

288

Proposition 3. Then Theorem 8 gives a discontinuous homomorphism from A to B.

References

- G. R. Allan, Embedding the algebra of formal power series in a Banach algebra, Proc. London Math. Soc. (3) 25 (1972), 329-340.
- [2] —, Elements of finite closed descent in a Banach algebra, J. London Math. Soc. (2) 7 (1973), 462-466.
- [3] —, A remark in automatic continuity theory, Bull. London Math. Soc. 12 (1980), 452-454.
- [4] R. F. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 632-630.
- [5] -, A generalization of normed rings, Pacific J. Math. 2 (1952), 455-471.
- [6] —, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182.
- H. Cartan, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, Hermann, Paris, 1963.
- [8] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183.
- [9] J. Esterle, Elements for a classification of commutative radical Banach algebras, in: Radical Banach Algebras and Automatic Continuity, J. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, 1983, 4-65.
- [10] —, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, Amer. Math. Soc., 1984, 107-129.
- [11] E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1953; third printing 1971).

Department of Pure Mathematics and Mathematical Statistics University of Cambridge 16 Mill Lane Cambridge CB2 1SB United Kingdom E-mail: g.r.allan@pmms.cam.ac.uk

> Received January 29, 1996 (3601) Revised version March 6, 1996

STUDIA MATHEMATICA 119 (3) (1996)

Multiplicative functionals and entire functions

by

KRZYSZTOF JAROSZ (Edwardsville, Ill., and Warszawa)

Abstract. Let \mathcal{A} be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If $T \circ F = F \circ \varphi$ and T(e) = 1 then T is multiplicative.

1. Introduction. If T is a multiplicative functional on a complex Banach algebra \mathcal{A} with a unit e then T(e)=1, and for any invertible element x of \mathcal{A} we have $T(x) \neq 0$. A. M. Gleason [5] and, independently, J. P. Kahane & W. Żelazko [7] proved that the above property characterizes multiplicative functionals. In fact, they proved even a stronger result:

THEOREM 1. If T is a continuous linear functional on a complex unital Banach algebra \mathcal{A} such that T(e) = 1 and $T(\exp x) \neq 0$ for $x \in \mathcal{A}$, then T is multiplicative.

The above statement can be rephrased in the following equivalent way.

THEOREM 2. If T is a continuous linear functional on a complex unital Banach algebra $\mathcal A$ with T(e)=1, and there is a complex valued function φ on $\mathcal A$ such that

1)
$$T(\exp x) = \exp(\varphi(x)) \quad \text{for } x \in \mathcal{A},$$

then T is multiplicative.

R. Arens [1] asked if the exponential function in (1) can be replaced by any other entire function F, that is, whether

$$(2) T \circ F = F \circ \varphi$$

[090]

¹⁹⁹¹ Mathematics Subject Classification: Primary 46J05; Secondary 46H05, 46H30, 46J15, 46J20.

Research was supported in part by a grant from the International Research & Exchanges Board, with funds provided by the National Endowment for the Humanities and the U.S. State Department.

implies multiplicativity of T. Of course, the conjecture fails if F is surjective; in such a case we can take any linear map T and simply define $\varphi(x)$ to be one of the elements of $F^{-1}(T(F(x)))$. However, the function φ so defined may be discontinuous, unless F is linear, that is, of the form $F(z) = \alpha + \beta z$. Consequently, Arens amended his conjecture by requiring that φ be continuous and F not be a polynomial of degree at most 1.

In [1] Arens proved that (2) implies multiplicativity of T if φ is a polynomial of degree more than 1, or if A is a uniform algebra. Later, C. Badea [2] proved that (2) implies multiplicativity of T for any nonlinear entire function $F(z) = \sum_{n=0}^{\infty} a_n z^n$ with $a_n \geq 0$ for all $n = 0, 1, \ldots$ In this note we prove the conjecture for all nonlinear entire functions.

The Gleason-Kahane-Żelazko theorem has also been extended in several other directions; a number of problems remains open [6].

2. The result

THEOREM 3. Let A be a complex Banach algebra with a unit e, let F be a nonlinear entire function, let T be a linear functional on A, and let φ be a continuous complex valued function on A. Suppose that

(3)
$$T(F(x)) = F(\varphi(x))$$
 for each $x \in A$.

Then $T \equiv 0$ or T/T(e) is multiplicative.

To show the result we need two simple lemmas; the proof of the first one is a minor modification of a part of the proof in [1], p. 195.

