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STUDIA MATHEMATICA 120 (1) (1996)

Gehring’s lemma for metrics and higher
integrability of the gradient for minimizers
of noncoercive variational functionals

by

BRUNO FRANCHI and
FRANCESCO SERRA CASSANO (Bologna)

Abstract. We prove a higher integrability result—similar to Gehring’s lemma—for
the metric space associated with a family of Lipschitz continuous vector fields by means
of sub-unit curves. Applications are given to show the higher integrability of the gradient
of minjmizers of some noncoercive variational functionals.

1 Introduction. Many regularity results for solutions of elliptic sys-
tems, nonlinear partial differential equations, and for minimizers of varia-
tional functionals rely on Gehring’s lemma ([Ge]), which can be stated in its
simplest form as follows: let {2 be an open subset of R™ and let f € L ()
be a nonnegative function such that

P
(1.1) gfpdmgbl( { fdss) + bs,

B 3B
for some constants by, bz > 0, p > 1 and for any ball B (2B C (2), where
§B f dz denotes the average of f over B. Then there exist s > 1 and ¢ > 0
s0 that '

(1.2) (§r77da) " <e(1+ § fda).

)1/(PSJ
B 2B

Applications to elliptic systems, nonlinear partial differential equations and
variational functionals can be found in [BI], [GG], [G], [Mo], [St1]. Afn ex-
tensive account of the existing literature on these topics can be found in ).
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2 B. Franchi and F. Serra Cassano

The above results apply also to some important degenerate equations
like those which contain the p-Laplace operator div(|Vu|P~2Vuw), but do
not cover, for instance, operators of the type div(w(z)Vu), where w € Li
is a nonnegative weight function. Thus, it is natural to generalize Gehring’s
lemma by replacing Lebesgue measure by a different measure w(xz) dz, when-
ever possible. For some results of this kind, see, ¢.g., [Md], [St2] and [K]. In
addition, if we are dealing with variational functionals with nonpolynomial
growth in the gradient, the usual Gehring lemma cannot be applied and
further generalizations are in order. More precisely, the L? norm in (1.1)
and (1.2) must be replaced by an Orlicz type norm: see for ingtance [S1],
[Fs]. |

On the other hand, in the last few years many classical regularity results
for elliptic equations (such as, e.g., Holder continuity of weak solutions,
Harnack’s inequality for positive weak solutions) have been extended to
new wide classes of degenerate elliptic equations. Roughly speaking, these
equations are defined by degenerate operators which are good operators
for a different geometry in £2, in the following sense: arguing as in [FP],
[FL], [NSW], we can associate with a linear second order degenerate elliptic
operator £ = div(A(z)Vu) a suitable metric d which is natural for the
operator as the Euclidean metric is natural for the Laplace operator, or,
more precisely, as a suitable Riemannian metric is natural for a second order
(nondegenerate) elliptic operator (see Definition 2.1 below). In fact, if £ is
a nondegenerate elliptic operator, the metric d we define is equivalent to
the Riemannian metric given by the quadratic form (A~ (z)¢, &), which in
turn is locally equivalent to the Euclidean metric. However, for degenerate
operators, the metric d we consider cannct be defined in this simple way
and it is not equivalent, even locally, to the Euclidean metric (in fact, it is
not even a Riemannian metric).

A typical example of these classes is given by the generalized Grushin
operator 07 - |z1|*76% in the plane; its natural geometry is described by the
family of quasi-balls [z1 —7,z1 +7] X [2 —r(|z1| +7)7, 22 - r(|@1]| +7)7] (see
[FL]). By applying Moser’s iteration technique, regularity results for these
classes of degenerate equations follow once we are able to prove a precise
Sobolev-Poincaré inequality for the new geometry (see for instance [FL],
[F1], [CW], [FGuW], [FLW], [CDG], [GN]). Analogously, to prove regular-
ity resulis for the corresponding class of degenerate variational functionals,
we need an extension of Gehring’s lemma, where Euclidean balls are re-
placed by the metric balls defined by d. The difficulty of the problem arises
from the fact that d is not equivalent to the Euclidean metric, but only
Holder continuous with respect to it, so that the corresponding ruetric balls

show a strongly anisotropic behavior for small radii and are not translation-
invariant.
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More precisely, in this paper we will prove in Theorem 2.4 a generaliza-
tion of (1.2) where Euclidean balls are replaced in (1.1), (1.2) by metric balls
associated with n vectors fields A1dy,. .., An8, by means of sub-unit curves

(see [FP], [FL] and Section 2). Typically, our results apply to noncoercive
variational functionals like

(1.3) {172l 4+ 3 (2)| V072 do = [ Vaul” de

in R* = Ry x B}, where u = (u1,...,un) is a vector-valued function.
Moreover, in (1.3) the functions F(|Vyu|) = |V,u/? can be replaced by more
general functions with nonpelynomial growth at infinity, and the Lebesgue
measure dz can be replaced by suitable degenerate or singular measures
w(z)de.

Further applications of the same higher integrability result to degenerate
elliptic systems can be found in [FSC].

After this paper was submitted for publication, related results appeared
in [G1], [G2].

In Section 2 we give precise definitions and we state the main theorem
(Theorem 2.4). In Section 3 we prove a crucial geometric lemma (Lemma 3.2)
and we complete the proof of the main theorem. In Section 4 applications
are given to some noncoercive variational functionals.

