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Convolution operators on Hardy spaces
by

CHIN-CHENG LIN (Chungli)

Abstract. We give sufficient conditions on the kernel K for the convolution operator
T'f = K  f to be bounded on Hardy spaces H?(G), where ( is a homogeneous group.

1. Introduction. A homogeneous group G is a connected and simply
connected nilpotent Lie group whose Lie algebra g is endowed with a family
of dilations {6, : r > 0}. We recall that a family of dilations {6, } on an alge-
bra is a family of algebra automorphisms of g of the form §, == exp(4 logr),
where 4 is a diagonalizable linear operator on g with positive eigenvalues.
The maps exp o §, ¢ exp™* are group automorphisms of G. We shall denote
them also by 6, and call them dilations on G. We often write ra for é.x
for r > 0,z € G. The number @ = trace( A} will be called the homogeneous
dimension of G Analogously to B", we use 0 to denote the group identity
and refer to it as the origin. We suppose that G is equipped with a fixed
homogeneous norm g. Recall that a homogeneous norm on G is a continuous
function g : G — [0, %0) which is % on G\ {0} and satisfles

(1) o(z™1) = o(z) and o(rz) = ro(z) for all z € G,r > 0,
(2) e(x) = 0 if and only if = = 0.

For more details about homogeneous groups, we refer the reader to [FS].
In this paper, we consider the HF boundedness of the convolution opei-
ator K # f defined by

K f(a) = | K(zy™)f) dy = | K(0)$(y o) dy.
el e}
The paper is organized ag follows: In §2 we briefly review some basic atomic
anc molecular characterizations of Hardy spaces. The main results are con-
tained in §3, where some sufficient conditions for the H* and H® bound-
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edness of the convolution operator are proved for the cases of R™ and G,
respectively. Throughout we shall denote by C a constant not necessarily
the same at each occurrence.

2. Preliminaries. A useful result on singular integrals is the following
THEOREM A [S]. Let K € LA(R™) satisfy K € L®(R™) and

| [K@-y) -K(z)|d<C Yy#0
fzlz2lyl
Then the convolution operator Tf = K'* f is bounded on LP(R™), 1 < p < o0,
and is of weak type (1,1).

Later on Coifman and Weiss [CW1] proved that Theorem A can bo
extended to functions with values in homogeneous groups. To improve the
weak-type (1,1) estimate, we obtain first a stronger result ||K * f|/g: £
C||f|| g1, and then get the H? houndedness for some p < 1.

Now let G be a homogeneous group with homogeneous dimension @. The
Hardy space HP{() is defined either in terms of maximal functions or in
terms of atomic decompositions (cf. [FS]). Below we describe the atomic de-
composition, molecular characterization, and some properties of H?, which
will be used in §3,

DEFINITION. Let 0 < p< 1< g< oo, p# g, s€ Zand s > [Q(1/p-1)],
where -] means the integer part. (Such an ordered triple (p, g, s) is called
admissible.) A (p,q,s)-atom centered at zg € @ is a function o € L¥(G),
supperted on a ball B C @ with center =g and satisfying

(i) llally < [ B[/,

(ii) {5 a(z) P(z) dz = 0 for every polynomial P with homogeneous degree
less than or equal to s.

For any (p, g, s}-atom a, we have @ € LP and ||a/l, < 1, since by Holder’s
inequality

1/ 1/v!
{lafP dz < (S(la\f")fdm) T( { dw) = |alf? - | B/ < 1,
B
where r = g/pand 1/r' =1~1/r=1-p/q.

THEOREM B (Atomic decomposition of H?) [FS, Chapter 3. Let (p, ¢, 8)

be an admissible triple. Then any f in HP can be represented as a linear

combination of (p, q,s}-atoms; that is, f = 3 ;2 Mfi, M € C, where the
fi's are (p,q, 5)-atoms and the sum converges in H?. Moreover, 1|5
mf{3 2 IXel? = 30 Aifi s o decomposition of f into (p, g, 8)-atoms}.

