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The bundle convergence in von Neumann algebras
and their [s-spaces

by

EWA HENSZ, RYSZARD JAJTE
and ADAM PASZKIEWICZ (Léds)

Abstract. A stronger version of almost uniform convergence in von Neumann alge-
bras is introduced. This “bundle convergence” is additive and the limit is unigque., Some
extensions of classical limit theorems are obtained.

0. Introduction. There are a few different concepts of “almost every-
where” convergence in a von Neumann algebra which, in the case of the
comimutative algebra L., (over a probability space), coincide with the usual
convergence almost everywhere (cf. e.g. Segal [21], Lance [14], Goldstein {5],
Petz [19], Hensz—Jajte [6]).

Unfortunately, the above mentioned kinds of convergence do not satisfy
certain important elementary regularities. In particular, they suffer from
the lack of additivity (except for the convergence of uniformly bounded
sequences in algebras, cf. Petz [19], Paszkiewicz [17]). This annoying fact is
a consequence of the following common feature of the above notions. There
has only been one requirement: the family of projections corresponding to
subspaces on which a given sequence of operators converges uniformly has
the unity as a cluster point. This requirement fits perfectly, in fact, only the
commutative case {see Sect. 6).

A careful analysis of a large part of existing noncommutative limit the-
orems shows that the converging sequence tends uniformly on closed sub-
spaces forming, in fact, a pretty large family. Our main idea is to require
that the family of the corresponding projections should contain a so-called
bundle. This leads us to the notion of bundle convergence enjoying nice
regularities. In particular, since the intersection of two or even a countable
number of bundles is a bundle again, our bundle convergence is additive
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(in the algebra and its Lp-space as well}. Moreover, the limit is unique in
the algebra and in the selfadjoint part of L.

For our bundle convergence, important limit theorems are valid (obvi-
ously, in their stronger versions; see Sects. 4 and 5). In particular, in the
Loy-space we prove an extension of the ergodic theorem of Gaposhkin [4] and
limit theorems for orthogonal systems. An important and fruitful fact is
that, for bounded sequences of operators in the algebra, bundle convergence
is an immediate consequence of almost uniform convergence (Thm. 4.1).

In Section 1 we introduce basic definitions, whereas Section 2 contains
several auxiliary results. In Section 3 we examine some properties of bundle
convergence.

Comments clarifying the notion of bundle convergence are collected in
Section 6.

1. Notation and definitions. Let M be a o-finite von Neumann al-
gebra with a faithful normal state $. In our case, the GNS representation
of (M,®) is faithful and normal, so, without any loss of generality we may
and do assume that M acts in its GNS representation Hilbert space, say
H,in astandard way. In particular, we have H = Ly(M, &), the completion
of M under the norm z = &(z*z)*/2, and &(zx) = (22, 2), £ € M, where
£2 is a cyclic and separating vector in H. The norm in H will be denoted
by || - ||, and the operator norm in M by || - |lee. Proj M denotes the lattice
of all orthogonal projections in M, and pt = 1 —p for p € Proj M. Always,
izi2 = z*z for z € M. Finally, M** (or M) consists of all selfadjoint (or
positive) operators from M.

1.1. DEFINITION. Let (D) C M with 35> #(Dy) < 00. The bundie
(determined by the sequence (Dy,)) is the set Pyp,y = {p € Proj M :
supy, [[P(3 k=1 Da)Pllo < 00 and [[pDmpllce — 0 as m — oo}

As we shall see, for each (D,,) € M+ with 30>, (D) < oo, the
bundle P(p,,) is rich enough: it contains projections arbitrarily close to the
unity. This will be proved in Section 2 (Corollary 2.2). The corollary just

mentioned suggests the following definitions (cf. also 6.1).

1.2. DEFINITION. zn,2 € M (n=1,2,...). We say that (z,) is bundle

convergent to ¢ (o, oM ) if there exists a bundle Po,,) (always Dy, € M +
and 3 ) &(Dp,) < 0o} such that p € Pp,,y implies ||(zn, ~ z)p|ec — 0.

1.3. DEFINITION. Let §,, £ € H = Ly(M, D). We say that (£,) is bundle

convergent to £ (&, b, §) if there exists (£n) C M such that oo | (€, — &~
zn82||2 < co and (2,,) is bundle convergent in M to zero.
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In Section 3 we shall prove that the bundle convergence just defined
coincides with the usual almost everywhere convergence in the case of M =
Loo(X, F, ).

Clearly, the intersection of two bundles is a bundle again. This implies
obviously that bundle convergence in M and in Ly (M, $) is additive. More-

over, the bundle limit in M is unique. Indeed, let x, 2M and z, et 1.
By the additivity of bundle convergence and the fact that the unity is a
cluster point of any bundle (see Corollary 2.2), we get (z — y)pm = 0 for
BOINE Py, — 1, 50 7 = ¢.

In Section. 3 bundle convergence will be compared with other conver-
gences, which we now recall.

A sequence (z,) C M is said to be almost uniformly convergent to xz € M
(£rn — = a..) if, for each ¢ > 0, there exists p € Proj M with $(pt) < ¢
such that [[(zn — 2)p[lec — 0 as n — oo [14; 21].

