ 221

and

A mazimal function characterization 235
T dt
<C {(eya* ) (-'E){ j ( lyl) |t *m(y)ldy} 5
o] Rn
T dt
=C S ”t/z(x){ S ( lyl) | s *m(y)fdy} T
a Rn

=C‘§...+CS coo= Iz, 8) + Ip(x, 9),
0 8

where we have set u; = ¢y % f for simplicity. Assume that 0 < p < 1. Choose
a non-negative mteger m with m 4+ o > 0. Using Lemma 2. 1(ii) and the
“monotonicity” of u;* (Lemma 2.5(i)), we obtain

s <of{una(£)"4) sef (oo ()%

If ¢ > p, the above and Hardy’s inequa,lity imply that

(T“_“”fﬂ )llp,w)? ds)
0
< C{m (S—api” 2, (z)m” ?) q/p?}p/q

|
( T (s ) if)m.

On the other hand, if 0 < ¢ < p, then by using Lemma 2.5(i) again, we get

(05(3_““11( s)llp,w)qu)
{?(SI! I, (:)"‘gtg)/d_}/
O{ T ( N“I"‘Ilpw(s)mq rit) ?}w

c e !l an & 1/q
- e (Ll E)

Using Lemmas 2.1(i) and 2.5(i) we cbtain

e <o (wm(2) )%

L]
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Then by arguments similar to those immediately above, one can show that

(Temeimt ot @) <o Teomaripur &)

ju] 0
The above estimates for I; and I imply that

(°§O<s'“i|cus*f>n;|p,w)"%)I/q (S“““t (6% )" llpsw)? '@E) .

Since ||(pa * £)™* |pw = llisa * fll gz and [{de * £)**|p = [I6s * fllg, the
proof of the desired result is completed by invg}cing Theorem 1.1.
Next we shall remove the restriction that f = 0 in a neighbourhood of

the origin. Using Lemma 2.2 and the moment condition on u as in the proof
of Theorem 3.1, we obtain

Wy * pe ¥ f(z) = ﬂ_%inm Wy ps * frn(2),

for all p,s > 0 and z € R™ [after subtracting a suitable polynomial from
f), where f, = Z;Z_m 1; * f. The desired inequality then follows from
the above representation of W, * g * f by a limit argument similar to the
Gaussian case (cf. [2, p. 61]). The proof in the case p < 1 is thus complete,

The case p > 1 can be handled in a similar way but is generally simpler
than the case p < 1 and so the details are omitted.

5. Characterizations of inhomogeneous spaces. In this section we
shall give the inhomogeneous version of the results in Sections 3 and 4. As
the proofs are similar to the homogeneous case we shall be brief and indicate
only the necessary modifications.

Let {1;} be as in Section 1 and let ¥ be the function in & given by
W(E) 4+ 72 () = Lforall € € R*. Let 0 < p < 00, 0 < g < o0,
—00 < o < 00, and w € Ay. The weighted inhomogenecus Besov and
Triebel-Lizorkin spaces are defined by

Bpy' = {f S
o o /
171 = 1 % o+ (D@05 Flp)?) < o0},
=1

Fot = {f es:

$lzgie =12+ S+ (05l 007) ) <o)
i=1 ’

Let {¢;} and @ > 0 be as in Theorem 1.2, and let & € S be such that
supp® C {[{| < 2°}. For A > 0 and f € &', define ¢5f = ¢;f asin
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Theorem 1.2 and let

3le) =& f(z) = sup |2+ fle —y)I(1+ W)™, 2R
yeRn
Let g = inf{r : w € A,}. The maximal inequalities (Theorem 1.2) for
inhomogeneous spaces are as follows:
If X > max(nro/p,n/q), then

61 12 e+ (6 fe M) < Ol

J=1
forall fe &'
If A > nrg/p, then

N /g
(5.2) 18" Fllpw + (D265 Fllp0)®) < Ol Flimzy
=1
for all f € &'. It is useful to note that (5.2) implies a stronger result:
= /g
(6.2 8% fllg + (D@65 % Flg)?) < Clifllazyn
=1

Here, for g € &,
lgllzz, =1l _sup |¢e * g(2) llp.uw,
Ol ’

where ¢ € S with (. é(z) dz # 0.