LEMMA 4. For any nonlinear entire function g there is a real number R_0 such that for any $R > R_0$, and any $z_1, z_2 \in \mathbb{C}$ with $|z_1| = R$, $|z_2| = 2R$ there exists $w \in \mathbb{C}$ with $|w| \leq R^{2/3}$ and such that g(w) is either z_1 or z_2 .

Proof. Assume to the contrary that for any R_0 there are $R > R_0$ and z_1, z_2 with moduli R and 2R, respectively, and such that for every w with $|w| \le R^{2/3}$, g(w) is neither z_1 nor z_2 . Put $h(z) = (g(R^{2/3}z) - z_1)/(z_2 - z_1)$. Then for $|z| \le 1$, h(z) is neither 0 nor 1; moreover, $|h(0)| \le 2$ if $R_0 \ge |g(0)|$. By the Schottky theorem [3], $|h(z)| \le C$ for $|z| \le 1/2$, where the constant C is independent of R. Hence $|g(R^{2/3}z)| \le 4CR$ for |z| < 1/2.

Consequently, there is a constant C_1 such that for arbitrarily large r,

(4)
$$|g(u)| \le C_1 |u|^{1.5}$$
 for $|u| = r$.

By the Cauchy integral formula $|g^{(n)}(0)| \leq (2\pi)^{-1} \int_{|u|=r} |g(u)|/r^{n+1}$, so (4) shows that $g^{(n)}(0) = 0$ for n > 1. This proves that g is a polynomial of degree at most 1.

For an entire function $f(z) = \sum_{n=0}^{\infty} a_n z^n$ we define the maximum modulus M_f and the maximum term μ_f as usual by

$$M_f(R) = \max\{|f(z)| : |z| = R\} \text{ and } \mu_f(R) = \max\{|a_n|R^n : n = 1, 2, \ldots\}.$$

Notice that from the Cauchy integral formula for any $n \in \mathbb{N}$ and R we have

$$|a_n| \le \frac{1}{2\pi} \int_{|z|=R} \frac{|f(z)|}{R^{n+1}} \le M_f(R)/R^n,$$

SO

(5)
$$\mu_f(R) \le M_f(R)$$
 for any R .

Lemma 5. Let f be an entire function and g a nonlinear entire function. Then there is an R_0 such that

$$M_{f \circ g}(R^{2/3}) \ge M_f(R)$$
 for $R > R_0$.

Proof. Let R_0 be the constant given for the function g by the previous lemma. Let $R > R_0$ and let z_1, z_2 with moduli R and 2R, respectively, be such that $M_f(R) = |f(z_1)|$ and $M_f(2R) = |f(z_2)|$. By the previous lemma there is a w with $|w| \leq R^{2/3}$ such that $g(w) = z_1$, in which case $M_{f \circ g}(R^{2/3}) \geq |f(g(w))| = M_f(R)$; or $g(w) = z_2$, in which case $M_{f \circ g}(R^{2/3}) \geq |f(g(w))| = M_f(2R) \geq M_f(R)$.

Proof of Theorem 3. By [10] a linear functional on a unital Banach algebra is multiplicative if it is multiplicative on any commutative subalgebra, so without loss of generality we can assume that A is commutative.

We first show that, as a consequence of (3), T is continuous. To this end take $\lambda_0 \in \mathbb{C}$ with $F'(\lambda_0) \neq 0$. There is a neighborhood U of λ_0 such that $F|_U$ is a homeomorphism onto a neighborhood of $F(\lambda_0)$. Hence, for any $y \in \mathcal{A}$ from an open neighborhood of $F(\lambda_0 e)$, we have

$$T(y) = F(\varphi((F_{|U})^{-1}(y))),$$

so T is continuous at $F(\lambda_0 c)$ and consequently continuous at any point.

Let $F(z) = \sum_{n=0}^{\infty} a_n z^n$ be the power series expansion of F. Notice that formally the meaning of the symbol F on both sides of (3) is different—on the right hand side F is a holomorphic function defined on the complex plane \mathbb{C} ; on the left, F is defined by the same power series, but with the Banach algebra \mathcal{A} as the domain. Assume $F(z_0 + z) = \sum_{n=0}^{\infty} b_n z^n$ is a power series expansion of the same function around a point z_0 , so that $\sum_{n=0}^{\infty} a_n (z_0 + z)^n = \sum_{n=0}^{\infty} b_n z^n$ for $z \in \mathbb{C}$. It is easy to check that these two expansions define the same function on \mathcal{A} , that is, $\sum_{n=0}^{\infty} a_n (z_0 e + x)^n = \sum_{n=0}^{\infty} b_n x^n$ for $x \in \mathcal{A}$.