Finally, let us recall {6] that a sequence (¢,) C H is said to be almost
surely conwergent to zero (€, — 0 a.s.) if, for each ¢ > 0, there exists a
projection p € Proj M with $(pt) < & and ||£,]l, — 0 as n ~+ co. Here, the
modular ||+ || (p € Proj M) is defined as follows: for £ € H, we put

€]l = mf{” imkpuw £ = imkﬂ in H, (zx) C M
k=1 k==1

o
and Z TEp converges in norm in M }
k=1

2. Auxiliary results. The following lemima is crucial in the proof of the
richness of the bundle and will also be used in our further considerations.

2.1. LEMMA [7, 3.3]. Let 0 < & < 1/16, Dy, € MYt form =1,2,... and

(1) > B(Di) <.
k=1
Then there exists p € Proj M such that
(2) &(pt) < &'/,
i)
(3) Hp(ZDk)p”m <4e? m=1,2,...
k=1

For the sake of completeness, we reproduce the proof.
Proof. For brevity, we define By = Y oy Dr, n=1,2,... Put
(4) pn"—'eBn([O:El/z]): n=12,..,
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where B, = S;o).egn (dX) is the spectral represemtation. The sequence
(pr)3, of projections is conditionally weakly operator compact. Let a be a
limit point

=w.0.- li :
(5) a=w.0- Hm po)

for some subsequence (n(k)}. Obviously, a €¢ M and 0 < a < 1. Set
1

where ¢ = S Aeg(dA).
0

(6) p= e[l =M% 1),

By (4) and (1), we obtain
B(py) = P(ep, (/% 00))) < e 2(By) < V2.
Consequently, by (6) and (5) we get
B(pt) = Bler_o (V4 1)) < e~ Y4B(1 —a) = a“”“hlim Bpmry) < €%,
— 00
which proves (2).
To show (3), we estimate (Bp&, &) for all £ € pH with [[£] = 1.
Obviously, the subspace pH is invariant for a. Moreover, by (6), the

spectrum of the operator = al,x is contained in the interval [1— /4 1],
Thus, a, is invertible, a7 " is defined on pH and

lag o < (2 — 47
Fix £ € pH with [|£] = 1 and put ¢ = a;'¢. Then ¢ € pH and
(7) lc < (1 -4yt

Define ny = ppry{—§. By (5), n» converges weakly to 0 as k — co. Therefore,
by the positivity of B,,, we obtain

W inf ((Braje, ) + (Bmas €) + (B, 1)) 2 0.

Hence we get

(Brmé, €) < lim inf(Bon (my + £), s + £) = Lig i (B pn 1) P )

< lm 3nf || pn iy B il o 1€ |2
< lim it P () Br () P lloolI¢II*
< e 21— et < M (by (4) and (7)),

which gives (3). m

As a consequence of the above lemma we get the following result:

032 COROLLARY. For each bundle Pipny (with Dn, € M7T and
Y ome1 B(Dn) < 00) and for each € > 0 there exists p & Pip,,) such that
P(p) <e.
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Proof It is enough to take a sequence 0 < @, ,/ oo such that
S @m(Dm) < 2% Applying Lemma 2.1 (with an Dy, and €* instead of
D, and €) gives p € Pp_ ) with S(p*) <e. m

To compare bundle convergence and almost sure convergence we need
the following consequence of Lemma 2.1.

2.3. LEMMA [7, 3.4]. Let 0 < € < 1/18, Dy, € M*, (i € H for myn =
1,2,... and

Z@(Dk) < €, Z ||Ck”2 < E.
k=1 k=1

Then there ezists p € Proj M such that
B(pt) < 26174,

B(3 )], <50

Enllp < 851/4 m,n=12,...

The proof can be obtained by a suitable approximation of ((x) (comp.
the proof of {6, 1.5] or 11, 2.2.2]).

2.4. COROLLARY. Let D e MT, (e H, myn=1,2,..., and

o0 oo

S B(Dy) <00, Y NG < oo

k=1 k=1
Then, for each £ > 0, there ewists p € ProjM with &$(p*) < & such
that the sequence (|p(3re; Di)plloc)5oey s bounded, |pDmpllec — 0 and
I¢alls — 0

The following simple lemma is in the spirit of the classical Schwarz in-
equality and is very convenient in many estimations.

2.5. LEMMA [7, 3.7). Let £ > 0, zx € M, B € M™ and |zx|? < ex B
fork=1,...,m. Then

Sl S mll (o)
Proof. For £ € H with [|£]| = 1 we have

S < (S ) = (Sstim?) (S

< ($ms) (5 < S (5o
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Now, we recall a noncommutative version of the Rademacher-Men'shov
inequality ([9] or [10, 4.4.2]).

2.6, LeMma. Let (yn)izl be a sequence of pairwise orthogonal elements
of M (i.e. ¥(yty;) =0 for i 5 j). Then there exists an operator B € M+
such that

n 2
|Zyj‘ <B forn=1,...,2"
i=1

‘and
2 i

#(B) < (m+1)* 3 &(|u;l?).
Fesl
‘We shall also need the following slight modification of the above inequal-
ity (cf. also [7, 3.8, 3.9; 6, 4.2; 11, 5.2.2]). Here and always log means log,.

