uniformly to the identity and T_n defined by $T_n = \theta_n^{-1} \circ T_0 \circ \theta_n$ converges uniformly to T_0 as $n \to \infty$. Now $T'_n(x)$ is given by $T'_0(\theta_n(x)) \exp(n^{-1}h(\theta_n(x)))$, which may be seen to converge uniformly in x to $T'_0(x)$ as $n \to \infty$. Then we have shown that T_n converges to T_0 in the C^1 topology. Since the invariant density of T_n is given by $\exp(-n^{-1}F(\theta(x)))\varrho(\theta(x))$, the conclusion of the theorem follows.

I thank Chris Bose for suggesting the problem and for useful discussions leading to its solution.

References

- P. Góra and B. Schmitt, Un exemple de transformation dilatante et C¹ par morceaux de l'intervalle, sans probabilité absolument continue invariante, Ergodic Theory Dynam. Systems 9 (1989), 101-113.
- [2] G. R. Grimmett and D. R. Stirzaker, Probability and Random Processes, 2nd ed., Oxford Univ. Press, Oxford, 1992.
- [3] K. Krzyżewski, A remark on expanding mappings, Colloq. Math. 41 (1979), 291-295.
- [4] R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer, New York, 1988.
- A. N. Quas, Non-ergodicity for C¹ expanding maps and g-measures, Ergodic Theory Dynam. Systems 16 (1996), 1-13.
- [6] —, A C¹ expanding map of the circle which is not weak-mixing, Israel J. Math. 93 (1996), 359-372.

Statistical Laboratory
Department of Pure Mathematics and Mathematical Statistics
16 Mill Lane
Cambridge CB2 1SB
England
E-mail: a.quas@statslab.cam.ac.uk

Received March 4, 1996 (3625)

A non-locally convex topological algebra with all commutative subalgebras locally convex

by

W. ZELAZKO (Warszawa)

Abstract. We construct a complete multiplicatively pseudoconvex algebra with the property announced in the title. This solves Problem 25 of [6].

All vector spaces and algebras in this paper are either real or complex. A topological algebra A is a (Hausdorff) topological vector space provided with an associative jointly continuous multiplication. It is said to be locally convex or locally pseudoconvex if the underlying topological vector space has this property. A locally pseudoconvex space X is a topological vector space whose topology is given by means of a family $(\|\cdot\|_{\alpha})$ of p_{α} -homogeneous seminorms, $0 < p_{\alpha} \le 1$, i.e. non-negative functions $x \to \|x\|_{\alpha}$ such that $\|x + y\|_{\alpha} \le \|x\|_{\alpha} + \|y\|_{\alpha}$ and $\|\lambda x\|_{\alpha} = |\lambda|^{p_{\alpha}} \|x\|_{\alpha}$ for all x, y in X, all scalars λ , and all indices α (see [3] and [4]). A locally pseudoconvex algebra A is called multiplicatively pseudoconvex (briefly: m-pseudoconvex) if its topology is given by means of a family of submultiplicative p_{α} -homogeneous seminorms, i.e. seminorms satisfying $\|xy\|_{\alpha} \le \|x\|_{\alpha} \|y\|_{\alpha}$ for all x, y in A and all indices α . For more information on topological algebras the reader is referred to [2], [4] or [5].

In [6] we asked whether a topological algebra with the property that all of its commutative subalgebras are locally convex must itself be a locally convex algebra (Problem 25). In this paper we give a negative answer to this question by constructing a complete m-pseudoconvex algebra which is not locally convex but all of whose commutative subalgebras have this property. In the construction we use some methods introduced in [1] and [7].