We refer again to [1] for the above and related properties of the inhomo-
geneous spaces as well as references to the relevant literature.

In the rest of this section let p € & satisfy the moment condition and
let v € § satisfy the Tauberian condition (as in Theorem 3.1). For f € &'
and A > 0, let u7 ) f = p f and v; 3 f = v{ [ be defined as at the beginning
of Section 3, and for ,p €S, let C f and ¢*f be defined similarly to &* f
above.

THEOREM 5.1. Let 0 < p <00, 0 < g <00, —00 < ¢ < 00,a >0,
w € Ay and 7o = inf{r : w € A.}. Assume that { € S, and that ¢ € §
satisfies the strong Tauberian condition $(0) = \-.. ¢(z)dz # 0.

(©) If A > max{nro/p,n/q), then there exist positive constant b,c and C
for which
p,w)

63)  o((je s+ | § iy &) v

' . b o di t/q
< Wflegy < 0 (10"l + | (st rion )
3] R
forall fe&.

va)
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(i) If A > nro/p, then there exist positive constants b, ¢ and C for which

0

< iz < C(Elzp*fﬂp,w + (S % Fllow) Elf)/)

0
forall f € 8.

Proof. Observe that in the inhomogeneous case, we have the represen-
tation

o
f:!l?*f-{—zif)j*f in &'
j=1
Let {¢;} be as in the proof of Theorem 3.1 and let & € S be such that

supp® C {|¢| < 3} and & = 1 on supp ¥. We start with the proof of the
left-hand side inequality in (5.3). The above representation then implies that

(55)  pekf(e) = pex DR f(@) Y pe x by ks * f(z)
j=1

for all # and ¢t. By using (5.1) the infinite sum on the right-hand side of (5.5)
can be estimated in the same way as in the proof of Theorem 3.1. We shall
next deal with the first term. For each z and ¥y in R® and 0 < ¢t < a,

i ¥ B+ T fle—y)| S C | pex () 1@ * flz —y - 2)]
Rn

A A
X (1+|y+zJ)""(1+lZ-]~) (14.%1) dz.
It follows that

Y
sup|ut*d5*u7*f(w—y)1(1+lii—|)
¥

< CP” f(a) | |;.¢t*45(z)|( |2 |)Aclz

R
< Ct*w* f(z)

for all 0 < ¢ £ a by Lemma 2.1(i), because we can write & = ($1;,)q. This
estimate and the estimate for the infinite sum observed above give

o 1/
‘(g(t s )

< C“f”F,‘,‘ja”-

Py
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It is easy to see that

”g*f”p,w < C”C * f“h.{;a
and by an argument similar to the Gaussian case [2, (18)], using a multiplier
theorem on the weighted Hardy space k2, {1, Lemma 4.8, we obtain

¢ * Fllez, < Cllfll oy
The proof of the left-hand side inequality in (5.3) is thus complete.

To prove the right-hand side inequality in (5.3) let # be the function

given by Lemma 2.3 for v. Let § > 0 be such that $(£) # 0 for |¢| < 6.
Following [9] we set

=] 1G0T e

1 if £ = 0.
Then 4 € S, and as 7 is supported in an annulus about the origin, if we
choose b large enough, we see that suppy € {|{| < é}. It follows that
= (¥/3)@ with (F/%) € S, so that
17 fllpaw < Clie™ fllp,w.

Using the above inequality and the representation
b

(5.6) f:’)’*f'*"s??t*vt*f'i—t
0

7-?‘

in & (cf. [9]), we obtain the right-hand side inequality in (5.3) by an argu-
ment similar to the proof of Theorem 3.1.

The right-hand side inequality in (5.4) can be verified in a similar way to
the corresponding inequality in (5.3). To prove the other inequality in (5.4),
let k be a non-negative integer with 2k > & and let $(£) = (—|¢[?)*e1¢" as
in the proof of Theorem 4.1. By [2, Theorem 1], we have

a dt i/g
W g+ § e Flne ) S) < Oz
0

where Wi(z) = (47)/2e~1%I"/4 a5 in Section 1. Similarly to (5.6), letting
n be the function given by Lemma 2.3 for ¢, we can find v € & such that
supp ¥ is compact, and that

a

f*’T*f*‘Sﬂt*ﬁbt*f%

<

in . As 5/W, € § and § = (3/W1)Wy, we deduce that
Iy * Fllnz, < C||Wh * flinz,
(by a multiplier theorem for the weighted Hardy spaces h2).