2.7. LEMMA. Let (1,)5_ be an orthogonal sequence in H. There exisis
a number £ > 0 such that, for any (yn)h_y C M satisfying
(1) “nn_ynﬂu <&, n=1, 0,
there exists an operator B € Mt such that

Su|<B pra=i.u
§=1

and

m
&(B) < 2(logp+3)2 Y |lns 1.
P

Proof. Let y = 2™. Let ()%=, be obtained from (7, )2, by omitting
all zeros. For a given sequence (y,)2_,, denote by (2n(j))j=1 the standard
Schmidt orthogonalization of (yn))ioy, i€ zngy2 = (projection of Yn(iy 2
on the subspace spanned by yn(1)f2, ..., ¥n(i~1){2}. In addition, put @, =0
if gy =0, n =1,...,2™. Tt is rather obvious that, for § > 0, condition )
with e small enough implies ||z, 2 ~ yo2]| < §, n = 1,...,2™. Thus, for ¢
small enough, we have

o[ 5wl = [0 -]

2m
27N gl form==1,...,2m,
i=l
z’n'L

2™ il
Yoz =Y 5l <2 o)
=1 j=1 =1
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Let

n

2
IE zii} <CeMt forn=1,...,2™
Jj=1

-
B(C) < (m+1)*Y (|7

j=1
according to Lemma 2.6. For

ki

B:2(O+§|Z(zj—yj)f),

n=1l j=1

we have
2 n 2
+2 30z )]

J=1

n 9 k3
‘Z;U-i £2IZ;zi < B,
i= i=

-
$(B) < (2(m +1)* + 2) Z 1%,

and Lemma 2.7 is proved (put n, = 0forn = p+1,...,2™, 2"t < p < 2™
if necessary).

3. Properties of bundle convergence. First of all, we shall prove
that the bundle convergence coincides with the usual almost everywhere
convergence in the case of M = L (X,F,u). Clearly, bundle convergence
implies almost everywhere convergence because of the richness of a bundle
(Corollary 2.2). So, it is enough to show the converse implication. Indeed,
et fn € Loo(X,F,p) forn = 1,2,... and f, — 0 a.e. as n — oo. By
Egorov’s theorem, there exist measurable sets Z; ¢ Zo C ... C X such
that 3 oo, u(X \ Zi) < 00 and [falzlec — 0 asn — oo for all k =
1,2,... (1z denotes here the indicator of Z). Let Dy = 1x\z, . Obviously, the
sequence (Dy) determines a bundle P(p,y. Let A € Fand 14 € P(p,). Then
| Drlallos = |1ix\z4)n4llec — O as & — co. But we then have (X \ Zx) N A
= {} for k large enough, thus A C Zj. Hence ||fnlalc — 0 as n — oo, which

means that f, M G asn - oo

Let now fn € Lo(X,F,u) for n =1,2,... and f, — 0 a.e. There exist
gn € Leo(X, F, ) such that o0, [|Fn — gnll? < 00 and gn — 0 ae. So, by
the firgt part, g, M0 and, finally, fp, 2 0.

Let us collect some elementary, simple but important, properties of bun-
dle convergence.
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3.1. PROPERTY. For (z,) C M, the condition ¥ pwy ®(|2a|*) < oo im-
) b,M
plies ¢, — 0.

Proof. Put D, = lz,l%, m =1,2,..., which defines a bundle P(p,).
Let p € Pip,,)- Then |[pDpplloc — 0 as n — 00, and thus ||znplec =

b,M
plzn 2P| %2 = |[pDaplls4® — 0. Consequently, 2, == 0.

3.9, PROPERTY. Let (zn) C M with Ty 25 0 and 300 @(|zn ~ yn/*)
A
< oo for some (yn) C M. Then yn 22 0.

Proof. This follows from Property 3.1 and the additivity of conves-
gence. u

3.3. PrROPERTY. Let (£,) C H and &, 2 0. Then for each (yn) C M,
the condition S oo, ||én — ynf2||* < 00 implies yn BM .
Proof This follows from Definition 1.3 and Property 3.2. w

Let ()22, be asequence of positive integers and () C M. It is obvious

that z, 220 asn - oo implies that the sequence

Llyeoe, BTy oa; T2y s
W—n/\n—-—-—ﬂ
ny times ny times

is also bundle convergent to 0 in M.
The following property is more interesting:

3.4. PROPERTY. Let (£,) C H and £, = 0. Then the sequence
611'-')51152,-'-5621"'
S ! Nt e
ni témes ne times

is also bundle convergent to 0.
Proof. Obviously, for some z), € M, we have
o0
(1) > nwlién — zrf2|? < co.
k=1

The convergence £y LA implies, by Property 3.3, that = 22 0. Then
T1,...,21,%2,. .., Te,... 18 bundle convergent to 0 in M, so, by (1), we
e e

nq times 79 times
obtain the assertion. =

3.5. PROPERTY. For (§,) C H, the condition Y oo ||€a]|* < oo implies
£n 2 0.
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Proof. There exist z, € M (n = 1,2,...) such that Y oo, [|€n —
2af2]* < oo. Thus we get T2, &(Ja %) < 0. By Property 3.1, 2, 2 0. »
Obviously, by Property 3.3 we have

3.6. PROPERTY. Let (z,) C M. Then z, 224 0 if and only if 2,02 > 0.

Finally, we compare bundle convergence in the algebra and in its
Ly-space with almost uniform convergence and almost sure convergence,
respectively.

