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Spectral characterizations of central elements
in Banach algebras

by

MATEJ BRESAR and PETER S3EMRL (Maribor)

Abstract. Let A be a complex unital Banach algebra. We characterize elements
helonging to (A}, the set of elements central modulo the radical. Our result extends and
unifies several known. characterizations of elements in I"(A).

Introduction and statements of the results. Throughout, A will be
a complex unital Banach algebra with radical rad(.A}). We write o(xz) for the
spectrum and r(z) for the spectral radius of z € 4. We write o, (T") for the
point spectrum of a linear bounded operator T. By Inv(A), Idem(A), and
Q(A) we denote the sets of all invertible, idempaotent, and quasinilpotent
elements in A, respectively.

It is our aim to characterize elements in .4 belonging to

I'A)y={a € A:azx —za € rad(A) for all x € A}

(i.e., elements central modulo the radical) by their spectral properties. Char-
acterizations of elements in I'(.4) involving the spectral radius have already
appeared in the literature (see, e.g., [4, 9], and some comments below). Some
of them will be obtained as corollaries to the following result, which is the
main objective of the paper.

TuroreM. Let a € A The following conditions are equivalent:

() o ¢ I'(A), | |

(1) Usenweay olazaz™ + azar~te) D C\ {0} for some a € C,

(1) Upgrav(ay @(0man™ + azaz™'a) 5 C\ {0} for every a € C.

Adopting the texminology in [5] we call a Iinear operator T" of A spectrally
bounded if there is M > 0 such that #(Tz) < Mr(z) for every z € A, In
[6] Pték proved that the map 2 — oz is spectrally bounded if and only
if @ € I'(A). Recently, resting heavily on another work of Ptdk [7], the
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first named author showed that these two conditions are equivalent to the
condition that the map z — az — za is spectrally bounded [2]. A shorter
proof has already been found by Curto and Mathieu [3]. As a consequence
of the Theorem we obtain the following generalization of both resulés just
mentioned.

COROLLARY 1. Let @ € A. The following conditions are equivalent:

(i) a € I'(A),

(i) SUPgernv(a) T(azaz ™" + azaz™a) < oo for some o € C,

(i) SUPLerny(4) T{amar™! + azaz~ta) < oo for every a € G,

(iv) the map x — az + aza is spectrally bounded for some o € C,

(v) the map = v ax + axae is spectrally bounded for every o € C.

In Zemdnek’s articles [8, 9] one can find several characterizations of idem-
potents belonging to I'(A), and characterizations of elements in the radical

among all quasinilpotent elements. Using our main result one can. extend
these results as follows.

COROLLARY 2. Let e € Idem(A). The following conditions are equiva-
lent:
(1) e € I'(A),
(it) Uperdem(ay olep + ape) # C for some o € C,
(ii1) Uperdem(a olep + ape) # C for every o € C,
(iv) sUPpe1dem(a) T(eP + ape) < 0o for some o € C,
(V) 8UPpetdem(a) T(EP + 0ipe) < oo for every o € C.

COROLLARY 3. Let w € Q(A). The following conditions are equivalent:
(1} w € rad(A),

(ii) UqEQ(A)O'('UJQ’I- aquw) # C for some ae € C,

(ifi) Ugeqay o(wg + aqu) # C for every o € C,

(iv) supgeqqa) T(wg + agw) < oo for some a € C,

(v) supgeq(ay r(we + agquw) < oo for every a € C.

Proofs. We denote by Ms the algebra of all 2 x 2 complex matrices and
by C* the set of all nonzerc complex numbers. A matrix S is called a scalar
matriz if it is of the form S = AI for some complex number A, For the proof
of our main result we will need the following lemma.

LeMMA. Let S € My be a nonscalar matriz, and let o € C*, Then

(1) |  o(SXSX7!+aXSX7LS) =C.
XElnv(My)
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Proof. With no loss of generality we can assume that § has the Jordan
canonical form. So, we have either

(2) 3:[)61 )?2}, A1 # Ag,
or
(3) sz[’\ol )H

Let us first consider the case (2). Then $ satisfies (1) if and only if the same
is true for (Ay — A2)~1S. So, there is no loss of generality in assuming that
AL = Az + 1. Hence, § = Al + A with

<l g

e wl-p)
B |4 HTP]L we

is an idempotent of rank one, for every u € C we can find an invertible 2 x 2
matrix X, such that B, = X,AX y 1. A straightforward computation gives

100 = 53,877 - axsx7s = [P0 220

with

prlp) = p(o+ 1Az + 1) + (o + (A + Ao),

p2(p) = —p* (L + (L + a@)Aa) + (L + (L + ) As),

p3(p) = @+ (1 + ),

pa(p) = —p(l+ a)da + (1+ a)(A3 + Ag).
We choose an arbitrary complex number A. We want to show that there
exists gy such that
(4) det(A — T'(uy)) = 0.
This will imply that

dea@))e |J o8XSX T 4+aXxSXTLS).
Xelnv(My)
We have
det(d — T(u)) = A? — te(T(u)) X + det (T ().

Here, tr denotes trace. Obviously, tr(T'(4)) is a polynomial in y of degree
at most one, while det{T(x)) is a polynomial in u of degree two with the
leading coefficient o 5 0. Hence, det(A—T"(4)}) is a polynomial in g of degree
two, and consequently, there exists uy € C satisfying (4).
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It remains to consider the case (3), that is, § = A + A with
0 1
A= [O O] ’

BM:{MZ 1], ,U;EC,

The matrix

I
is nilpotent of rank one. So, for every i € C we can find an invertible 2 x 2
matrix X, such that B, = X, AX;!. As before we define T'(1) by

T(p) = SX,. 85X, + aX, SX 8.
One can prove that tr(T'(x)) is a polynomial in g of degree at most two, while

det{T'(u)) is a polynomial in u of degree four. Almost the same arguments
as above give us the desired relation (1). This completes the proof.

