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Proposition 3. Then Theorem 8 gives a discontinuous homomorphism from

A to B.
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Multiplicative functionals and entire functions
by

KRZYSZTOV JARQSZ (Wdwardsville, IIl., and Warszawa)

Abstract. Let A be a complex Banach algebra with a unit e, let T, p be continuous
functionals, where 7" is linear, and let F' be a nonlinear entire function. Y To F = Fop
and T'(e) = 1 then 1" is multiplicative.

1. Introduction. If T is a multiplicative functional on a complex Banach
algebra A with a unit ¢ then T'(e) = 1, and for any invertible element z of
A we have T'(z) # 0. A. M. Gleason [5] and, independently, J. P. Kahane &
W. Zelazko [7] proved that the above property characterizes multiplicative
functionals. In fact, they proved even a stronger result:

TuenowreM 1. If T is a continuous linear functional on a complex unital
Banach algebra A such that T(e) = 1 and T'(expz) # 0 for z € A, then T
is maultiplicodive,

The above staterent can be rephraged in the following equivalent way.

THEOREM 2. If T is a continuous linear functional on a compler unital
Banach algebra A with T'(e) = 1, and there is a compler valued function
on A such thal

(1) T'{expz) = cxp(p(x))
then T ds multiplicative.

forz € A,

R. Arens [1] asked if the exponential function in (1) can be replaced by
any other entire Ponction F, that is, whether

(2) Tol'=Fogp
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implies multiplicativity of T. Of course, the conjecture fails if F is surjective;
in such a case we can take any linear map T and simply define ¢(z) to be
one of the elements of F~(T(F(z))). However, the function ¢ so defined
may be discontinuous, unless F' is linear, that is, of the form F(z) = a +
Bz. Consequently, Arens amended his conjecture by requiring that ¢ be
continuous and F not be a polynomial of degree at most 1.

In [1] Arens proved that (2) implies multiplicativity of 7' if ¢ is a polyno-
mial of degree more than 1, or if A is a uniform algebra. Later, C. Badea (2]
proved that (2) implies multiplicativity of 7' for any nonlinear entire func-
tion F(z) = Y.0° ;an2™ with a, > 0 for all n = 0,1,... In this note we
prove the conjecture for all nonlinear entire functions.

The Gleason-Kahane-Zelazko theorem has also been extended in several
other directions; a number of problems remains open [6].

2. The result

THEOREM 3. Let A be a complex Banach algebre with a unit e, let I be
a nonlinear entire function, let T' be a linear functional on A, and let w be
a continuous complex valued function on A. Suppose that

(3) T(F(z)) = F(p(z))
Then T = 0 or T/T(e) is multiplicative.

for each x € A.

To show the result we need two simple lemmas; the proof of the first one
is & minor modification of a part of the proof in [1], p. 195.

LEMMA 4. For any nonlinear entire function g there is a real number Ry
such that for any R > Ry, and any z1, 2, € C with |z1| = R, |23] = 2R there
exists w € C with [w| < R*/® and such that g{w) is either 21 or z.

Proof. Assume to the contrary that for any Ry there are R > By and
2z1, 29 with moduli R and 2R, respectively, and such that for every w with
lw| < R¥3, g{w) is neither 2 nor z. Put h(z) = (9(R*%2) — 21) /(23 — 21)
Then for 2] < 1, h(z) is neither 0 nor 1; moreover, |A(0)] < 2 if Ry > lg(0)].
By the Schottky theorem [3], |h(2)| < C for || < 1/2, where the constant
C is independent of R. Hence |g(R*/%2)| < 4CR for |2| < 1/2.

Consequently, there is a constant C; such that for arbitrarily large r,

(4) l9(u)] < Cyful™®

By the Cauchy integral formula [gt")(0)| < (2rr)~? Slﬂ|=7‘ lg(u)|/r™T2, s0 (4)

shows that g™ (0) = 0 for n > 1. This proves that g is a polynomial of
degree at most 1. m

for |u| = 1.
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l v [><] "
For an entire function f{z) = ¥ 1 an2" we define the maximum mod-
ulus My and the maximum term py ag usual by

Mp(R) = max{|f(2)] : [2| = R} and pg(R) = max{|a,|R" :n=1,2,.. 2.

Notice that from the Cauchy integral formula for any n € N and R we have

1 f(z .
anl s o= § G <oy,
50
(5} tep{i) € My(R) for any R.

LeMMA 5. Let f be an entire function and g o nonlinear entire function.
Then there i3 an Ry such that

Myog(R*®) 2 M§(R)  for R > Ro.

Prool Let Ry be the constant given for the function g by the previous
lemma. Let & > Ry and let zp, 2z with moduli R and 2R, respectively,
be such that Mp(R) = |f(z1)] and Mg(2R) = |f(22})|. By the previous
lemma there is & w with [w] < B¥? such that g(w) = 2, in which case
Myog(R21%) 2= | f(g(w))] = M (R); or g{w) = 29, in which case Myog(R*/®)
> | flglw))] = My (210) 2 My(R). =

Proof of Theorem 3. By [10] a linear functional on a unital Banach
algebra, Is multiplicative if it i maultiplicative on any comumutative subalge-
bra, so without loss of generality we can assume that A is commutative.