3.7. PRoPOSITION. Let (z,) C M. Then z, BM g implies , — 0 c.u.

Proof. Let z, L 0. Then there exists a bundle P such that, for all
g & P, we have ||znq|l.e — 0. By Corollary 2.2, for each & > 0 there exists
p € P with $(p*) < e. Thus, z, » 0 au m

3.8. PROPOSITION. Let (£,) C H and &, 5.0, Then £ — 0 as.
Proof. There exists a sequence @, ¢ M such that 5 oo, [|€n — 2,82|2

< o0 and z, %M 0. Then there exists D, € M* (m = 1,2,...) with
Y ore1 B(Di) < oo such that, for all ¢ € Pp,,y, we have [|2nglle — 0. Now,
by Corollary 2.4, for a given € > 0, there exists p € P(p, ) with #(pt) < ¢
such that [[{, — 2,82, — 0 as n — oco. Then [[Z,p|lc - 0. Thus, by the
inequalities

nlp < lin — 2af2llp + (20 2lp < [lén ~ Taf]ln + [FPllco
we get ||nll, — 0 and, finally, {, — 0 as. =

4. The bundle convergence limit theorems in the algebra. In this
section we show two facts.

First, for uniformly bounded sequences of operators, bundle convergence
is equivalent to almost uniform convergence and, consequently, to quasi-
uniform convergence (cf. [18]).

Second, we prove a strong law of large numbers for (in general) un-
bounded sequences of operators.

‘We start with the following

4,1, THEOREM. Let (zn) C M be a sequence bounded in operator norm.
. b,M
Then ¢, — 0 a.u. implies z, == 0.
Proof. Let ||Znllec €1 (n=1,2,...). For some &y >0 (m =1,2,...)

with 2::::1 Em < oo,wwe take projections pm,, € ProjM such that
S(pt) < €2, and |[@nPmllec — 0 as n — oo (m = 1,2,...). Putting

Dy =etps, weget Y oo ${Dyn) < co. Take p € P(p,,). Fora givene > 0,
since ||pDmPloc — 0, one can find an index m such that |pprple < &%
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Then, by [18, 3.2(f)], for ¢ = pjn —pm Ap™, we have ¢ < p, and [[p—gle < e
Thus we get

znplice S [[#ng]leo + [2n (P — Dlloo L Bapmllos + [lzall - [l — ¢l < 22
for n large enough, which means that ||z,p]e — 0 and, consequently,
L b—’ﬂ—{ 0w

The above theorem shows that prineipal results like the individual er-
godic theorem of Lance and Sinai-Anshelevich {[14; 22]; see also [10]) and
the martingale convergence théorem of Dang Ngoc [2] can be equivalently
formulated for bundle convergence in the algebra M.

As an example of bundle convergence in M for unbounded sequences of
operators we prove the following

4.2. THEOREM (strong law of large numbers). Let ()2, be a sequence
of pairwise orthogonal operators in M (i.e. $(ziz,) = 0 forn # m). If

(1) Zn_z log? (n + 1)&(|2|?) < oo,
n=1
then
n
(2) Zn=n"t ij M 0.
j=1

Proof. First, we show that
(3) D F(|zxl?) < 00
k=0

In fact, by the orthogonality of the operators and (1), we have

o) oo 2%
Do Bllzef) =3 27N "o (|uy?)
k=0 k=0 Fu=1

ok

<8(ml?) + 3 k(5 0gh + )81z )
k=1

J=1
< Consth"'2 log?(j -+ 1)&(|z;]*) < oo.
)

Now, by Lemma 2.6, theve exist operators By € M+ (k= 0,1,...) such
that

21
2
(4 Y af <Bi, 2 <ngo
j=2k+1
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9k+1
(5) S(Br) < (k+1)° D #(xi]?), k=0,1,...
F=2k41

For 2% < n < 2541 we have, by (2),

i 2
|2y, '—szlz = (E“ —) ZLE, —5—— Z xj
F=1 j =2k L]
<o(3-%) !an| | > af
je=2k 1
2 2 2
<E|Suf+ 2 3 -
i=1 J=2F1
Thus, setting
2 2
Dk:21—2k(|2$j‘ +Bk), k=0,1,...,
=1
we get
(6) Zn = 2ox* <Dy, for 28 <n < 2%t p=0,1,...,
with
ol
(7) 3 B(Dy) < oo
k=0
In fact, by orthogonality and (5), we obtain, for k= 0,1,...,
gk gk+1
B(Dy) = 27N B(|wsP) +2 Rk + 1P Y B(lzl?)
J=1 §=2k41
2’: 2k+1
<27 8(la M) 48 D 5 log? (G + )9 (|2 ).
J=1 j=2Fk41

Hence, using (3) and (1), we get (7).
Now, we can write 2, = Zg(n)+(2n —Zx(n)), Where s(n) = 2¥ for 2% < n<

26+l n =1,2,... By (3) and Property 3.1, we immediately have z,) =M,

To show that 2, — Zy(n) oM 0, let p € Pp.,) (see (7)). Then |[pDmpllec — 0.
Thus, by (8), we obtain

”Zn - zm(n))}"”m = ||p|zn ~ Zw(n)lzp”iéz
< ”leogm(n)pngz -+ 0 asn— oo,

b,M
and 80, Zn ~ Zg(n) — 0. m
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5. The bundle convergence limit theorems in the Lj-space.
In this section we prove several theorems on bundle convergence in H =
Ly(M,®). They give, in particular, improved versions of results from
[6; 7; 8; 12].

Let us begin with an extension of the Rademacher-Men’shov theorem
and the strong law of large numbers ([20; 15], see also [1]).