For two admissible triples (p,q,s) and (p,¢’, '), it was shown in [FS]
that the spaces generated by (p, ¢, s)-atoms and (p, ¢', 5'}-atoms coincide. It
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is spontaneous to let ¢ = 2, so the use of the Plancherel’s formula becomes
a powerful tool for the study of HP. Let us now introduce the molecules
corresponding to the atoms we have just defined.

DEFmITION. Let (p,q,s) be an admissible triple and £ > max{s/Q,
1/p—1}. (Such a quadruple (p, g, ) is also called admissible.) Set @ = 1 —
l/p+eand b =1~ 1/g+:s A (p,q,s,¢6)-molecule centered at zo is a
function M € LG} satisfying

(i) M(z) - ozzg")? € LI(G),
(i) M5 - [ M(z) - o(waz )5~ = N(M) < o0 (N(M) is called
the molecular norm of M),
(iii) {5 M (z)P(z)dz = 0 for every polynomial P with homogeneous de-
gree less than or equal to s.

The following result is very useful in establishing boundedness of linear
operators on H*:

TeEOREM C [CW2, TW]. (a) Every (p,q,s')-atom f is a (p,q,s,¢)-
molecule for & > max{s/Q,1/p — 1}, s < &, and N(f) < Cy, where C} is a
constant independent of the atom.

(b) Every (p,q, s,€)-molecule M is in HP and | M| g» < CoOUM), where
the constant Cq is independent of the molecule.

As a consequence of Theorems B and C, to prove that a linear map T is
bounded on HP, it suffices to show that T'f is a p-molecule and WT'f) < C
for some constant C' independent of f whenever f is a p-atom. Furthermore,
using polar coordinates, we have

C
X ot e @y g -
S g(m)a de = Cd-l—Q(b a ) lfa% QJ
a<g(z)<b Clog(b/a) if o = —@Q,

for all 0 < a < b < o0, where C is an absolute constant. This integral will
be frequently used in the sequel.

3. Main results. We first extend Theorem A to homogeneous groups
and get F'-L* boundedness.

THBOREM 1. Let G be a homogeneous group. Assume that K € L(@)

satisfies || K « fll2 £ C1||fll2 and
(l) S [K(my"l) - K(m)| de < Cy Vys0
e(m)>Cae(y)

Jor some absolute constants Cy, Oy, and Cy. Then there exists a constant C
independent of f such that || K * filz: < C|if||m for all f € HY(G).
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Proof. We use a similar idea to [I], where the result was proved for the
Heisenberg group. By the atongic decomposition of H', it suffices to show
| K * fllz < C for any (1,2,0)-atom f with constant C‘ independent of the
choice of f. For a (1,2,0)-atom f with supp(f) € {z € G : o(x) < R}, we
have ||f]l2 < [{e(z) < R}|“1/2 ~ CR~9/? and | f(z) dz = 0, where @ is the
homogeneous dimension of &. Hence

| 1Esfldz= | V(K@) — K@)} (y) dyjde

ofz)>Ca R e(z)>Ca R p(y)SR
< | ey | 1K@y - K(e)|de
e(y)&R ale)>Cag(y)
< G| fllzr £ Cs.

On the other hand, by Schwarz’s inequality,

| 1K f(z)|de < CRY?|K « flls < CROZ|| ]|z < C.
¢(x)<C2 R

The proof is completed by combining both inequalities.
In the case of G = R", we have a stronger result:

THEOREM 2. For G = R™, under the hypotheses of Theorem 1, there
exists o constant C independent of f such that ||[K * f||g: < C|f||g for all
e HY(R™).

Proof Tt is well known that the Riesz transforms are bounded on
H(R™) (cf. [S, Chapter VII, §3.4]); that is,

IR fllere < Clifllerny, 1<j<m, feH (R,
where B, f(¢) = (i€;/|€])F(€). We define T'f = K + f. Then TR; = R;T for
all 1 < § < m, since

TR (€)= HROFE) = BT1©).