2. Preliminaries and main result. Let A1,..., A, be bounded non-
negative Lipschitz continuous functions, with Lipschitz constant L > 0. Fol-
lowing [FP], [NSW], [FL], [F1] we can define a metric d which is naturally
associated with the vector fields A101, ..., AnOn. More precisely:

DEFINITION 2.1. We say that an absolutely continuous curve v : [0,T] —
R™ is a sub-unit curve (with respect to A181,..., AnOn) if

T

(v(),6)% < Y AHy()E]

j=1
for any ¢ € R® and for a.e. t € [0,7]. If z,¥ € R™, we put
d(z,y) = inf{T > 0 : there exists a sub-unit curve v: [0,T] —» R"
with v(0) = z and +(T) = y}.

If the above set is empty, then d(z,y) = oo. In what follows we assume
that

(H.1) d{z,y) <oo forany z,y € R™.
We need the following definition (see [F1}).
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DEFINITION 2.2. Let & € R™ and » > 0 be fixed. Put
Ci(m,7) = {u;(t) : 0 <t < v, where u = (uy,...,u,) is any
sub-unit curve such that «(0) = z}

for any j = 1,...,n. It is easy to verify that C;(z,r) is a compact interval
containing x;, the jth component of z, for j = 1,...,n. Now we can put
An(zyr) = max  Ap(sy,..., 8.).
h( 1 ) 5560, (o, h( 1 ) n)

If # € R* and 7 > 0, denote by Q(z,r) the n-dimensional open interval

il
Q(ma T) = H(mh - Fh(m’ T): Th -+ ﬂ%(ml T)):
h=1
where
Fh($,t) ﬁt/lh(z,t) fOI‘h=1,...,'n,.

We call @ a metric cube.

In [F1], Theorem 2.3, it is proved that the metric cubes Q(z,r) are in
fact equivalent to the metric balls B = B(w,7) = {y € R* : d(z,y) < r}.
More precisely, we have:

THEOREM 2.3. Suppose Ap(z,7) > 0 for every z € R*, » > 0 and
h=1,...,n. Then there exists a positive constant b such that
(2.1) Qz,r/b) C B(zx,r) C Qz,7)

Jor every z € R™ and r € (0,7q), where b and ry depend only on n and L.
Moreover, the following estimates hold:

(2.2) () F7 Mo,y - ) < d(=,9) < 26> F (m, lyy — a4).
F=1 i=1

From now on, we will assume that
(H2)  An(z,r)>0foreveryz € R*, r>0and h=1,... n.
(H.3) R is a space of homogeneous type with respect to the metric d and

Lebesgue measure, i.e. denoting by |E| the Lebesgue measure of the
set E, we have

[B(z,2r)| < co| Bz, )|
Jor any = € R" and r € (0,7g).
It is well known ([C], Lemma 1) that (H.3) implies that
(2.3) |B(z,tr)| > e1t*| Bz, r)|  for any ¢ € (0,1),

where ¢; and o are positive constants depending only on the constant ¢

of (H.3). Sometimes, we will call o the pseudo-homogeneous dimension of
(R™, d).
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We note explicitly that, by Theorem 2.3,

(2.4) Ah(ﬂ:,?ﬁ"} < CQA}-,,(.T,,T)
for any 2 € R*, v € (0,rg) and h =1,... n. Indeed,
An(z, 2r) = Q(z, 2r)| < gon__|B(=,2b7)|

(2r)n Hj;&h Aj(z,2r) =
< ooy 19r)
i Hj#h A; (ml T)
In particular, as in Remark 4 after Theorem 2.6 in [F1], d is Hslder contin-
uous with respect to the usual Euclidean metric.

Let now w be an A, weight for the space (R*,d,dz), where dx denotes
Lebesgue measure. In other words, we asswme that there exists s £ [1,00)
such that w € 4, i.e.

" Hj:,éh Aj(tﬂ,’f‘)

=2""¢(D)Ap(z, 7).

sup( S wdm)( inf Wyl <o Fs=1.
& B{z,r) Blar)

We note that the theory of Ay weights in a general metric space of homoge-
neous type has been developed in [C]. In particular, the metric space (R"™, d)
with respect to the measure diu = wde is a space of homogeneous type, i.e.

(2.5) #(B(z, 2r)) < cau(B(z,7))  forz € R*, r € (0,7g).

From now on, we will denote by du the measure w(z)dz, where w € Ay,
Finally, we denote by A a continuous increasing function A : [0,00) —
[0, 00} such that

(H4)  A(2t) < RA(t) for t > 0 (Ap-regularity);
(FL.B)  there ewists p > 1 such that A(t)t™P is increasing.

Note that condition (H.5) implies that A is strictly increasing and that
A~* is Ag-regular, We will show in Section 4 that this approach enables us
to deal with Functionals with nonstandard growth.

Throughout this paper, we say that a constant ¢ > 0 is a geomeiric
constant if it depends only on n, ¢y, on the Lipschitz constant I and on cj.
Moreover, for the sake of simplicity, if o > 0, we denote by ¢B = o B(z,r)
the ball B = B(x,or) and by r(B) the radius r of the ball B. If Q is a
metric cube, then @ has obviously an analogous meaning.

Remark, Let us point out that, if 24 is a given point in R* and we
put A}(z) = Ap(z — @) for h = 1,...,n, then the functions A} still have
the same Lipschitz constant L; moreover, a continuous curve v is sub-unit
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with respect to Ar,..., A if and only if v 4 xp is sub-unit with respect to
... An. In particular,
B(z,r) + 2o =B*(z+zo,7), Qz,7)+ 20 = Q" (& + z0,7),
where B* and Q* are respectively the metric balls and the metric cubes
defined by A3,..., A%
Let us now state our main result.