5.1. THEOREM. Let (£,)52., be an orthogonal sequence in H such that
[}
(1) > log*(n+ 1)]|gaf® < o0,
n=1

b . .
Then op = 3 ;.'=1 & — o as n — oo, where o is the sum of the series
o i H
Ej:l 5.7 2L .

Proof First, exactly as in the classical case, we have
o0
(2) > loge — af* < .
k=0

Define (n) = 2* when 28 < n < 251 (k = 0,1,2,...). Notice that there
exists a sequence (¢;) of positive numbers such that, for all (z;) C M, the
inequalities

(3) 1€ — 202 <5, i=1,2,...,

imply

(4) ZHO’”—G‘N(”) —Sn.(?-*l—s,c(,n).Q”z < 00,
n==1

where

n
Sn:Zmi, nml,Q,...

i=1
By Lemma 2.7, inequalities (3) with suitable (g;) also imply
(5) |80 — 505> < Bp € M™  for 2* < n < 2F+1,
nk-k1
(6) (B <2k +3)? Y |GI° fork=1,2,...
Je2k.1
By (6) and (1), we immediately obtain
(7 N 8(By) < oo
k=0
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Let us write
Op —O0 = (Un — Gw(n) — s {2 + sﬁ(n)ﬂ') + (a’,c(n) — O’) + (Sn — Sn(n))'Q
= (o + G2+ e

By (2), (4) and Properties 3.5 and 3.4, we have ¢1 20 and ¢z 20 To
show 7y, 2 0 notice that, by (7), the sequence {B,,) determines a bundle.
For p € P(g,), by (5), we have

”(Sﬂ- - Sn(n))p“w = ||p|5ﬂ- - Src(n)|2p|Ec1>éz

< ”pB]ogn(n)p"ééz — 0 as n — oQ,

which means that s, — Siln) Dulid 0. This obviously implies that #,, ==
(8n — Se(n)) 42 2. Consequently, o, LA

5.2. THEOREM (strong law of large numbers). Let (£,)22.; be an orthog-
onal sequence in H such that

(8) > n2log*(n + 1)[|&all* < co.
n=1

Then ¢, =n~* 300 & > 0.
Proof. Exactly as (3) in the proof of Theorem 4.2 we show that

o0

(9) Y o < oo

fo==

Notice that, for a sequence (g;) of positive numbers with 3> 0, £; < oo and
for all (z;) C M, the inequalities

(10) ¢ — 2] <&, i=1,2,...,
imply
oQ
(11) E fi¢n — zn-QHZ < 0,
me==1
where

n
zn:n‘lz.ﬂ,—, n=12...
i=}
Now, by Lemma 2.7, we can find numbers ¢; > 0 with 2, €; < oo such

that (10} implies
(12) |sp — s |% < By, € MT  for 28 <n < 2%
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k41
(13) &(By) <2k +3)% S |Igl3,
F=28-11

where s, = Z?___l z; (n=1,2,...)
Obviously z, = n~'s,, and, analogously to the proof of Theorem 4.2,
setting

2 e
kaﬁ(izm?‘ 'f'Bk), k=0,1,...,
i=1

we obtain
(14) |20 — zx|* < Dy for 28 <m < 2% K =0,1,...

Using (8), (13), and (10) with the condition 350, &; < 00, we can rather
easily show that

(15) i B(Dy) < 0.
k=0

Now, we can write
(16) Cn = (Cn — 20 02) + (2,02 — Zm(n)n)
+ (zn(n)ﬂ e Cm(n)) + g}e(n) = an + By 4+ tn + b,
where k(n) = 2% for 28 <n <25+l =1 2 .. By (11), (9), Properties 3.5
and 3.4, we get a, LA 0. 1 2 0 and bn 2 0. To show 3, LA 0, we notice

that, by (15), the bundle P(p,) is well defined and, for p € Py, by (14),
we obtain

”(zﬂ - zn(n))p“m = lezn - z}c(n)lzp”iéz < ”pplogm(n)fj”c{c/)z — 0.

Thus 2, — Z(n) My and, by Property 3.6, 8, 2. By (16), the proof is
complete. m

Remark. For an orthogonal sequence (£;) ¢ M and positive mumbers
(£5) it is mot obvious whether we can find operators w; € M such that
1é; — 22| < &; and the orthogonality Pz, 25) = 0 is valid for any i,j =
1,2,...,4 # j. That is why Theorem 5.2 cannot be obtained as an imimediate
consequence of Theorem 4.2, even though part of computations is similar.

Our next result is a generalization of a classical theorem of Orlicz [16]
on unconditicnal convergence of orthogonal series.

5.3. THEOREM. Let (£,)52., be an orthogonal sequence in H. Let (wn)2,
be a nondecreasing sequence of positive numbers such that for some increns-
ing sequence (vm)oo_, of positive integers sotisfying

(17) logvmyy Selogrm  (e>1, m=1,2,...),
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the condition
oo
(18) Z 1/w,, < oo
m=1

holds. If

o0
(19) Z'wn logz(n—l— L)fénll* < oo,

n=1

then, for each permutation w of the set N of positive integers, the series
Y ne1 Exry s bundle convergent.

Proof. For the orthogonal sequence (én) € H and the permutation =,
put

k3 n
(20) On =3 &, on=3Y &gy n=12,...
k=1 k=1

Obviously, by assumption (19), the sequence (0n) converges in H to some
ogeH.