Using all the above, we can modify the proof of Theorem 4.1 to obtain
the left-hand side inequality in (5.4).
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8. Remarks and further results

(a) When g equals v and satisfies both the moment condition and the
Tauberian condition, our results in Sections 3-5 give necessary and suf-
ficient conditions for memberships in the corresponding weighted spaces
and alsc equivalent quasi-norms on them. In the unweighted case (w = 1),
there are results by H. Triebel where he obtained equivalent quasi-norms on
the unweighted Besov—-Lipschitz and Triebel-Lizorkin spaces (see [13], [14]).
Triebel’s methods seem designed to apply to kernels that are not smooth
{t.e., not in &) and so growth conditions at infinity and behaviours near zero
of the kernel and its Fourier transform are expressed in rather complicated
forms. These conditions seem stronger than the moment condition when p is
close to 0. Moreover, his Tauberian condition takes the form fi(¢) = D{£) £ 0
for 1/2 < |£] £ 2 (so that the quotient 8/7i is defined). His approach is based
on an inequality of Plancherel-Pélya~Nikol'skil type and seems difficult to
extend to the weighted case without some restriction on the weight func-
tion w.

We note also that Triebel’s results are stated in terms of the mixed
norm of |¢ * f(z)|, but his results do not give a sufficient condition for
a distribution to be in the relevant unweighted space. See (d) below for a
discussion in the weighted case.

(b) Though Lemma 2.1(i} and (il) were stated under the assurption
p € 8, aclose examination of the proof shows that (1) holds if

§ (L4 1202 u(z)] de < oo,
Er

while (ii) holds if there exists § > 0 for which
1D u(z)f < C(L+ |2))7*7°

for all |&] = m + r. It follows that our main results in Sections 3-5 remain
valid for the Poisson kernel, i.e., for B(€) = (=|¢[Ye~ ¢, I > A-n+max(e,0),
where e+ f is interpreted appropriately.

{c) Our main results in Sections 3—5 hold for vector-valued u or v, where
we require the moment condition for each component and the Tauberian
conditicn as a vector-valued function. Moreover, they remain valid for com-
pactly supported (vector-valued) measures v, and also for compactly sup-
ported (vector-valued) measures y if @ > max(nrg/p,n/q) in the Triebel-
Lizorkin case and « > nry/p in the Besov case {see Lemma 2.1) provided
the function f satisfies an appropriate growth condition at infinity (see Re-
mark after Lemma 2.3). A special case of the compactly supported vector-
valued measures worth noting here is when p = (uV, ..., u(") = v, where
pld) = (8e; — Bo) »... (6e; — Bg) (k times), k > e, be; is the Dirac measure

icm
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concentrated at e; = (0,...,1,...0) and &, is the Dirac measure concen-
trated at the origin. Note that no 1) satisfies the Tauberian condition, but
i does. Observe that

(8ej ~ bo)e * f(z) = f(z — te;) — f(w),
so that our results in this case give characterizations of the corresponding
weighted spaces by means of difference operators.

(d) As mentioned in the Introduction, it would be of interest to replace
v f(z) by v * f(z)| in our results. By [2], this is certainly possible for
the Gauss—Weierstrass kernel (and the proof given there also works for the
Poisson kernel). For a general v, we can solve this problem for many special
cases below. We shall only state the results for homogeneous spaces and
leave the formulation for the inhomogeneous ones to the interested reader.

THEOREM 6.1. Lef w € Ao

(i) If v € S satisfies both the Tauberian condition and the moment con-
dition, and ¥ is compactly supported, then

oo _ dt 1/?
(6.1 ez <0 Tt s £)
' 0 Pw
and
© de\ /9
62) sz < O( T x A1)t F)
0
forall feS, 0<p<ocand 0 < g<co.
(ii) If v € S satisfies the Tauberian condition, then
° g AN 2
(63) I£leze < 6 J-ebexsaie F)
0 w
forall fe &8, 0<p<oo and 1 <q<oo; and
oc _ dt 1/‘1
(6.4 55 < o j = Flpo) 2

Jorall fed,1<p<ooand 1< g< 0.