THEOREM 2.4. Assume that (H.1}-(H.5) hold, and let 2 be an open
subset of R™. Let f € Ll (£2ydp), f > 0, be such that there exist absolute
constants by, by and v > 1 such that

(26) fa(fyas <oa( § rdu) +b
B B

for any metric ball B such that 7B C £2. Then for any § > 0 there ewist
¢ = c(6) and 5 > 1 (depending only on p, by, bo, 7 and on the geometric
constants) such that

[ du < o(6) (1 +as(§ f‘d,u))

B (1+8) B
for any metric ball B such that (14 6)B < 2 (obviously, the averages are
taken with respect to the measure p).

The above result contains in particular other previous extensions of
Gehring’s lemrma (see [Md] and [K] for doubling measures and [FS] and
[$2] for Orlicz type norms).

3. Proof of Theorem 2.4. First, we need some technical lemmas. The
first one shows, roughly speaking, that the quasi-balls Q{z,r) depend con-
tinuously on their centers and their radii.

LeMua 3.1, With the notations introduced in Definition 2.2 we have:

(i) the functions (z,r) — Frn(z,r) are continuous for h=1,...,n;

(it) if 6 > 1, then Fy(z,8r) > 6F,(x,v) for any ¢ € R*, r > 0 and
h=1,...,n and, if 6 < 1, then Fp(z,br) = 5% Fy(x,r) for a suitable
geometric constent op >0, h=1,...,n;

{iil) if d{z,y) < Or, then there emist by(8) and by(#) such that

b1(8) Pz, 1) < Frly,r) < bo(8) Fr(z,7)

forany z € R*, r € (0,70), h=1,...,n. In particular, if 8 is a geometric
constant then b (8) and by () are geometric constants.

Proof The second assertion follows straightforwardly from the mono-
tonicity of A(z,-), whereas the third assertion follows from the equivalence
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between metric balls and metric cubes (Definition 2.2) and the doubling
property of Ax(z,-) (sce (2.4)).

Let us now give a sketch of the proof of the first assertion. Suppose
ti — to and 2; — zo as i — oo. Let us consider the case tp > 0, since

the case tp = 0 is trivial, because of the boundedness of A,y An- Let
ke {1,...,n} be fixed; we first show that
(3.1) liI"nSup Ah(mi,ti) < An(zo, to).
In fact, for any ¢ € N there exist y; = (1, 1, <y ¥n,i) € R, sub-unit curves
,Y(l i) ,,J,(n Y and st 1} st o ( i such that
090 =... = O =i, wis =770, M) = dnla, )
Put now U4 (s) = 40 (5504} for s € [0,1]; if [ == 1,...,n we have

d ) (3D ¢ o o)1) (G48) o o(4+8)

oI ()| <4l (s8] < i (v (551)).

Then, by the boundedness of Ay,..., A,, we have

‘%1}“*“(3) <C ifsel01),

forevery ¢ € N, I, = 1,...,n. Therefore for any j = 1,...,n, the set of
curves {I"%%; { € N} is precompact by the Arzeldi-Ascoli theorem, and
hence we can assume that ') — pU) = (I‘l(j), .. .,F,(Lj)) uniformly on
[0,1] as i — oo. Thus, if £ € R*, for every o > 0 we have

sS40
S+ o) - | 340 es00)e at)
i 8 1

& s))§,| < lim sup st
2300

s+o
<lmt | (ZA?(FU’“ (t))&f)m dt
5 i

T—+00

50

— 4 S (Z)P ) .52)

Hence the curves 5 — () (s) = I'9(s/ty) are sub-unit curves starting from
zo at 8 = 0. In addition

gii = TP (1) — I (1) = 45 =+ (ta).

Therefore ¥ = (y1,.-.,¥n) € C(xo,t0), 80 that A (y) < Ap(xo,t) for h =
i,...,n and (3.1) follows since

lim sup Ap(zi, t:) = 11msup Anlyi) = An(y) < An{zo, to)-

1—00
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Suppose now by contradiction that
(3.2) Ah_(ﬂto, to) =&+ llﬂlolgf Ah(.’l)i, t,;)

for some € > 0. Then there exist y € [T, Cj{zo,to) and n sub-unit curves

¥ .., y™ starting from zg such that y; = jquj)(sj) with s; < ¢ and

(3.3) Ah(xg,ﬁo) > )\h(y) > E/Z + li_minf/lh(a:m-, fi).
i—o0

Put now § = min;{to — 5;} and for any i € N let ¥ (£) be a sub-unit curve
starting from x; # g reaching zg for ¢t = 7; < 2d(=zg, ;). The continuous
curve ') = ) UAW) from [0,7; -+ 5;] to R™ is & sub-unit curve starting
from z;. As we pointed out after (H.3), the distance d is (Holder) continuous
with respect to the usual topology of R” and hence d; = d{zg, z;) — 0 as
% — 00. Then

T,;—I—Sj—-t.,;SZCE@"}"Sj—tDthQ—tiSQd.@—kto-—f*ﬁ(o

for ¢ large enough. Hence
yj = fgi’j)(-r.i +8;) € Cj(mi,ty)  for j==1,...,n and ¢ large enough,

so that An(y) < An(zi, ;) for large ¢, which contradicts (3.3). Then, keeping
in mind (3,1), we get

An(zo,to) < liminf Ay (24, %) < An(zo, to),
. ki de o]

and assertion (i) follows.

Arguing as in [FS] we now need the following geometric lemma which
is straightforward in the Euclidean case (see Lemma 1.5 of [FS]), but it is
definitely not trivial for our metric.