We first show that, ag a consequence of (3), T is continuous. To this end
take Ag & C with F'(A\p) s 0. There is a neighborhood U of Ap such that Fjy
is a homeomorphism outo a neighborhood of F(A). Hence, for any y € A
from an open neighborhood of F'(Age), we have

Tly) = Fp((Fu) ™ ),

so I is conbinuous at F(Age) snd consequently continuous at any point.
Let F(z) s 300 | wa™ he the power series ey‘;]pansion oftF. .N'oﬁme that
formally the meaning of the symbol F' ou both sides of (3) is different—-on
the right hand side I iy a holomorphic function defned on the chplex
plane €; on the lofl, ¥ is defined by the same power series, £ut with the
) ‘ - "
Banach algebra A as the domain. Assume F(zy + 2) = ano by2™ i3 a
power series expansion of the same function around a point zp, so that
Yo o On (20 - 2) = 020 baa™ for 2 € C. It is easy to check that these
=0 © b . ‘ . o0 no—
two expansions define the same function on A, that is, Y07 an(zee+2)" =
E:’omn bnmn f(JI' re A.
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We select »g in such a way that by # 0 3 bs and put

G(2) = F(zg +2) = anz and o(z) =

n=0

(ZQE + Ll?) - 20

From (3) we have

T(G(z)) = T(F(zoe + o)) = F(ip(z0e + 2)) = Fzo + (#(20€ + z) — 20))
= G(¥(z)),
that is,
(6) ToG==Go1.

For z € A we define
Yo (A) = ¢(Az) and f(})

From (6) we have

=T(G(A\z)) for AeC.

(7) f) = anT(m G(¥=(N),

n=0
80 1, i5 analytic as a continuous solution of a holomorphic relation. Define
o0
R(A) =Y " [buT(z™)|A™  for A € C.
n=0

We now prove by contradiction that ¢, is a linear function. So assume
¥y 18 not linear. By Lemma 5 there is an Ry such that

My (R*?) > M;(R*®) = Mgoy, (R*?) > Mg(R) for R > Rq.
For any n we have |T'{z")| < K™, where K = max{||z|, |T| - llz||}, so
pr(R) < pe(KR)  for any R.
By (8], p. 10, there exist arbitrarily large values of » such that
Mp(r) < pn(r)log un(r).
Since log Me(R) is a convex function of log R we have
M (R¥*) < (Ma())M*(Ma(R)™* = o(Ma(R))¥/*.

From the last four inequalities and from (5) there are arbitrarily large values
of R such that

Ma(R) € Mu(R*®) < un(R*®)log s (B/?)
< pe(K R log pa(KRY*®) < Ma(KRY*)log Ma(KR*)

< Mg(R**)log Mo (R**) < c(MG(R))?’“( log e+ 3 log Ma(R))-
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Hence Mg is bounded and consequently & is constant. This contradicts our
assumption and proves that 1, is linear, that is, 1¥,(A) = a + GzA; notice
that o = 9(0) and 8, = ¥(z) — ¥(0), so that o does not depend on =.

We have

Z b T (z T(G(\e)) = Gp(Az)) = Gla+Bud) = 3 bala+BaX)™,

n=0 n=0
hence, comparing the coefficients of the first and the second power of A we
get

(8) b1 T(z) = Z bana™ 18, = B.G' (@),

) sz(fﬂz)"zb nn =D -2z = B (e,

Assume that T' ¢ 0, and let g € ker T. Notice that regardless of the value
of T'(e), for all sufficiently large t,

(10) te + xop ¢ ker T,
also for any t > ||zo||, the element e + zg/t has a logarithm in A, so
{11) te +zp € {z° 1 v € A).

Recall that defining G we have selected zp such that b1, by were not zero.
So by (8) for z = zp we get G/() # 0. By (9)—(11) for 2? = te + zo we get
G"(a) # 0. Consequently, for any € A,

(12) zekerT & B, =0 2% €kerT.

Since for any z,y € A we have zy = 1((z + y)? — (z — y)?) it follows that
ker T' is a subalgebra of A. By [9] (see also [4], p. 23) there are only three
types of subalgebras of codimension one of a unital commutative Banach
algebra:

o ¢ & kerT and kerT is a maximal ideal, so T/T{e) is a multiplicative
functional,

¢ ¢ € kerT and
— T is a difference between two multiplicative functionals, or
- T' ig a point derivation.

Assume T is equal to the difference between two multiplicative func-
tionals &;,®; and let © € A be such that $1(x) = 1 = —P2(z). Then
T(x) # 0 = T(z?), which violates (12). Assume now T is equal to a

~ point derivation at &; from the definition of point derivation, T(z?) = 0

for any « € ker &, by (12), and since e ¢ ker & we have ker & & kerT', hence
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ker T = A. The contradictions prove that T = 0 or T'/T'(e) is multiplica-~
tive. =

3. Remarks, generalizations, and open problems. The result of
the previous section can be easily extended to linear maps between two
commutative complex Banach algebras A and B. IfT': A — B is a bounded
linear map such that 7o F' = F o ¢, where F is a nonlinear entire function
and ¢ a continuous map from A into B, then we can apply the theorem to
all pairs @0 T, for each linear multiplicative functional &, and conclude that
T is multiplicative modulo T(e) and the radical of A (compare [1], § 3).