We select z_0 in such a way that $b_1 \neq 0 \neq b_2$ and put

$$G(z) = F(z_0 + z) = \sum_{n=0}^{\infty} b_n z^n$$
 and $\psi(x) = \varphi(z_0 e + x) - z_0$.

From (3) we have

$$T(G(x)) = T(F(z_0e + x)) = F(\varphi(z_0e + x)) = F(z_0 + (\varphi(z_0e + x) - z_0))$$

= $G(\psi(x))$,

that is,

$$(6) T \circ G = G \circ \psi.$$

For $x \in \mathcal{A}$ we define

$$\psi_x(\lambda) = \psi(\lambda x)$$
 and $f(\lambda) = T(G(\lambda x))$ for $\lambda \in \mathbb{C}$.

From (6) we have

(7)
$$f(\lambda) = T(G(\lambda x)) = \sum_{n=0}^{\infty} b_n T(x^n) \lambda^n = G(\psi_x(\lambda)),$$

so ψ_x is analytic as a continuous solution of a holomorphic relation. Define

$$h(\lambda) = \sum_{n=0}^{\infty} |b_n T(x^n)| \lambda^n$$
 for $\lambda \in \mathbb{C}$.

We now prove by contradiction that ψ_x is a linear function. So assume ψ_x is not linear. By Lemma 5 there is an R_0 such that

$$M_h(R^{2/3}) \ge M_f(R^{2/3}) = M_{G \circ \psi_x}(R^{2/3}) \ge M_G(R)$$
 for $R > R_0$.

For any n we have $|T(x^n)| \leq K^n$, where $K = \max\{||x||, ||T|| \cdot ||x||\}$, so

$$\mu_h(R) \leq \mu_G(KR)$$
 for any R .

By [8], p. 10, there exist arbitrarily large values of r such that

$$M_h(r) < \mu_h(r) \log \mu_h(r).$$

Since $\log M_G(R)$ is a convex function of $\log R$ we have

$$M_G(R^{3/4}) \le (M_G(1))^{1/4} (M_G(R))^{3/4} = c(M_G(R))^{3/4}.$$

From the last four inequalities and from (5) there are arbitrarily large values of R such that

$$\begin{split} M_G(R) &\leq M_h(R^{2/3}) < \mu_h(R^{2/3}) \log \mu_h(R^{2/3}) \\ &\leq \mu_G(KR^{2/3}) \log \mu_G(KR^{2/3}) \leq M_G(KR^{2/3}) \log M_G(KR^{2/3}) \\ &\leq M_G(R^{3/4}) \log M_G(R^{3/4}) \leq c(M_G(R))^{3/4} \left(\log c + \frac{3}{4} \log M_G(R)\right). \end{split}$$

Hence M_G is bounded and consequently G is constant. This contradicts our assumption and proves that ψ_x is linear, that is, $\psi_x(\lambda) = \alpha + \beta_x \lambda$; notice that $\alpha = \psi(0)$ and $\beta_x = \psi(x) - \psi(0)$, so that α does not depend on x.

We have

$$\sum_{n=0}^{\infty} b_n T(x^n) \lambda^n = T(G(\lambda x)) = G(\psi(\lambda x)) = G(\alpha + \beta_x \lambda) = \sum_{n=0}^{\infty} b_n (\alpha + \beta_x \lambda)^n,$$

hence, comparing the coefficients of the first and the second power of λ we get

(8)
$$b_1 T(x) = \sum_{n=1}^{\infty} b_n n \alpha^{n-1} \beta_x = \beta_x G'(\alpha),$$

(9)
$$b_2 T(x^2) = \sum_{n=2}^{\infty} b_n \frac{n(n-1)}{2} \alpha^{n-2} \beta_x^2 = \frac{\beta_x^2}{2} G''(\alpha).$$

Assume that $T \neq 0$, and let $x_0 \notin \ker T$. Notice that regardless of the value of T(e), for all sufficiently large t,

$$(10) te + x_0 \not\in \ker T,$$

also for any $t > ||x_0||$, the element $e + x_0/t$ has a logarithm in \mathcal{A} , so

(11)
$$te + x_0 \in \{x^2 : x \in \mathcal{A}\}.$$

Recall that defining G we have selected z_0 such that b_1, b_2 were not zero. So by (8) for $x = x_0$ we get $G'(\alpha) \neq 0$. By (9)-(11) for $x^2 = te + x_0$ we get $G''(\alpha) \neq 0$. Consequently, for any $x \in \mathcal{A}$,

$$(12) x \in \ker T \Leftrightarrow \beta_x = 0 \Leftrightarrow x^2 \in \ker T.$$

Since for any $x, y \in \mathcal{A}$ we have $xy = \frac{1}{4}((x+y)^2 - (x-y)^2)$ it follows that $\ker T$ is a subalgebra of \mathcal{A} . By [9] (see also [4], p. 23) there are only three types of subalgebras of codimension one of a unital commutative Banach algebra:

- $e \notin \ker T$ and $\ker T$ is a maximal ideal, so T/T(e) is a multiplicative functional,
- $e \in \ker T$ and
 - T is a difference between two multiplicative functionals, or
 - T is a point derivation.