Let X be a real or complex vector space and let p satisfy 0 . The maximal <math>p-convex topology τ_{\max}^p on X is the vector space topology given by means of all p-homogeneous seminorms. It is known (see [1], Theorem 1) that this topology makes every vector space into a complete (Hausdorff) topological vector space. Let $(h_{\alpha})_{\alpha \in \mathfrak{g}}$ be a Hamel basis for X, so that each

¹⁹⁹¹ Mathematics Subject Classification: Primary 46H10.

element x in X can be uniquely written as $x=\sum_{\alpha\in\mathfrak{a}}\xi_{\alpha}h_{\alpha}$, where only finitely many scalar coefficients ξ_{α} are different from zero. Let R be the set of all numerical \mathfrak{a} -tuples $\mathbf{r}=(r_{\alpha})_{\alpha\in\mathfrak{a}}$ with all $r_{\alpha}\geq 1$. We claim that the topology τ_{\max}^p on X is given by all p-homogeneous norms of the form

(1)
$$||x||_{\mathbf{r}}^{(1)} = \sum_{\alpha \in \mathfrak{a}} |\xi_{\alpha}|^{p} r_{\alpha}, \quad \mathbf{r} \in R.$$

In fact, let $\|\cdot\|$ be an arbitrary p-homogeneous seminorm on X. We have to show that it is continuous with respect to some norm of the form (1). But for every x in X we have

$$||x|| = \left|\left|\sum_{\alpha} \xi_{\alpha} h_{\alpha}\right|\right| \le \sum_{\alpha} |\xi_{\alpha}|^{p} ||h_{\alpha}|| \le ||x||_{\mathbf{r}}^{(1)},$$

where r is given by $r_{\alpha} = \max\{1, ||h_{\alpha}||\}$, and we are done. It is known ([1], Proposition 2) that in the case of an uncountable Hamel basis the topology τ_{\max}^p is not locally convex.

To start our construction choose an uncountable linearly ordered set \mathfrak{a} with order relation denoted by \succ (it can be the ordered set of the first uncountable ordinal number), and define A_1 as the vector space spanned by a family of vectors $(e_{\alpha})_{\alpha \in \mathfrak{a}}$ so that $(e_{\alpha})_{\alpha \in \mathfrak{a}}$ is its Hamel basis. Fix a p satisfying $0 and provide <math>A_1$ with the topology τ_{\max}^p , so that we obtain a complete Hausdorff locally pseudoconvex space and it is not locally convex since it has an uncountable Hamel basis. Put $\mathfrak{a}^* = \{(\alpha, \beta) \in \mathfrak{a} \times \mathfrak{a} : \alpha \succ \beta\}$ (note that for (α, β) in \mathfrak{a}^* we always have $\alpha \neq \beta$), and denote by A_0 the vector space spanned by a family of vectors $(e_{\alpha,\beta})_{(\alpha,\beta)\in\mathfrak{a}^*}$ (which is a Hamel basis for it). We equip it with the locally convex topology given by all norms of the form

(2)
$$\|x\|_{\mathbf{r}}^{(0)} = \sum_{(\alpha,\beta)\in\mathfrak{a}^*} |\xi_{\alpha,\beta}| r_{\alpha}^{1/p} r_{\beta}^{1/p}, \quad \mathbf{r}\in R,$$

where $x = \sum \xi_{\alpha,\beta} e_{\alpha,\beta} \in A_0$. Finally, we define A to be the direct sum of A_0 and A_1 provided with the direct sum topology. This topology can be given by means of the family

(3)
$$||x||_{\mathbf{r}} = \max\{(||u||_{\mathbf{r}}^{(0)})^p, ||v||_{\mathbf{r}}^{(1)}\}, \quad \mathbf{r} \in R,$$

of p-homogeneous seminorms, where $x=u+v,\,u\in A_0,\,v\in A_1.$ Thus we obtain a locally pseudoconvex space which is not locally convex, since its subspace A_1 is not.