Let A be an m-convex topological algebra and assume a linear functional
T on A satisfies the usual condition T o F = F o. Since A is the inductive
limit of a net of Banach algebras, and any continuous linear functional cn
A is also continuous on some of these algebras, standard arguments extend
the result to m-convex algebras.

The result is not valid in general if F' is an analytic function defined on a
proper subset of the plane and the equation ToF(z) = Fop(z) is assumed to
hold only for elements = whose spectrum is contained in the domain of F. It
may be interesting to decide for what pairs of functions (F, ) the equation
ToF(z) = F op(z) implies multiplicativity. For example, by comparing the
coefficients of the power series expansions, we can show the following.

ProOPOSITION 6, Let A be a complex Banach algebra with a unit e, let F
be @ nonlinear analytic function defined on an open connected and nonempty
sei U, and let T be a linear functional on A. Suppose that

T(F(z))y=F(T(2)) foreachz ¢ A witho(z)CU.
Then T'=0 or T' is multiplicative.

However, the most interesting related open problem is perhaps the fol-
lowing one.

CONJIECTURE 7. Let A be o complex Banach algebro with o unit e, let
I be o nonsurjective entire function, let T be a linear functional on A with
T(e) = 1. Suppose that

(13) T(F(z)) € F(T)

Then T' is multiplicative.

for each x € A.

By the Weierstrass Factorization Theorem [3] any nonsurjective entire
function F is of the form

F(z) = ¢+ expg(z).

By Theorem 1 the Conjecture is true for g(z) = 2. C. Badea [2] proved that
it holds for g(z) = z + 2*. Below we prove that it is also valid if g is any
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polynomial of degree three. It will be clear that the proof can be applied to
many other polynomials, for example to any nonzero polynomial of the form
9(z) = az" + bz"*! for some n € N. However, the author does not know if
the result is true for all nonconstant polynomials.

THEOREM 8. Let A be a complez Banach algebra with a unit e, let g be
a polynomial of degree three, and T g linear functional on A with T(e) = 1.
Suppose that

(14) T(expg(z))#0 for each xz € A
Then T is multiplicative.

Proof. The derivative of g must be equal to zero at some point zg.
Replacing g with g(z+ 20) — g(20) we may assume without loss of generality
that g{0) = ¢'(0) =0, so

g(z) = a22® + azz®,  where a3 # 0.

Fix an = € A and put

(15)  F(N)
= T(exp g(Az)} = T'(exp{az \2z*) exp(az A3z?))

1
= T( (e+a2)\2a:2+%(a2)\2m2)2+ .. ) (e+a3)\3m3+—2—‘(a3)\3m3)2+ . ))

=1+ apT(x®)A? + a3 T(z%)2* + %agfr(a;'*)x* +.n
For any complex number A with sufficiently large modulus we have
[F)] < TN flexp g(A2) || < |7l exp [lg(Az)]| < Tl exp(ll)® (Jas| + 1) IA).

Hence the entire function f is of order not greater than 3, and by our
assumption does not assume value zero. By the Hadamard Factorization
Theorem [3] and the Weierstrass Factorization Theorem, f is of the form

3
f(O) = exph{)), where R(\)= Z bpA®, for e C
k=0
Since f(0) = 1, we have by = 0, and

3 3
(16)  f(\) = exp (Zbk/\k) = ] exp(6:3*)
k==1 fe=1

1
=1+bA+ (bz + Ebf))\z

1 1
+ (ba + bibo + gb?) A3+ ("2"53 -+ blbs)XL +...
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The coefficients by may depend, of course, on all of the coefficients ay, as
well as on z. From (15) we have by = 0, so (16) gives

1
FO) =14 bpA? 4 b3 X% + §b§A4 e

and

(17) aT(z?) = by, aaT(a®) = b3, a3T(z*) =05
Assume first that az # 0. From (17),

(18) (T(z*))? =T(z*), foranyze A

If y is any element of .4 such that [jy]| < 1, then e +y is a square of an
element of A, and by (18) we have

1+ 2Ty + T(y?) = T(e+ 2y +v°) = T((e +9)*)
= (T(e+y))? = (1+Ty)> =1+ 2Ty + (Ty)".
Hence T(y?) = T(y%), so T is multiplicative.
Assume now that as = 0. In this case we need to compute and com-
pare the sixths coefficients in (15) and (16). They are 2a3T'(2%) and b3,
respectively. Hence

a3T(2%) = b3,
so since ag # 0, from (17) we get
(T(2%))* = T(«°),

As in the previous case, we conclude that T is multiplicative. w

for any ¢ € A.
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