Assume T is equal to the difference between two multiplicative functionals Φ_1, Φ_2 and let $x \in \mathcal{A}$ be such that $\Phi_1(x) = 1 = -\Phi_2(x)$. Then $T(x) \neq 0 = T(x^2)$, which violates (12). Assume now T is equal to a point derivation at Φ ; from the definition of point derivation, $T(x^2) = 0$ for any $x \in \ker \Phi$, by (12), and since $e \notin \ker \Phi$ we have $\ker \Phi \subsetneq \ker T$, hence

 $\ker T = \mathcal{A}$. The contradictions prove that T = 0 or T/T(e) is multiplicative.

3. Remarks, generalizations, and open problems. The result of the previous section can be easily extended to linear maps between two commutative complex Banach algebras \mathcal{A} and \mathcal{B} . If $T:\mathcal{A}\to\mathcal{B}$ is a bounded linear map such that $T\circ F=F\circ\varphi$, where F is a nonlinear entire function and φ a continuous map from \mathcal{A} into \mathcal{B} , then we can apply the theorem to all pairs $\Phi\circ T$, for each linear multiplicative functional Φ , and conclude that T is multiplicative modulo T(e) and the radical of \mathcal{A} (compare [1], § 3).

Let \mathcal{A} be an m-convex topological algebra and assume a linear functional T on \mathcal{A} satisfies the usual condition $T \circ F = F \circ \varphi$. Since \mathcal{A} is the inductive limit of a net of Banach algebras, and any continuous linear functional on \mathcal{A} is also continuous on some of these algebras, standard arguments extend the result to m-convex algebras.

The result is not valid in general if F is an analytic function defined on a proper subset of the plane and the equation $T \circ F(x) = F \circ \varphi(x)$ is assumed to hold only for elements x whose spectrum is contained in the domain of F. It may be interesting to decide for what pairs of functions (F,φ) the equation $T \circ F(x) = F \circ \varphi(x)$ implies multiplicativity. For example, by comparing the coefficients of the power series expansions, we can show the following.

PROPOSITION 6. Let A be a complex Banach algebra with a unit e, let F be a nonlinear analytic function defined on an open connected and nonempty set U, and let T be a linear functional on A. Suppose that

$$T(F(x)) = F(T(x))$$
 for each $x \in A$ with $\sigma(x) \subset U$.

Then $T \equiv 0$ or T is multiplicative.

However, the most interesting related open problem is perhaps the following one.

Conjecture 7. Let A be a complex Banach algebra with a unit e, let F be a nonsurjective entire function, let T be a linear functional on A with T(e) = 1. Suppose that

(13)
$$T(F(x)) \in F(\mathbb{C})$$
 for each $x \in A$.

Then T is multiplicative.

By the Weierstrass Factorization Theorem [3] any nonsurjective entire function F is of the form

$$F(z) = c + \exp g(z).$$

By Theorem 1 the Conjecture is true for g(z) = z. C. Badea [2] proved that it holds for $g(z) = z + z^2$. Below we prove that it is also valid if g is any

polynomial of degree three. It will be clear that the proof can be applied to many other polynomials, for example to any nonzero polynomial of the form $g(z) = az^n + bz^{n+1}$ for some $n \in \mathbb{N}$. However, the author does not know if the result is true for all nonconstant polynomials.

THEOREM 8. Let A be a complex Banach algebra with a unit e, let g be a polynomial of degree three, and T a linear functional on A with T(e) = 1. Suppose that

(14)
$$T(\exp g(x)) \neq 0$$
 for each $x \in A$.

Then T is multiplicative.

Proof. The derivative of g must be equal to zero at some point z_0 . Replacing g with $g(z+z_0)-g(z_0)$ we may assume without loss of generality that g(0)=g'(0)=0, so

$$g(z) = a_2 z^2 + a_3 z^3$$
, where $a_3 \neq 0$.