LemMMA 3.2. Let Qo = Q(z0,R), 0 < R < Ry, Q = Q(z,7), Q' =
Q(z',r') be given metric cubes such that G, G C Qu, Q' NQ # 0, Q ¢
m@', where m > 1. Then there exists a metric cube Q = Q(%,7) such that
RUQE C @ C Qo and ¥ < c¢(m)r, where c(m) depends only on m and on
the geomeltric constants.

Proof. Note thai geometric constants are invariant under (usual Eu-
clidean) translations of the vector fields A\y8y,..., AnBn, so that without
loss of generality we can choose @g = 0 (see the remark after (H.5)), Let
8 > 1 and £ € (0,1) be two geometric constants that we will choose below.

First, suppose that 6(r +1') < eR and denote by P = P = [T}_, I; the
smallest closed rectangle containing QUQ' (i.e. I, = [min{zp —Fy (2, ), 2}, —
Fu(a', v}, max{zy, + Fy(z,7), 2} + Fp(z',7")}]. Obviously P ¢ Qq. If we
now denote by ey,...,e, the standard orthonormal basis of R", for any
h =1,...,n, let {zx = £,} be a hyperplane of R" containing a side of P

icm
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normal to e having minimal distance from 8Qp. Note that we can choose
£y # O for h=1,...,n, so that we put 7, = sgn £y,
By (2.1),if Z € QN Q', then T € B(z,br) N B(z', br'), so that

QU Q" C B(z,br) U B(z',br') C B(Z,2b(r + 1)) C Q(T, 26*(r + ).

In addition P C Q(Z, 2b*(r+1')). Therefore, if we denote by I(1},) the length
of the interval Iy, then I{I}) < 2FR(Z, 26%(r +7')); if we put £ = (£1,...,4x)
it follows that £ € P so that £ € Q(%, 2b*(r + r')). Then d(Z, £) < 2b(r + 1)
and hence, by Lemma 3.1(jii), there exists a geometric constant a, such that

(3.4) Fu(Z,26%(r + 7)) € aaFn(€,26%(r +1)), h=1,...,n.
If 1 > 0, put
O={ceR":—F(0,R)<op < (1 +e)if =1
and (1 -+ 1)y < op < Fr(0,R) if n, = —1}
and let & : 2 x [0,1] — R"™ be defined as follows:
Py(o,t) = op +tn, Fr(o,8(r+7")), h=1,...,n.

Let us suppose we have proved that there exists & € £2 such that

(3.5) &(F,1)=¢£.

Then the proof can be carried out in the following way: it follows from (2.2)
that

T
d(7,£) <20 FyY(F, |55 - 4])
=1

=2b ZFJ._I(E, Fi(&,0(r +7))) = azb(r +77),
i=1 '
where as is a geometric constant. Therefore, by Lemma 3.1(iii), if aq4 =
bs (CL3), then
(3.6) Fo(6,8{r +7")) € agFr(F,0(r +¢)), h=1,...,n
On the other hand, by Lemma 3.1(ii), if 26/¢ < 1, then we have

2b?
(3.7)  Fu(£,20%(r+r)) < - Fu(&60r + ")), h=1,...,n

Then, by (3.4)-(3.7), we have
I(In) < 2F4(F, 203 (r + 1)) < a5 Fn(£, 26%(r + 1))

2b2 [43:4 2b2 22

S Fr(£,0(r+7)) < Fr(7,8(r +1')) < Fa(7,6(r -+ 1))

for h=1,...,nif 8 > 2b%as.
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Let us point out that, if £, > 0, then £, = suplj,, whereas if £, < 0,
then £, = inf Ij,. Hence we get

I C Iﬂh -—Fh(f, Ar + T’)),ﬂh] = [6h,Tn + Fh(é'-,@('r' + v ) if 4, > 0,
In C ln, b+ Fo(@,00r + 7)) = [Gh — Fu(,8(r + 7)), 5] if £ <0,
and then, by definition, we obtain P € Q(7,8(r + 7)) = Q

~—

Let us prove that § C Qo. Put Q = H?zl Jj, where
Jp = [Eh—Fh(f,Q(T+T’)),Eh] if 4, >0,
Jp = [Eh,tfh + F}L(GT,B(T - T’))] if £ < 0.

Consider, for instance, the first case. It follows from (3.5) that &, < £, <
Fy(0, R), so that & € Qq. Thus, if k= 1,...,n, we obtain

£y — &p = (7, 9(7‘ -{—‘i"’)) < F,rl(é'-, ER) < eFu(F, R) < CL7EF,1,,(0, R,

by Lemma 3.1(iii), since d(&,0) < agR. Then, if ¢ > 0 is such that zay < 1/2
we get

On = Fu(&,0(r + ")) = &n — fn + €n — FR{7,0(r + 1))
> _%Fh(oa R) - Fh(&-:H(T' + T’)) > —Fh(oa R)
for h=1,...,n and therefore @ C Qg-

Let us now prove that ' < ag(m)r. In fact, there exists T € Q N Q' so
that d(Z,x) < br and d(%,z") < br'. Hence, by Lemma 3.1,

Fh(m’,r') = alOFh(T,T’) and Fh(ﬂ;‘,'l") < U.11Fh(‘7ﬁ, ')")
for h=1,...,n. Moreover, there exists h € {1,...,n} such that
|mh - $$1| < Fh(wiT) + Fh(m',r’),

since QN Q" # 0. On the other hand, as Q € m@Q', there exist £ e R™ and
an integer j & {1,...,n} such that

Igj - m:fl < E?(ms T)s |§J "" .’I]H > F:i(wlam'r’)'

Then
mF;(z',r') < Fj(2,mr') < |¢; ~ A
< |€J - wjl + ‘mj - m;i < ZFB(.’L','I’) +Fj(m’:7~’):
80 that
Fy(@,r') € ——Fj(a',v') € ——2— Fy(a7)
aig = ag(m—1)" "7
2ay1 _ -
= mf’_’j(m,?) < Fj(m,algr).