Proof of Theorem. Clearly, (iil) implies (ii). To show that (ii) imw
plies (i} assume that a € I'(A). Then for every invertible z € A and every
complex number o we have

r(apaz™ + azaza) = r(a® + aa® + (alz, alz"! + o[z, alz ~1a)).
The element o is central modulo radical, and therefore,
a[z,alz™ + afz, alz ™ e € rad({ A).
It follows that
r(azaz™ + azar ™ a) = r(a® + aa?).
This completes the proof of the implication (ii)=-(i).

Following [9], we will use Sinclair’s extension of the Jacobson density
theorem [1, Corollary 4.2.6] as the main tool for proving the remaining
implication (i)=-(iii). It follows from (i) that there exists an irreducible rep-
resentation m : A — B(W) such that w(a) = A € CI. Here, W is a Banach
space and B{W) is the algebra of all bounded linear operators on W. We

will complete the proof by showing that for every complex number ¢ and
for every nonzero A € C we can find an invertible z € .4 such that

(5) A€ op(AXAX T + X AX ™ A).
Here, X = w(x).

So, fix a nonzero A. First we will consider the case of & = 0. Az A is
nonscalar, we can find a vector £ € W such that £ and A¢ are linearly
independent. Applying Sinclair’s extension of the Jacobson density theorem
we can find z € Inv(A) such that X¢ = A¢ and X A¢ = X¢. Tt is easy to see
that (AXAX~1)(A£) = A(A£), which shows (5) in this special cage. _

From now on we assume that o # 0. Once again, we have to distinguish
two cases. First assume that there exists £ € W such that ¢, A¢, and A%
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are linearly independent. Applying Sinclair’s result once again we get the
existence of z & Inv(.A) such that '

Xé=(20/A}A%, X(Af) = A¢, and X(A%) = (A/2).
It is then easy to verify that
(AXAX™' L aX AXTAAL) = MAE),

which completes the proof also in this case.

It remains to consider the case when the vectors £, A£, and A%¢ are
linearly dependent for all £ € W. Pick £ so that £ and A£ are linearly
independent. Obviously, V = span{¢, A{} is invariant for A, and A}y, the
restriction of 4 to V, is nonscalar. According to the Lemma we can find an
invertible operator ¥ ; ¥V — V such that

AEc(AyYAyY P+ oY AyY tAy).

Sinclair’s result implies the existence of x € Inv(A) such that Xy =Y. So,
we have (5) also in this last case. This completes the proof.

Proof of Coreollary 1. Assume first that (i) is satisfied. We have al-
ready proved that then (iil) holds true. Clearly, (iii) yields (ii), and (ii) yields
(i) by the Theorem. We denote by ¢ the quotient map g : A — A/ rad(A). It
is well known [1, Corollary 3.2.10] that if g(a) is central then r{g(a)g(x)) <
r{g(a))r(q(z)) for every » € A. Applying this statement together with the
relations r(az + axa) = r{az + ez + a(ze — az)) = r{(1 + a}azr) and
r(z) = r(g(z)), = € A, we see that (i} implies (v). Obviously, (v) yields (iv).
Finally, if (iv} holds true, then there exists a constant M such that for every
invertible z € A we have r(azaz ™ + azaz™1a) < Mr(zaz™!) = Mr(a), so
that (ii) holds. This completes the proof.

We will omit the proofs of the last two corollaries as they are even simpler
than the above.
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Convolution operators on Hardy spaces
by

CHIN-CHENG LIN (Chungli)

Abstract. We give sufficient conditions on the kernel K for the convolution operator
T'f = K  f to be bounded on Hardy spaces H?(G), where ( is a homogeneous group.

1. Introduction. A homogeneous group G is a connected and simply
connected nilpotent Lie group whose Lie algebra g is endowed with a family
of dilations {6, : r > 0}. We recall that a family of dilations {6, } on an alge-
bra is a family of algebra automorphisms of g of the form §, == exp(4 logr),
where 4 is a diagonalizable linear operator on g with positive eigenvalues.
The maps exp o §, ¢ exp™* are group automorphisms of G. We shall denote
them also by 6, and call them dilations on G. We often write ra for é.x
for r > 0,z € G. The number @ = trace( A} will be called the homogeneous
dimension of G Analogously to B", we use 0 to denote the group identity
and refer to it as the origin. We suppose that G is equipped with a fixed
homogeneous norm g. Recall that a homogeneous norm on G is a continuous
function g : G — [0, %0) which is % on G\ {0} and satisfles

(1) o(z™1) = o(z) and o(rz) = ro(z) for all z € G,r > 0,
(2) e(x) = 0 if and only if = = 0.

For more details about homogeneous groups, we refer the reader to [FS].
In this paper, we consider the HF boundedness of the convolution opei-
ator K # f defined by

K f(a) = | K(zy™)f) dy = | K(0)$(y o) dy.
el e}
The paper is organized ag follows: In §2 we briefly review some basic atomic
anc molecular characterizations of Hardy spaces. The main results are con-
tained in §3, where some sufficient conditions for the H* and H® bound-

1991 Mathematics Subject Classification: Primary 42B30, 43A85.

Key words and phrases: atomic decomposition, Hardy spaces, homogerneous groups.

Research supported by National Science Council, Taipei, R.Q.C. under Grant #NS
85-2121-M-008-013. :

(58]