_ Proof. We shall give a proof only for the homogeneous Triebel space
Fgi¥, as the Besov case can be handled similarly (and is generally simpler).
Assume that the conditions of (i) are satisfied. Since f is a tempered

distribution, we can choose A = Ay large enough so thaf

CAN. '
suplix £z =) {1+ 4) " =) < o0
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for all s and z. By a variation of the Fefferman—Stein maximal function
techniques used by J. Peetre [11, Lemma 2.1 and the proof of Theorem 3.1],
we can show that

vy flz) < o8 (M ([, * fI7) )T + ebu f(),

where Mg denotes the (Hardy—Littlewood)} maximal function of g, A satisfies
the additional condition A > max(nre/p,n/g,n),r =n/)\, 0< 6§ <1,and ¢
is independent of f, s and § (see also [1, Lemma 2.1], [13, Theorem 1.3.1]).
(Recall that ro = inf{t : w € 4;} as before, so that w € A,/,.) Choosing &
such that e < 1/2 in the above, we obtain

Vi flz)y < C(M (v, * £ ()Y,
and putting this into (3.3) and using well-known inequalities, we get
| * f(z)|? < GIS (M (Jvg * £|")(z))¥" i:-.
Tt follows that J
( i (2772 * f(m)l)") e < O(T(M((s“aiys * £ @))e/ %‘i) Uq_

0

j=—c0

Hence it follows from the weighted estimate for the vector-valued maximal
function [10] that

16:9) ”NmeCﬂ(?fﬂw*ﬂ@nﬁ§Y”

Pw

if g < co, while for ¢ = co we need only use the weighted estimate for the
maximal function. However, as ¢’ depends on A and hence implicitly on f,
we have proved that if the right-hand side of (6.5) is finite, then f € Fos.
Fix A > max(nro/p,n/g,n). As Flﬁ’j;}w - F;gg , and v satisfies the moment
condition, the first inequality in (3.1) implies that

vy f(z) < o0

for all s and 2. Repeating the above proof of (6.5) we obtain the indepen-
dence of C' on f. The proof of {6.1) is thus complete.

The above use of the moment condition seems artificial. Tt is used to
show that the inclusion map, which is into, is continuous. If there were a
direct proof that the space of distributions for which the quasi-norm on the
right-hand side of (6.5) is finite, is complete, we would get the continuity by
means of the closed graph theorem.

To prove (ii), assume that v satisfies the Tauberian condition. By [12,
Chapter V, Theorem 2(a)), for every r > 0, N > 0, there exists a constant
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C > 0 for which
t ]9.',‘ _ z’ —Nr s Nr ds
(68) e @) <O v ﬂz)"‘(l i T) (z) iy
0 R~

~Nr

+C S vy * f(2)|" (1+ [—w——:ii) tT" dz
Rﬂ.

forall fe& z€R® and t > 0.

Choose r > 0 such that r < min{p,q) and w & Apjes N > max(—2q,
2n/r}, and choose K > N + n. We keep all the notations in the proof
of the second inequality of (3.1) in Theorem 3.1. For each integer 7, ¢ €
[279—4,277+4] and z € R",

(6.7)  Imextbyx1ex F(=) < C { |(mx )@l - v+ flz — )| dy

o

<O Y+ D) fz - ty)]dy
ieZm

SCY (I | i x flo - ty) dy
lezn Qi

by the size estimate given in Remark (b) after Lemma 2.1, where @Q; is the
unit cube centered at I. By (6.6) we have

t

lve  flz—ty)|" < C| § lve = f(2)]"

ORm™

—Nr Nr
x (1+—--—im"ty_ zl) (f) sy ®
8 t §

r |$—i"y"—2’| oA -n
+C § e fAIN (14 5222 g
Rn

B Jl(m; t: y) + ']2 (.’L‘, t) y)
Let y € @; and 0 < 5 < . Using the obvious inequalities