Then it follows that ' < ayor and ¥ < 8(1 + a12)r = arz(m)r; thus, if (3.5)
holds, the lemma is proved if §(r -+ ') < eR.
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Let us now prove (3.5). To this end we first prove that
L& P(012,t) for every t €[0,1];
this will imply that the topological degree deg(#{-,?), 12,£) is well defined
and constant for ¢ € [0,1] (by the homotopy invariance of the topological
degree). On the other hand, deg(®(-,0),2,£) = deg(ld, £2,£) = las £ € 12
and thus deg(®(-, 1), £2,£) = 1, which implies the existence of &. Therefore
let us suppose by contradiction that there exist ¢ € 842 and ¢t € [0, 1] such

that #(o,t) = £. Then there exists A € {L,...,n} such that one of the
following cases holds:

(3.8) ap = (1 +e1),
(3.9) on = —nnFr(0, R).
In case (3.8) we have
b(l+e1) +tnuFulo,6(r + 7)) =y,
from which it follows that
Iher + tnpFr(o, 0(r + 7)) = 0,

and this contradicts £5 # 0 and &; > 0, since the two terms have the same
sign. In case (3.9) we have

—npF(0, R) + tynFr(o, 6(r + ")) = £y,
from which it follows that
tnhFh(C’-) B(T + T’)) = Fh(ou R) + |Eh| > Fh(oa R)a

but this is again absurd since, as above, Fi(7, (r +71')) < $Fn(0, R).

Thus the assertion follows if (r + ') < eR. On the other hand, if
8(r -+ r') > eR, we can choose Q= Q(0,(1 — 8)R), where § > 0 is so small
that QU Q' C Q. In fact,

) < axz{m)r
- €

(1-8R< -i—(r+r’ = cy(m)r,

as the estimate of v’ given above still holds in this case. Then it is enough
to take ¢(m) = a1a(m)/e.
‘We are now able to prove the following weak form of Theorem 2.4.

LEMMA 3.3. Assume the hypotheses of Theorem 2.4 hold. Then there
ezist a geometric constant o and a positive constant ¢ (depending only on
by, by, 7, A(-) and on the geometric constants) such that

fa(f)du < o{1+ 4% § Fdn))
B pB

for any metric ball B such that ¢B C {2.
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To prove Lemma 3.3 we will need the following lemmas which are in fact
local versions of well known results for metric spaces of homogeneous type.
The first lemmea states that the {local) Hardy-Littlewood maximal function
is continuous in some Orlicz space, We state it in the simple form we will
need later; however, we note that the result can be stated in such a way
that it does not require Ap-regularity (see [GIM], Proposition 3.1).

LEMMA 3.4. If Qq is a given cube and f € Ll (Qu; du) is o nonnegative
function, for any x € Qo put

(3.10) Maof(s)= sup §fd,

§
sEQC 0g
where the supremum is taken over all metric cubes @ such that © & Q.
Then, if A satisfies (H.4) and (H.5), we have

| AMg, fydu <c | A(f)dp,
Qa Ga

where the constant ¢ depends only on the geometric constants and on the
constants k, p of (H.4) and (H.5).

LeMMA 3.5. Let 12 be a bounded open subset of R*. If f>0 belonging
to LY(2;dy) is such that

& fdz < cinff
B
B
for any metric ball B € £2, then there exist T > I, s >1and ¢ > 0
depending only on ¢’ and on the geometric constants such that

1/e
(§roan) " <cf fau
B B
for any metric ball B such that B C 2.

Proof of Lemma 3.4. The proof can be carried out by the same
arguments as that of [FS], Proposition 1.2, keeping in mind that a weak
estimate for the localized maximal function Mg, still holds in a space of
homogeneous type. More precisely, define B, = {z € Qq : Mg, f(z) >t} for

a fixed ¢t > 0. If z € By, then there exists Q, = Q(2p,72) C Qp such that
x € ¢, and :

§ fdu>t.

Q
By (2.1), {B(zz,bry} : x € Ey} is a covering of E, and suprg < oc, Then, by
the Vitali covering lemma ([C], Lemma 3), there exists a countable subfamily
{B(2ay, brz,; )} of digjoint balls such that B, C UJ; B(za,, 3brs,;). By applying
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again (2.1), B; C |J; Q(zs,, 30ry,) = {J; 3Q; and hence
WEB) <Y p(36Q:) < e pl(Q)

¢ c
< ;Zﬁ_:é.fdn < -V Qof dp,
since ;N Q; # 0 for ¢ # j. Then, by the arguments of [BI], Lemma 4.1,
and [F3], Proposition 1.2, we conclude the proof. m

Proof of Lemma 3.5. The result is a local version of the well known
result which states that A; weights satisfy a reverse Holder inequality. This
result is proved for spaces of homogeneous type in [C], Theorem 1. To prove
our agsertion it is enough to repeat carefully Calderén’s arguments taking
into account that we do not have any precise dyadic decomposition of the
metric balls (or even of the metric cubes) and hence we use suitable covering
families {Q.} for which the property Int @, NInt Qg = @ fails. Moreover,
we are looking for a local result in {2 and hence our cubes cannot exceed {2
and hence the parameter 7 appears. m

Proof of Lemma 3.3. By Theorem 2.3 we can replace the metric
balls B by the metric cube ¢}, taking into account that we have to modify
the constants 7, by and by {by multiplying them by geometric constants).