From Theorem 1 and the H* boundedness of R;, we get

1K % fllar = 174 +§:1|R Tl = 751 + 3 TRy il

J=i
<C(Iflle + Z |Bs s ) < C 1 F

By duality, we immediately obtain the following corollary,

COROLLARY 3. For G' = R", under the hypotheses of Theorem 1, the
operator T'f = K * f is bounded on BMO.
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Due to the lack of Riesz transforms for functions defined on Lie groups,
we are unable to use the same technique as above to prove the H* bounded-
ness for homogeneous groups. Fortunately, if we strengthen the assumption
on K, we can prove the H? boundedness.

THEOREM 4. Let ¢ be ¢ homogeneous group with homogeneous dimension
Q. Assume that K € L*(G) satisfies | K * f||2 < Cil|f]|2 and

A
. o oly) 1

I K(zy™) - K(z SC’(M—)—%
O Ker) - K@< 28] m
for some 0 < A < 1 and absolute constanis Cy, Cq, C. Then the operator
Tf = K=+ f is of weok type (1,1), and there exists o constant C independent
of f such that |Tf|ur < C|f|lgr for all f € H(G) and Q/(Q + \) <
p < oo.

whenever o(z) > Cyo(y)

Proof. We note that inequality () obviously implies inequality (}). For
Q/(Q@+A) < p £ 1, we choose a number ¢ satisfying 1/p~1 < & < A/Q. Then
both (p,2,0) and (p,2,0,¢) are admissible by straightforward calculations.
We shall prove that if f is a (p, 2,0)-atom, then T'f is a (p, 2,0, £}-molecule
with molecular norm M(T'f) < C (C independent of f). This yields the
H? boundedness of T for Q/(@ + A) < p £ 1. The case 1 < p < co and
the weak typt, (1,1) estimate both follow by interpolation and duality [FS,
Theorems 3.34 and 3.37].

Given a (p, 2,0)-atom f with @/(Q+2A) <p
o(x) € R}, we have | f||s < RR(/2-1/P) and § f
and b = 1/2+ . Then

ITF@)e(@) 21§ = J1K « £(a)Po(z) 0 de

=( 1 = 3 VK * £(2) ?o(a) ¥+ da
(=)< R glz)>CsR

= IjL + Ig.

1and supp(f) C {z € G:
(m) dr=0.Leta=1-1/p+e

The L* houndedness of K f implies
< (CyR)IM# QK « |3 < CRT#Q 1|5 < R

To estimate I we use Schwars’s inequality, inequality (1), and the assump-
tions on f to get

Iy= S |K*f(w)|29(w)c9+zs@ d
o{z)>Ca R
' 2
= § | ] e - K@ Wb o) d

o(w)>Cs R e(y)SR
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<713 dy | K™Y - K(@)Pe(z) 49 de
eW)<RE  olm)>Caely)

<GB § owPdy [ elz)*97R Py

elv)sk o(z)>Caoly)
<CIFIE | ew)?dy < C|FIFRAT*C < ORA.
o(y)ZR
Thus,
|Tf(z)o(z)?|2 < CRY®
and

‘J’K(Tf) = “Tf”g/b_”Tf(m)'g(ﬁ)(;)b”é~a/b < O RAL/2-1/p)a/b pQall-a/b} < (.

To complete the proof it remains to show that {Tf(x) dz = (. We first
claim Tf € L'. Since we have shown T'f(z)o(2)%" ¢ L?, we use Schwarz's
inequality to get

[ |1T#() ds < IITf(fc)Q(fc)Q"llz( | 9(9”)_2%‘”)1/2 <
o(a)>1 gla)>1
and

1/2
| 1Tf@lde < ITA( | dz) " < oo
e(z}<1 plz)<1
Therefore, we apply Fubini’s theorem to get

{75(2) de = | K (y) (_gf(y—lx) d:c) dy = 0.

Theorem 4 above is closely related to [HITW, Theorem 3.1]. In this
paper we consider the classical singular integral operators of convolution
type, while [HITW] deals with non-convolution type integral operators with
kernels K(2,y) not necessarily of the form K'(z — 5). In the case @ = R,
HP = Fg=2, P < 1, Theorem 4 above implies the boundedness of convolution
operators on the Triebel-Lizorkin spaces, which are not covered by [HITW].
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