We make A into an algebra by setting ux = xu = 0 for all x in A and all u in A_0 , $e_{\alpha}^2 = 0$ for all α and $e_{\alpha}e_{\beta} = -e_{\beta}e_{\alpha} = e_{\alpha,\beta}$ for all $\alpha > \beta$. Multiplication defined in this way is associative since the product of any three elements is zero. Moreover, the square of any element in A is zero and xy = -yx for any two elements in A. This follows from the following

formula for multiplication of elements $x = \sum \xi_{\alpha} e_{\alpha}$ and $y = \sum \eta_{\beta} e_{\beta}$ in A_1 :

(4)
$$xy = \sum_{(\alpha,\beta)\in\mathfrak{a}^*} (\xi_{\alpha}\eta_{\beta} - \xi_{\beta}\eta_{\alpha})e_{\alpha,\beta}.$$

It can be easily seen that A_0 is the centre of A, i.e. it is the maximal subset of elements commuting with all elements in A.

Our result reads as follows:

THEOREM. The algebra A is a complete m-pseudoconvex algebra which is not locally convex, but all of its commutative subalgebras are locally convex.

Proof. First we prove that A is complete. We already know that A_1 is complete, so it remains to show that so is A_0 . Let $(x_{\mu})_{\mu \in \mathfrak{b}}$ be a Cauchy net in A_0 , $x_{\mu} = \sum_{(\alpha,\beta) \in \mathfrak{a}^*} \xi_{\alpha,\beta}^{(\mu)} e_{\alpha,\beta}$. Observe first that the linear functionals $x = \sum \xi_{\alpha,\beta} e_{\alpha,\beta} \to \xi_{\alpha,\beta}$ are continuous in A_0 for all $(\alpha,\beta) \in \mathfrak{a}^*$. Thus the limits

(5)
$$\xi_{\alpha,\beta}^{(0)} = \lim_{\mu} \xi_{\alpha,\beta}^{(\mu)}, \quad (\alpha,\beta) \in \mathfrak{a}^*,$$

all exist and are finite.

We now show that only finitely many coefficients $\xi_{\alpha,\beta}^{(0)}$ can be different from zero. If not, there is a sequence (α_i, β_i) in \mathfrak{a}^* with $\xi_{\alpha_i,\beta_i}^{(0)} \neq 0$. Without loss of generality we can assume that all α_i are different (otherwise we could assume that all β_i are different and perform the proof in a similar way). Define an element \mathbf{r} in R by setting $r_{\alpha_i} = \max\{1, |\xi_{\alpha_i,\beta_i}^{(0)}|^{-1}\}$ and $r_{\alpha} = 1$ if $\alpha \neq \alpha_i$ for all i. Take the corresponding norm $\|\cdot\|_{\mathbf{r}}^{(0)}$ of the form (2). Then $(\|x_{\mu}\|_{\mathbf{r}}^{(0)})_{\mu \in \mathfrak{b}}$ is a numerical Cauchy net, and so the (finite) limit

$$C = \lim_{\mu} \|x_{\mu}\|_{\mathbf{r}}^{(0)}$$

exists. Take any natural $n \geq C$. There exists an index μ_0 in b with

(6)
$$||x_{\mu}||_{\mathbf{r}}^{(0)} < n+1 \quad \text{for all } \mu \succeq \mu_0.$$

Take the indices $\alpha_1, \ldots, \alpha_{2n+2}$. For sufficiently large μ , which can be assumed to be larger than μ_0 , we have

$$\frac{|\xi_{\alpha_i,\beta_i}^{(\mu)}|}{|\xi_{\alpha_i,\beta_i}^{(0)}|} > \frac{1}{2} \quad \text{ for } 1 \le i \le 2n+2,$$

so that for such μ we have

$$||x_{\mu}||_{\mathbf{r}}^{(0)} \ge \sum_{i} \frac{|\xi_{\alpha_{i},\beta_{i}}^{(\mu)}|}{|\xi_{\alpha_{i},\beta_{i}}^{(0)}|} > n+1,$$

which contradicts (6) and proves that only finitely many numbers in (5) can be different from zero.