Let Qo = Q(zo, R) be a metric cube such that 71Qp C {2 for a suitable
positive constant 71 that we will specify below and let Mg, f be the localized
maximal function defined in (3.10). Fix now a metric cube @' = Q(z', 7"} C
Qo such that 7, Q' C (o and a point z € @'. For any metric cube @ C Qo
containing z we have: if @ C m@)’ (where m is the constant defined in
Lemma 3.2) then, if 7 > m, we get

(3.11) § 7@ dply) = § F@)xme () dn(y) < Moy (Fxma)(2).
Q@ Q

If Q ¢ mQ', let Q@ = Q(Z,7) be the metric cube defined in Lemma 3.2;
then, for any z € Q C @, we have d(&,z) < are(m)r and hence, by Lemma
3.1(ii), (iii), we obtain
Fy(5,7) £ Fu(Z, c(m)r) < aoFu(z, c(m)r) < as(e(m))* Fr(z,r),
from which it follows that there exists a positive constant ag = ag(m) such
that B
|Qf > a3]Q.

On the other hand, w € Ay; then, by (3.11), (2.1) and Lemma 4 of [C],

we also find that there exists a4 = ag(m,w) such that :

w(Q)/w(@) = as.
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Thus
1 .
(3.12)  F0) ) < - § Fly) duy) < asinf Mo, f.
Q Q

The last inequality follows by noting that, if £ € Q' is an arbitrary point,
then, among the metric cubes containing £ and contained in (g, there is Q.

By taking in (3.11} and (3.12) the supremum over all metric cubes @
with z € @ C Qp, and using assumption (H.4), we obtain

A(Ma, f)(2) = a5 (A(May(Fxmq)(#) + 1of A(Ma, f))

for every z € Q'. If we choose 7, > max{ag, Tm}, by integrating over ¢’ and
using Lemma 3.4 and (2.6) we get

(313) | A(Ma,f)(z) du(2)
QI
< 71 § Aoy (Fxm0)) () dul2) +inf A(Mo, £))

i

o

[FAN
P
TN

—

7 § A0 Fena )2 dute) gt 40 )

7
)Q
1

ae(mmSQIA(f)(z) dyu(z) + inf A(Mouﬂ)

5aa(b1A( ! f(z)dp(z))+i3fA(MQ0f)+b2).

g

i

On the other hand, if £ € @', among the metric cubes containing £ and
contained in QQq, there is, in particular, 7m@’ and hence

(3.14) § £(2)du(z) < Mo, £(¢).
Tmed
But ¢ is an arbitrary point in @', so that, by (3.13), (8.14) and by the
monotonicity assumption (H.5), we obtain
(3.15) § (L+ A(Mo, ) du(s) < ar(1+ inf A(Mq, )
Ql
for every metric cube @' with 1@’ C Q.

Let us now prove that there exists 75 < 1 such that if Q' C 12G0 then
71Q" € Qo. In fact, by the inclusion Q' C mQq we have

Fu(@',7") S Fr(zo,72R), h=1,...,n;
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hence, if z € mQ', h € {1,...,n} and 73 = 1/(r"* + 1), then by Lemma
3.1(ii) we have
znl £ |2 — @] + |23,] < Fu(z',mur') + Fy (20, 72 R)
< M Fr(a’, 1) + Fu(ze, 2R) < (7§ + 1) Fa(zo, 2 R)
= (ro 4+ 1)£EFh(;c0,TzR)
2

< (i + 1)1 F(mo, B) < Fu(zg,B)  (h=1, ceyn).

Thus (3.15) holds for any metric cube ¢’ such that Q' C Q.
By (2.1) it follows that there exist 73 > 1 and ag > 0 such that

§(1+ A(Mao 1)) dp < as inf(1+ A(Mg, £)

for every metric ball B with 738 C 72Qo. Then, by applying Lemma 3.5,
we see that there exist 7 > 1, s > 1 and ag > 0 depending only on the
geometric constants and on ag for which

616)  (§0+ 4 au ) < 0 01+ AMg, P du
B B

for any metric ball B such that vB C mQq.
Fix now a metric ball B = B(z,r) such that pB C {2 for a suitable
constant g that we will specify below. By (2.1), if p > 7b%, then we have

(3.17) Bz, r) CQ(z,br) C Qlz, or/ (b)) C B(z,or/r) € B(z, or) C 2.
Put now Qo = Q(z,8r/r,;), where ¢ is fixed and b < < g/(7b). Then, by
(3.16), {3.17), (2.6) and by Lemma 3.4, we have

fas(rdu < §+ 4 (Maer) dp < oo (§(1+ AMa. 1) ap)

B B B
<au( § 0+AMMQNdk)
Q(m,br)
< alz(q(jbﬂ(l + AN cl,u)s
<ap( § 0rads) senft+a( § ).
B(w,er/T) B(z,er)

To accomplish now the proof of Theorem 2.4 we only need to show that
we can replace the constant g in Lemma 3.3 by 1 4 & (with a new choice
of the constant ¢ = ¢(6)). To this end we use the following formulation of
Whitney’s decomposition lemma which can be proved as in [FGuW], Lemma
5.5 (see also the remark after (5.3) therein).
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LEMMA 3.6. Let By be o metric ball. Given pp and € with go > 1 and
0 <& < (10g0)"", there ezists a sequence {B; : § = 1,2,...} of open balls
in By and a positive constant cg, u S0 that

(i) the B; are pairwise disjoint for j > 1;

(i) Uz 3B By;

(iii) r( B;) = sd(Bj,aBg) for § > 1, where d(B;,0By) denotes the dis-
tance from By to dBy;

) 2j21 XeoB; (T) < Coo,uXBo ()3

We are now able to prove Theorem 2.4.