Fix an $x \in \mathcal{A}$ and put

(15)
$$f(\lambda)$$

 $= T(\exp g(\lambda x)) = T(\exp(a_2\lambda^2 x^2) \exp(a_3\lambda^3 x^3))$
 $= T\left(\left(e + a_2\lambda^2 x^2 + \frac{1}{2!}(a_2\lambda^2 x^2)^2 + \dots\right)\left(e + a_3\lambda^3 x^3 + \frac{1}{2!}(a_3\lambda^3 x^3)^2 + \dots\right)\right)$
 $= 1 + a_2T(x^2)\lambda^2 + a_3T(x^3)\lambda^3 + \frac{1}{2}a_2^2T(x^4)\lambda^4 + \dots$

For any complex number λ with sufficiently large modulus we have

$$|f(\lambda)| \le ||T|| \cdot ||\exp g(\lambda x)|| \le ||T|| \exp ||g(\lambda x)|| \le ||T|| \exp(||x||^3 (|a_3| + 1)|\lambda|^3).$$

Hence the entire function f is of order not greater than 3, and by our assumption does not assume value zero. By the Hadamard Factorization Theorem [3] and the Weierstrass Factorization Theorem, f is of the form

$$f(\lambda) = \exp h(\lambda)$$
, where $h(\lambda) = \sum_{k=0}^{3} b_k \lambda^k$, for $\lambda \in \mathbb{C}$.

Since f(0) = 1, we have $b_0 = 0$, and

(16)
$$f(\lambda) = \exp\left(\sum_{k=1}^{3} b_k \lambda^k\right) = \prod_{k=1}^{3} \exp(b_k \lambda^k)$$
$$= 1 + b_1 \lambda + \left(b_2 + \frac{1}{2} b_1^2\right) \lambda^2$$
$$+ \left(b_3 + b_1 b_2 + \frac{1}{6} b_1^3\right) \lambda^3 + \left(\frac{1}{2} b_2^2 + b_1 b_3\right) \lambda^4 + \dots$$

The coefficients b_k may depend, of course, on all of the coefficients a_k , as well as on x. From (15) we have $b_1 = 0$, so (16) gives

$$f(\lambda) = 1 + b_2 \lambda^2 + b_3 \lambda^3 + \frac{1}{2} b_2^2 \lambda^4 \dots,$$

and

(17)
$$a_2T(x^2) = b_2, \quad a_3T(x^3) = b_3, \quad a_2^2T(x^4) = b_2^2$$

Assume first that $a_2 \neq 0$. From (17),

$$(T(x^2))^2 = T(x^4), \quad \text{for any } x \in \mathcal{A}.$$

If y is any element of \mathcal{A} such that ||y|| < 1, then e + y is a square of an element of \mathcal{A} , and by (18) we have

$$1 + 2Ty + T(y^2) = T(e + 2y + y^2) = T((e + y)^2)$$
$$= (T(e + y))^2 = (1 + Ty)^2 = 1 + 2Ty + (Ty)^2.$$

Hence $T(y^2) = T(y^2)$, so T is multiplicative.

Assume now that $a_2=0$. In this case we need to compute and compare the sixths coefficients in (15) and (16). They are $\frac{1}{2}a_3^2T(x^6)$ and $\frac{1}{2}b_3^2$, respectively. Hence

$$a_3^2T(x^6)=b_3^2$$

so since $a_3 \neq 0$, from (17) we get

$$(T(x^3))^2 = T(x^6)$$
, for any $x \in \mathcal{A}$.

As in the previous case, we conclude that T is multiplicative. \blacksquare

References

- R. Arens, On a theorem of Gleason, Kahane and Zelazko, Studia Math. 87 (1987), 193-196.
- [2] C. Badea, The Gleason-Kahane-Zelazko theorem, Rend. Circ. Mat. Palermo Suppl. 33 (1993), 177-188.
- [3] J. B. Conway, Functions of One Complex Variable, Grad. Texts in Math. 11, Springer, 1986.
- [4] T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.
- [5] A. M. Gleason, A characterization of maximal ideals, J. Anal. Math. 19 (1967), 171-172.
- [6] K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991), 915-921.
- [7] J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
- [8] G. Pólya and G. Szegő, Problems and Theorems in Analysis II, Springer, 1976.
- Z. Sawoń and A. Warzecha, On the general form of subalgebras of codimension 1 of Banach algebras with a unit, Studia Math. 29 (1968), 249-260.

[10] W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, ibid. 30 (1968), 83-85.

Adress for correspondence: Southern Illinois University at Edwardsville Edwardsville, Illinois 62026 U.S.A.

Institute of Mathematics
Warsaw University
Banacha 2
02-097 Warszawa, Poland

E-mail: kjarosz@siue.edu

Received March 18, 1996 (3633)