- Np Nr
8 t
. |:1:—-z| ~Nr s Nr
SO+ {1+ 5 7

[$_2| —N7r/2 s Nr/2
50(1+|1|)N’”(1+ . ) (E) .
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we obtain
Ji(z,t,) < C(L+ YN

A

k=0 Dy,

¥

5 Nr/2 ds
X |vg * f(z)|rs“”dz] (E) >
where Dy = {|z — 2| < 8}, and Dy = {28 7s < |z — 2] < 2Fs}, K =1,2,...
The above implies that

Ji(z, t,y) <O+ I

s Nr/2 s
xZ(l+2k N’"/zz’“”SM |vs * £I7) (= )( ) fl;
k=0
t s Nrj2 s
<oty M@ (5) 5

0
because Nr/2 > n. By a similar argument we can show that
Ja(®,t,y) < O+ V" M(Jve * f7)(=).
These estimates for J; and Ja, together with (6.7) and the convergence of
the series 3 (1 + [{|}¥ ¥, imply that
Nrj2 ds

t 1/r
ety evs (@) < O P @ (2) S aaues 1))

0
Putting the above into (3.2) we obtain

s % () < C | (gM(h/s*f (m)( )N'P/Zd_s)lfr?

8

0 (b £ =
= Jj(w) + J;(:E)

for each integer 7 and all z € R™.
Asgsume that 1 < g < o0. Then

(3 o)

o

t g/r 1/q
[S M{(|vs * ") (z)s™™/2 {f] (et N/2)g _d;)
0

OL":8
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b ds\ /1
o {Battspax £y Y@ 2)
0

by using Holder’s inequality and Hardy’s inequality. Hence, as in the proof

of (i), we deduce that
| 3 ), < GH(T(S_“Ivs*f(sc)l)qg;)llq
= 0

p’w
Since we have a similar estimate for {J}}, we obtain (6.3).

Remark. By using a version of Heideman type estimate, which is dif-
ferent from Lemma 2.1, we had proved (6.3) in the unweighted case for
1<p<ooand1 < g< oo ([4]). We note also that a discrete version of
this result for the inhomogeneous space £ was obtained earlier by Triebel
under appropriate conditions (on ») as mentioned in (a) (see [15, Theorem

2.4.2(1)]).

(e} Finally, we observe that all the main results we have obtained have
discrete versions, We have formulated and proved them in the continuous
case because this case is technically more complicated. In the proofs for
the discrete case, instead of Lemma 2.3, one uses a discrete version of the
Calderén representation theorem (cf. [12, Chapter V, Lemma 6]). We leave
the precise formulations and proofs to the interested reader.

Added in proof (May 1996). We have recently proved (6.3) and (6.4) for all p and g,

and thus solved the open problem mentioned in the Introduction. The details will appear
elsewhere.
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A note on a formula for the fractional powers
of infinitesimal generators of semigroups

by

CELSO MARTINEZ and MIGUEL SANZ (Valéncia)

Abstract. If — A ig the generator of an equibounded Cp-semigroup and 0 < Rea <m
(mn integer), its fractional power A™ can be described in terms of the semigroup, through
a formula that is only valid if a certain function K4 m is nonzero. This paper is devoted
to the study of the zeros of Ko m.

1. Introduction. A closed linear operator A: D(A) C X — X in a
Banach space X is nonnegative if p(A} D ]—o0, 0] and there exists a constant
M > 0 such that

MA+A4 <M, A>0.

If —A is the generator of an equibounded Cp-semigroup {F; : ¢ > 0} in X,
then A is a nonnegative operator with a dense domain.

The fractional power, A®, with base a nonnegative operator A and com-
plex exponent @ € C; = {z € C: Rez > 0}, has been widely studied (see
(1, 3-5, 8, 9]) and has the property that if 0 < Rea < m, with m integer,
then D(A™) C D(AD‘) and

[V a—1 =1 41m m
At = mmnm ®§A [(A+ A A™dd), ¢ € D(A™)

(where A% = e*!°8* with log A € R). This formula was obtained by H. Ko-
matsu and, furthermore, he proved in [4, Th. 2.10] that if the operator A
is densely defined, then the domain D({A*) consists of elements ¢ € X for
which

N
lim | A7MAQ + 4) "¢ dA
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