Exactly as in the classical case, we can show that

(21) Z logr — | < .
k=0

Define two nondecreasing sequences (k(n))S2., and (m(n))%2, by putting
k(n) = 2* when 2¥ < n < 25+1, whereas m(n) is the greatest m such that

{1, v} C {m(L),...,n(n)}.

For m =0,1,2,..., put by = Upny1 — U (vp = 0) and let T M
be the elements &,,_41,...,6. 1y written in the order in which they appear
in the sequence (£x(;)32;.

Clearly, the sequence (n9,...,n0 . 7l,..., 0L, ..., nf" .. ST .. .) coin-

cides with (£,(;))52,, Where p is a suitable permutation of N,
Notice that there exists a sequence (e;) of positive numbers such that,
for all (z;) C M, the inequalities

(22) HE’! _:Ei'Q“ < &4y 1=1,2,...,

imply

(23) D " lon — Oumy — 5082 + S(my 2? < o0,
n=1

(24) Y o7 = Oy = SHI2 + 81, 2P < 0,

n=1\
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where o, and of are defined by (20) and

(25) snzzn:wi, s£=2wr(i), n=12,...

i=] Fe=l
By Lemma 2.7, (g;) can be chosen in such a way that inequalities (22)
imply the existence of By, € M™* such that, for all k,

(26) |sp — 5082 < By for 2F < n <20
2k+1
{27) B(B) <4+ 12 > &)
f=2h1

where s, (and s7 used below) is given by formula (25).
By (27) and (19), we get

oo
(28) > #(By) < oo
k=0
Using once more Lemma 2.7, we can observe that, for suitably small (g;),

inequalities {22) imply the existence of D,, € Mt such that

n

2

(29) | > %(j)| S Dmy V<0 S U,
J=lm 1
and
V41
B(Dyn) < 2logpm +3)7 S lggnl®
J=t'm+1
Hence, by (17), we get
Ym41
B(Dr) < 2c(logym +3)7 D [ig;]|*.
J=vm 1
But, by the monotonicity of (w,,),
Pm41
&(wy,, Dm) < 2¢ Z 1€al[Pwn(logn -+ 3)2,
=Wy -1
which, by assumption (19), implies
o
(30) > @(wy,, Diu) < 0.
m=1
Notice that, by Property 3.5 and by (21), (23), (24), we have

(31) Ogk — O "]3" 0,
(32) On = Oy = 3002 + 8,(mp12 2 0,
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(33) On = Oy — S22 + 54, 2 2 0.
Let us write
op —a=(of — Tniny — i+ vy §2)
+ (cr,,m(n) —o)+(sh 02— Sty ) = n + B + Y-
By (33), we get &, 5 0. To show that B 2 0, observe that
Timim) ™ O = (Tvmny = Th(imimy)) T (Onlminyy — )
and, by Property 3.4 and (31), we obtain O k(vmimy) — 2 0.

Moreover, o, — Ox(n) LA Indeed, take the bundle P defined by the
sequence

(B1,11 D1, Ba,va Dy, ...).
By (28) and (30), P is well defined. Let p € P. Then, by (26), we have
||(5n - Src(n))P“go = ||plsn — sn(nj}zpnoo < HPBlogn(n)Pilm -+ 0,

b,M
and 50 [8x — $x(n)| —— 0. Consequently, 5,12 — Si(m)d? LA 0, which together
with (32) gives oy, — Tre(n) LA} By Property 3.4, 04, = Ok (Wmmy) 20 and,
finally, we get 3, 0.

It remains to show that -, 2 0. First,

may{n)
Sg I Z ( Z m'n'(j))r
m=m(n) 1<i<n

Vin <77(j)s1’m+1
where m;y(n) > m(n) is a suitable sequence of indices. Putting
Zman = Z Lr(5)s nam=12...,

1<i<n
V< () Svm1

we have (by (29))
(34) Plzm,nl*p < pDmp

for any p € Proj M. Take p € P. Then, by (18), (34) and Lemma 2.5, we
obtain

mq(n) 2 my{n) a1 {n)
H Zm,nP ’ < H Z pwvamp“ Z 'w;:: —*_0 as n — oo,
mam{n) o m=m(n) % mmm(n)

because, for p € P, supy “ Zﬁﬂ Wum-Dmp”m < c0. Thus 7y, LAY I
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1t is well known that, in general, the individual ergodic theorem does not
hold for an arbitrary normal (even unitary) operator u in Ly (over a proba-
bility space). The asymptotic behaviour of the Cesaro means n™* SRk
of & normal operator u depends heavily (and only) on the local properties of
the spectrum of « near the value one. Now, we are going to prove a typical
Ly-result. This is an extension to the von Neumann algebra context of the
classical theorem of Gaposhkin [3, 4] giving the characterization of those
normal contractions for which the individual ergodic theorem holds.

5.4. THROREM. Let u be a normal contraction in H = Ly(M,d) with
the spectral representation

u-——SzE(dz),
where o = {|z| < 1}. Let 5, = n~t E:;é uf, n=1,2,... Then, for each
§eH,

snl€) 2 E({1})¢
if ond only of

E{z€0:0<[1—2<2"HED0  asn— o

Proof. The above theorem is an improvement of the result concerning
the asymptotic behaviour of normal contractions in Ly (M, @) in the sense of
almost sure convergence [12; 11, 3.2.1]. Since we are going to refer to some
calculations made in the proof of that result, we shall keep the notation used
there and sketch the first part of our proof.