Proof of Theorem 2.4. Let now {B; : j € N} be a Whitney decowm-
position of By = {1 +§)B = (1 + §)B(x,r) as in Lemma 3.6, with gy = 3p
and & < (300) 1, where p is the constant of Lemma 3.3. Let now K denote
the set of the indices j € N such that 3B; N B # (.

First, we prove that there exists a positive constant ¢(g) such that

(3.18) #K <ele)(141/6)%,

where « is defined in {2.3) and #K is the cardinality of K. If j € K, then
br

(3.19) d(B;,0B) > 15

Indeed, assume, by contradiction, that the reverse inequality holds and let
z € B; and £ ¢ 0By be such that

&

d(z,€) = d(B;, 0B0) < 17 e

If y is any point in 38;, then
d(y,2) 2 d(§, ) — d(¢, z) —d(z,y) > (L+ 6)r — d(B;,0Bo) — 6r(B;)
= (L+68)r— (1 +6e)d(B;,dBp) > (1 +8)r —br=r,
which contradicts 38; N B # §. Therefore (3.19) holds. On the other hand,

Ujex B; € Bo and the metric balls B; are pairwise disjoint, so that, by
(2.6),

1{Bo) = ;U»( U Bj) = 3 u(Blas,r(B;)))
jek JEK
) “"EZK”(B(% %)) - E{ (1 “:65) 8% w(B(w;,m)),

since we can assume that § < 1. Now note that B = B(z,r) C B(z;,3r),
since d(x, z;) < (1 +8)r < 2r. Hence, by the doubling condition (2.5), we
obtain

#(B) < u(B(z;,3r)) < aap(B(zj,r))
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and
1(Bg) < (1+ 8)*u(B).
Thus
1 6 o > =3
() > #5 ( E ) 5ouim),

and (3.18) follows.
In addition we point out that the following estimate of the size of the
metric balls B; (5 € K) follows from (3.19):
gdr
3.20 Bj
(3.20) (B 2 o

We can complete the proof of our assertion We have

for every 7 € N.

8 — __1‘_ 8 8
(3.21) 159 A du= o )EA (f)dp € ——= (B) UjeigsjA (Hdu
1 E
= m]%:”ij—/l (f)du

But, arguing as above,

#(B) = az w(Blz;, 7)) = az p(B(z;,7(B;)) = az p(B;)
since r(B;) = ed(B;,8Bp) < £(1 + 6)r < r; moreover, by (3.20) and (2.6)
we have

#lBy) = Bla 7B > “(B(mj’ 1i66e T8 IM)T))
1) &
(m) (B{zj, (1 + 8)r)) > as(e, &)u(Bo)-

Therefore, by Lemma 3.3, we have

1
(3.22) L‘(‘B')'Z | A%(f)du

JEK 3B;
<ay Z | as(n)4
JEK 385
5a52{A5( ! fdu)+1}=a5Z{A”( ! fd;.t) +1}
JEK 8¢B; jeK. 20B; _

s o 14)°
< a5(6,5){./-13( { fd;L) +1}.

Hence, by (3.21) and (3.22) the assertion follows.
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4. Some applications. Let us now show some applications of Theorem
2.4 to minimizers of noncoercive variational functionals.

Let £2 be a bounded open subset of R™ and let A = (Ay,..., ;) and w
be as in Section 2. If p € [1, 00) we denote by LP(2,w) = LF(£2;wdz) the
Banach space of measurable functions u defined in 2 such that

/
ullpr(@,w) = ( | lulpwdw)l " < co.
n

Note that, if w € Ay, then L(§2,w) embeds continuously in L(£2). More-
over, we dencte by H}\‘p (12, w) (respectively H&'f\’ (£2,w)} the completion of
the space Lip({2) (respectively Lipy(£2)) with respect to the norm

el 2oy = lullrgow) + 11Paul firow),

where [Dyul? = 300 M&ul. f w = (ug,...,un) € (HYP(02,0))V, we
put [ Dyl = 327, | Dy .

Let F': [0,00) — [0,00) be a continuous convex function such that there
exist p and ¢ with 1 < p < g for which

(4.1) F{t)t7? is increasing, F(#)t™7 is decreasing.
In particular, by (4.1) the function F satisfies (H.4) and (H.5). Moreover,

crtP < F(f) < cot?  fort> 1.
fue(H i’p (2,w)) and U is a subset of (2, we consider the functional
(4.2) I(U,u) = | F(|Dxul) wda.

g

We say that w € (HyP(2,w))Y is a minimizer of the functional T in
(Hy(2,w))N if, for any ¢ € (Lipo(£2))V,
(4.3) I(supp(®), u) < Z(supp(p), u + ).
We will restrict ourselves to the following situations, where further condi-
tions are imposed on the vector fields 18y, ..., A,

(i) The functions ); satisfy the condition of [F1], i.e. for any xg € R
there exists a neighborhood U of zy such that, if 0 < g5 £ )& <1 for
Jo=1...,n and if we denote by H(-,x,&) = (H1(...),...,H,(...)) the
integral curve of the vector field £1A181 +. .. + £\, 8y starting from z € U,

then we have
1

J (B (s, 2,8) ds > eylen, ... en)id(a, 1)
0 .

for j = 1,...,n, where ¢; is independent of t € (0,%), z € U and ¢ €

H?:l[gja 1]'
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Comments and exarmples concerning the above condition can be found
in [F1].