Thus $x_0 = \sum_{(\alpha,\beta) \in \mathfrak{c}^*} \xi_{\alpha,\beta}^{(0)} e_{\alpha,\beta}$ is in A_0 . We show that the net (x_μ) tends to x_0 , proving the completeness of A_0 . To this end, upon replacing (x_μ) by $(x_\mu - x_0)$, it is sufficient to show that if a Cauchy net (x_μ) satisfies $\lim_{\mu} \xi_{\alpha,\beta}^{(\mu)} = 0$, then it tends to the zero element in A_0 . Assume that this is not the case. Since for each continuous seminorm $\|\cdot\|$ on A_0 the numerical net $(\|x_\mu\|)$ also satisfies the Cauchy condition, there is an \mathbf{r} in R such that the finite limit

(7)
$$\lim_{\mu} \|x_{\mu}\|_{\mathbf{r}}^{(0)} = M > 0$$

exists. Define the *support* of an element $x = \sum \xi_{\alpha,\beta} e_{\alpha,\beta}$ in A_0 to be the set $\operatorname{supp}(x) = \{(\alpha,\beta) \in \mathfrak{a}^* : \xi_{\alpha,\beta} \neq 0\}$, so that each non-zero element has a non-void support. Clearly $\operatorname{supp}(x) \cap \operatorname{supp}(y) = \emptyset$ implies

(8)
$$||x+y||_{\mathbf{r}}^{(0)} = ||x||_{\mathbf{r}}^{(0)} + ||y||_{\mathbf{r}}^{(0)}$$

for all r. Now for the (fixed) r of (7) we find a μ_0 in b with

(9)
$$||x_{\mu} - x_{\mu_0}||_{\mathbf{r}}^{(0)} < M/2 \quad \text{for all } \mu \succeq \mu_0.$$

Put $S_0 = \text{supp}(x_{\mu_0})$ and define a (continuous) projection on A_0 by setting

$$Px = \sum_{(\alpha,\beta) \in S_0} \xi_{\alpha,\beta} e_{\alpha,\beta} \quad \text{ for } x = \sum \xi_{\alpha,\beta} e_{\alpha,\beta}.$$

Denote by I the identity operator on A_0 . Clearly Px and (I - P)x have disjoint supports for all x in A_0 . The formula (8) now implies

$$||x_{\mu} - x_{\mu_0}||_{\mathbf{r}}^{(0)} = ||Px_{\mu} - x_{\mu_0} + (I - P)x_{\mu}||_{\mathbf{r}}^{(0)}$$
$$= ||Px_{\mu} - x_{\mu_0}||_{\mathbf{r}}^{(0)} + ||(I - P)x_{\mu}||_{\mathbf{r}}^{(0)}$$

and, consequently, (9) implies

(10)
$$||(I-P)x_{\mu}||_{\mathbf{r}}^{(0)} < M/2 \quad \text{for } \mu > \mu_0.$$

Since $\lim_{\mu} \xi_{\alpha,\beta}^{(\mu)} = 0$ for all $(\alpha,\beta) \in \mathfrak{a}^*$ and the set S_0 is finite, we have $\lim_{\mu} \|Px_{\mu}\|_{\mathbf{r}}^{(0)} = 0$. The formulas (7), (8) and (10) now imply

$$M = \lim_{\mu} \|x_{\mu}\|_{\mathbf{r}}^{(0)} = \lim_{\mu} \|Px_{\mu}\|_{\mathbf{r}}^{(0)} + \lim_{\mu} \|(I - P)x_{\mu}\|_{\mathbf{r}}^{(0)}$$
$$= \lim_{\mu} \|(I - P)x_{\mu}\|_{\mathbf{r}}^{(0)} \le M/2,$$

a contradiction proving the completeness of A_0 and so of A.