‘We put

E()=E()%, F()=|E(0)*
Then s,(¢) = |, kn(z) B¢(dz) where
1-2z"
AaTEEr)
For 2¢ < m < 251t (5= 1,2,...), put

kn for [1 -z} > 27°
Ln(z) = {kngg -1 fgr ;1 -j Z 270

kn(1) = 1.

Set
gn = SLn(z) E(dz).

o

Evidently, to prove our theorem, it is enough to show that g, 5 0ag T = 00,
Using the estimate

La(z) < 2min(n|l — z|,n~ |1 - 2| 71),
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we get 37 lgan][® < oo (for details, we refer the reader to [11, p. 39]).

This, by Property 3.5, implies gon 20
Put

On = gn — Gaatny,

where 2°(") < g < 25(n)+1 Then also, by Property 3.4, gpstn) 2 0asn — oo

Applying the dyadic expansion method, we obtain the following repre-
sentation:

n
O = ZekA“;:, where e =0 or 1,
k=1

A, = | Rapj(2) Eg(dz)

with
R_g,k,j(Z) = L23+j23—k et L25+(j—1)23“’° (Z)
(s = s(n), that is, 2¢(*) <n < 25"+, Obviously,
18312 = §1Re 4 (2)1° F(d2)-

Taking a suitable partition of the disc o = {|z| < 1}, we can write

ts
AL =ty R (2)8
=1
with mutually orthogonal vectors {; ¢ H such that

ta

YNGR = Flo)

t=1
and ||77;"‘;H <27% (§=1,...,2%, k = 1,...,s). Now, we choose z,; and
e H(t=1,...,t,) such that

G =2+, GNP <2723,
{@(mz,tzﬂ»v)i < 2_23t.9_37 t?'v = 11-"7ts: t%?).

We obtain 8, = nn + &n + Yn {2, Where '

n n ts
N = ZEM?, n = Z‘Ek ZR”‘J(Z’:)G’
k=1

k=1 t=1

n ts
Yo =3 6k 3 Roki ()0
k=1 t=1

(here and in the sequel, s = s(n), i.e. 2° <n < 2°T1),
Obviously, 252, [ + Gall? < 00, 50 7 +&n 0.
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Setting, for j =1,...,2%, k=1,...,3,

123
g
a5 = Z R i3 (2 )2a s

t=1
ok

we get [yn|? < Dy, where Dy = 230 1 k2375 |dok,|* (comnp. again
(11, p. 42]). Exactly as in [11, pp. 43-46] we show that

ifp(pk) < 00,
k=1

Take the bundle Pp, 3. Then, for the sequence of operators By = D}c/ 2
we have By =M. Indeed, for p € P(p,), we have
| Bpll? = [lpDrploo ~ 0.

By Property 3.4, we have B,y &M 0 as n — oo, where, as before,
s(n) = s is given by 2° <n < 2°F1,

Consequently, there exists a bundle, say Py, such that, for p € Py, we
have || By(n)pllee — 0 as n — oo. Thus, for p € Py, we get

lynoll2, = llolgni*Plloa < [PDatnipllon = [ BsmypllZs — 0,

which means that y, M 0 as n — oo and, consequently, 6, 0. Thus
b
Gn = fos(n) + 5n -0 =

6. Comments. Our main task in the paper originates in the analysis of
subsets R C Proj M, for some fixed sequence (z,) C M, determined by the
condition: p € R I |znp|lcc — 0. As typical situations let us take, for exam-

ple, the sequences satisfying the conditions of Beppo Levi or Rademacher-
Men'shov,

Remark. In the case of the commutative algebra M = L, (X, F,u)
with [2]|? = { |2(£)|] u(dt), for any P < Proj M with the unity as a cluster
point,

(i) there exists a sequence (z,) C M with 3 ||z,||* < oc such that
(1) (llzaglloc — 0 and ¢ € Proj M) implies ¢ < p for some p € P;
(ii) there exists an orthogonal sequence (y,) C M with o lunl|? log® n

<coand 377 Yo =y € Ly such that
@) (H(éykmy)guw%andqepij)

implies ¢ < p for some p € P.
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However, in the case of a noncommutative von Neumann algebra M
containing some infinite part, the situation is drastically different. Namely,
one can consiruct P C Proj M with the unity as a cluster point and such
that there are neither (z,) C M with }, ||z,f2||> < oo satisfying (1), nor
(yn) € M with 3 |[yn@2)Plog®n < oo and 300, 4.2 = y2 for some
vy € M, such that (2) is satisfied. Indeed, it is enough to exploit, in the
properly infinite part M of M, the projections P* = {p;,ps,...} with
Pr = Lpfen, Pn AP = 0, 'n,?ém.

That is why bundle convergence fits much better the noncommutative
case than does almost uniform convergence.

Passing to the more detailed comments we show that bundle convergence
(introduced in Definitions 1.1-1.3) can be described in an equivalent, a bit
simpler, way.

Namely, the bundle P(p,) (as in Definition 1.1) with D, satisfying the
conditions

n=1

can be written as the intersection

P(p,) = Bp,) NCp,)s

where .
Bip.y= {p € Proj M : sglp “p(ZDk)pHm < oo},
k=1

C(Dn} = {p € Proj M : ||pop||oo — 0, m— oo}
With the above notation, we have the following result.