(i) R* = R* xR", 5,7 € N, and we denote by (z,y), z € R*, y € R", the
generic point in R”. We assume that Ay = ... =\ =1, g1 =... = Ay =
A= Mz), where the function A satisfies the conditions of [FGuW], i.e.

(it); A vanishes only at a finite number of points;
(ii); A is a strong A, weight in the sense of [DS];
(i); A satisfies an infinite order reverse Hélder inequality, i.e. for any
zp € R" and r > 0 we have
S AMz)dz ~ max Az).
le—zo|<r
lz—ag|<r
Note that, in this case, because of the particular structure of A,. .., Aq,
we can drop the Lipschitz continuity assumption and we require only the
continuity of .

If one the previous situations arises, then a weighted Sobolev—Poincaré
inequality holds. Following [C'W] we need some preliminary definitions. Let
w be an Ay weight (with respect to the metric d) and let po, ¢o, 1 < po <
go < oo, be such that

w )T ]

where the supremum is taken over all metric balls B, = B(z,r) and By =
B(zg, o) with B, C 8B C 12 (6 > 1is a geometric constant). Note that, by
the doubling property of the measure w(z)dz, (4.4) is satisfied for a suitable
choice of pg, go-

‘We have:

THEOREM 4.1. Let pg and qo be such that (4.4) holds, and let s and ¢
be such that py < 5 < q < qo. Moreover, let w belong to the Muckenhoupt
class Ay. Then, if B = B(zo, R) is a metric ball, then

( }lu—valt dm) v < CR( § 1D,\u|"wdz) v
- B

for any v € Lip(B), where up denotes the average of u over B.
For the proof, see Theorem II of [FGuW] and the remarks therein.

Remark 1. f w = 1 and o > 0 is the pseudo-homogeneous dimension
of the metric space (R, d) (see (2.3)), we can choose ¢ < g0 = poct/ (0 — po)
fpy<a.
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Remark 2. Suppose Ay =... = A, = 1 and put

o ifoos g () () <=}

Then we can choose pp < a* and ¢ < gy = por®/(a* ~ pg). Moreover,
a* = bn, where

b=inf{m>1:wedn}
In fact, by Corollary 1 of [W], if 1 < b < oo, then for every m > b, there
exists s > n for which

m(B) () <

with 1 < s/n < m, and hence a* < hn. Conversely, if o* < oo, then there
exists s > 0 for which (4.5) holds; moreover, we can also suppose that
s > n. Then, arguing as in the proof of Corollary 1 of [W] we conclude that
W € Agjne for every € > 0. Therefore s/n—+e > b for every &€ > 0 and hence
a* > bn.

Thus our results contain in particular those of [S2].

(4.5)

Remark 3. Our results can also be applied to the following situation:

(ili) Aj(2) = |p;{x)| for § =1,...,n, where the u; are smooth functions
such that the vector fields p1dh,. .., un Oy satisfy the Hérmander condition,
i.e. the rank of the Lie algebra generated by u18, . .., .0, equals n at any
point of a neighborhood of 2 ([NSWJ).

Indeed, Theorem 4.1 still holds in this case: see [FLW], Theorem 2. More-
over, if w = 1, then we can still choose go = poa/ (e — po)} if & > pq.

We can state now our higher integrability result for minimizers.

THEOREM 4.2. Let py and go be as in (4.4) and let p and q in (4.1) be
such that po < p < g < gqy. Then, if w € Ay and u is a minimizer of T in
(H;’p(ﬂ, w))N, then there exist geometric constants p>Lr>lande>0
such that for any metric ball B = B(z,r) such that 7B C §2, we have

} F7(|Daul)wds < e § F(|Dyu)w czm)".

B B

Proof. The proof can be carried out as in [S2], [FS]. We point out that,

in order to prove the Caccioppoli inequality, we need the existence of cut-off
functions for the metric balls B(z,r), which is proved in [F1] and [FGuW]
(for the case of Hormander vector fields, see also [CGL))

Further applications of our integrability results to degenerate. elliptic
systems can be found in [FSC].
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The bundle convergence in von Neumann algebras
and their [s-spaces

by

EWA HENSZ, RYSZARD JAJTE
and ADAM PASZKIEWICZ (Léds)

Abstract. A stronger version of almost uniform convergence in von Neumann alge-
bras is introduced. This “bundle convergence” is additive and the limit is unigque., Some
extensions of classical limit theorems are obtained.

0. Introduction. There are a few different concepts of “almost every-
where” convergence in a von Neumann algebra which, in the case of the
comimutative algebra L., (over a probability space), coincide with the usual
convergence almost everywhere (cf. e.g. Segal [21], Lance [14], Goldstein {5],
Petz [19], Hensz—Jajte [6]).

Unfortunately, the above mentioned kinds of convergence do not satisfy
certain important elementary regularities. In particular, they suffer from
the lack of additivity (except for the convergence of uniformly bounded
sequences in algebras, cf. Petz [19], Paszkiewicz [17]). This annoying fact is
a consequence of the following common feature of the above notions. There
has only been one requirement: the family of projections corresponding to
subspaces on which a given sequence of operators converges uniformly has
the unity as a cluster point. This requirement fits perfectly, in fact, only the
commutative case {see Sect. 6).

A careful analysis of a large part of existing noncommutative limit the-
orems shows that the converging sequence tends uniformly on closed sub-
spaces forming, in fact, a pretty large family. Our main idea is to require
that the family of the corresponding projections should contain a so-called
bundle. This leads us to the notion of bundle convergence enjoying nice
regularities. In particular, since the intersection of two or even a countable
number of bundles is a bundle again, our bundle convergence is additive
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