6.1. PROPOSITION. For any =,z € M, the following conditions are
equivalent:

DE o

(i) there ewists (D) satisfying (+) such that p € Bp,) tmplies
H(‘T"""'- - m)p“m -+ 0, ' .

(iil) there ezists (Dyn) satisfying (x) such that p € C(p,) implies
[I(@n ~ 2)pllec — 0-

Proof We split the procf into three steps.

Step L For each (Dm) satisfying (x), there ezists a sequence (Bpn)
satisfying (*) such that Bes,) C Cip,)- In fact, let 0 < am 7 oo be
such that 350 om®(Dp) < 00. Put B = D (m = 1,2,...) and
let p € B(g,,)- Then P e, e Di)plloo < K{p) < 00, but [|pDmplles <
a7 M S plerDe)pllo < K)ot (m = 1,2,...), 80 [pPDmplloc — 0 as
m — oo and p € Cip,.)-
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Step II: For each (By,) sotisfying (x) there is a sequence (D,,) satis-
fying (x) ‘such that Cp_y C Bg,,). Indeed, let ¥ oo $(B,,) < co and let
Y ome1 0m®{By) < oo for some 0 < a4y, /00, Put n(0) = 0 and let n(k)
be an increasing sequence of indices such that c,y > 2571 (k = 1,2,...),

Define Dy, = Y070\ 9%B; (k= 1,2,...). We obtain

oo n{k)

Z@Dk <33 @(B)) < co.

k=1 j=n(k—1)-+1

Let p € C(p,,). Then ||[pDipllcc — 0 as k — 00, 50 [[pDypllee < M(p) < 0
for all k.

Now, for n(s — 1) < m < n(s) we have

b(Eodil <2l 3 n),

= 22 *lipDrpllee < ):2 *M(p) <

k=0
SOPEB(Bm)'

Step III: Obviously, for any (D,,) satisfying (), P Dﬂ) C Bp,) and
Pp,) € C(p,y- Take some (D,,) satisfying (+). By Steps I and II we can
find sequences (E,,) and (F,,) satisfying (*) and such that Bz, CCn
and C(Fm) C B(Dm) Then, for

(Em)':(Dl:El:DQ:EZ:"')’ (ﬁm)=(DlaF1:D2:F2;---),
(B, )C’P(D)andc'v CPw

m

we have B~ y» which ends the proof. m

Obviously, now we also have equivalent {a bit simpler) descriptions of
bundle convergence in Ly-space,

Concluding this section we show the unigueness of the bundle limit in
H™ = Ly(M**, &}, the completion of M® under the norm 2 — @(z?)/2,
First notice that, for ¢, £ € H’m En LA EE S ey — € - I 2|2 < oo
for some h,, & M® with h, 225 0 (since 3, [[(hn — 2,) ]2 < oo implies

B ﬂxnﬂo)

6.2. PROPOSITION. If &n, & € H™, then £, > £, &, 2 n implies £ = 1,

Proof. For some hy,, g, € M with h,, it 0 and g, 2 0, we have

Y en —¢ = ha22)? <00 and D llen~ 1= gn2|* < oo,

7t
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This implies {|¢ —dp 2| - 0, where ¢ = £ —7 and dy, = gy, — bn. It is enough
to show that d,.{2 — 0 weakly. To this end, take an arbitrary y € M’. Since

dy, nY 0, there exists a sequence (p,,) of orthogonal projections such that
Pra /" 1 and ||dnpmllee — 0 as n — oo, for each m = 1,2,... We have

(dn02,90) = (dnpm 2, y12) + (dnps 2, 382)
= (dnpm2,y02) + (pan, ydnd2) < g,

for n large enough. Since {d, 2} is bounded and the vectors yf2 for ye M
are dense in H, we get d,2 — 0 weakly. w
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Spectral characterizations of central elements
in Banach algebras

by

MATEJ BRESAR and PETER S3EMRL (Maribor)

Abstract. Let A be a complex unital Banach algebra. We characterize elements
helonging to (A}, the set of elements central modulo the radical. Our result extends and
unifies several known. characterizations of elements in I"(A).

Introduction and statements of the results. Throughout, A will be
a complex unital Banach algebra with radical rad(.A}). We write o(xz) for the
spectrum and r(z) for the spectral radius of z € 4. We write o, (T") for the
point spectrum of a linear bounded operator T. By Inv(A), Idem(A), and
Q(A) we denote the sets of all invertible, idempaotent, and quasinilpotent
elements in A, respectively.

It is our aim to characterize elements in .4 belonging to

I'A)y={a € A:azx —za € rad(A) for all x € A}

(i.e., elements central modulo the radical) by their spectral properties. Char-
acterizations of elements in I'(.4) involving the spectral radius have already
appeared in the literature (see, e.g., [4, 9], and some comments below). Some
of them will be obtained as corollaries to the following result, which is the
main objective of the paper.

TuroreM. Let a € A The following conditions are equivalent:

() o ¢ I'(A), | |

(1) Usenweay olazaz™ + azar~te) D C\ {0} for some a € C,

(1) Upgrav(ay @(0man™ + azaz™'a) 5 C\ {0} for every a € C.

Adopting the texminology in [5] we call a Iinear operator T" of A spectrally
bounded if there is M > 0 such that #(Tz) < Mr(z) for every z € A, In
[6] Pték proved that the map 2 — oz is spectrally bounded if and only
if @ € I'(A). Recently, resting heavily on another work of Ptdk [7], the
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