We now show that all norms (3) are submultiplicative, which means that A is m-pseudoconvex. Let $x, y \in A$, x = u + w, y = v + z with $u, v \in A_1$ and $w, z \in A_0$. We have xy = uv and so for all \mathbf{r} in R we have

$$||xy||_{\mathbf{r}} = (||uv||_{\mathbf{r}}^{(0)})^{p}.$$

Writing $u = \sum \xi_{\alpha} e_{\alpha}$, $v = \sum \eta_{\beta} e_{\beta}$ and using (4), we obtain

$$\begin{aligned} \|xy\|_{\mathbf{r}} &= \left(\left\| \sum_{\alpha \succeq \beta} (\xi_{\alpha} \eta_{\beta} - \xi_{\beta} \eta_{\alpha}) e_{\alpha,\beta} \right\|_{\mathbf{r}}^{(0)} \right)^{p} \\ &= \left(\sum_{\alpha \succeq \beta} |\xi_{\alpha} \eta_{\beta} - \xi_{\beta} \eta_{\alpha}| r_{\alpha}^{1/p} r_{\beta}^{1/p} \right)^{p} \le \left(\sum_{\alpha,\beta \in \mathfrak{a}} |\xi_{\alpha}| \cdot |\eta_{\beta}| r_{\alpha}^{1/p} r_{\beta}^{1/p} \right)^{p} \\ &\le \sum_{\alpha,\beta \in \mathfrak{a}} |\xi_{\alpha}|^{p} |\eta_{\beta}|^{p} r_{\alpha} r_{\beta} = \|u\|_{\mathbf{r}}^{(1)} \|v\|_{\mathbf{r}}^{(1)} \le \|x\|_{\mathbf{r}} \|y\|_{\mathbf{r}} \end{aligned}$$

and A is m-pseudoconvex.

We already know that A is not locally convex. It remains to be shown that all commutative subalgebras of A are locally convex. It is sufficient to show that all maximal commutative subalgebras of A are locally convex. Let A be such a subalgebra. It must contain the centre A_0 , and we claim that it contains only one element in A_1 together with its scalar multiples. So suppose that it contains two linearly independent elements x and y of A_1 . Since xy = -yx, we must have xy = yx = 0. Let $x = \sum \xi_{\alpha} e_{\alpha}$ and $y = \sum \eta_{\beta} e_{\beta}$. Observe that if $\xi_{\alpha} \neq 0$ then $\eta_{\alpha} \neq 0$ because otherwise (4) implies $xy \neq 0$ (the coefficient of $e_{\alpha,\beta}$ in the Hamel expansion of xy is non-zero for some β). Choose α_1 in α so that $\xi_{\alpha_1} \neq 0 \neq \eta_{\alpha_1}$. There must also be some α_2 with $\xi_{\alpha_2} \neq 0$, otherwise x and y would be proportional. Since xy = 0 the relation (4) implies

$$\frac{\xi_{\alpha_1}}{\eta_{\alpha_1}} = \frac{\xi_{\alpha_2}}{\eta_{\alpha_2}} = \lambda$$

for some scalar λ . If $\xi_{\alpha_3} \neq 0$, then, by the same reasoning, we can replace α_2 by α_3 in the above. But this means that $x = \lambda y$ and we are done. Now \mathcal{A} is the direct sum of A_0 and the one-dimensional algebra spanned by some element x in A_1 , so it is locally convex. The conclusion follows.

References

- [1] A. Kokk and W. Żelazko, On vector spaces and algebras with maximal locally pseudoconvex topologies, Studia Math. 112 (1995), 195-201.
- A. Mallios, Topological Algebras. Selected Topics, North-Holland, Amsterdam, 1986.
- [3] S. Rolewicz, Metric Linear Spaces, PWN, Warszawa, 1972.
- [4] L. Waelbroeck, Topological Vector Spaces and Algebras, Lecture Notes in Math. 230, Springer, 1971.
- [5] W. Zelazko, Selected Topics in Topological Algebras, Aarhus Univ. Lecture Notes 31, 1971.

W. Żelazko

94

- [6] W. Żelazko, On certain open problems in topological algebras, Rend. Sem. Mat. Fis. Milano 59 (1989), 1992, 49-58.
- —, A non-Banach m-convex algebra all of whose closed commutative subalgebras are Banach algebras, Studia Math. 119 (1996), 195-198.

Institute of Mathematics
Polish Academy of Sciences
Śniadeckich 8, P.O. Box 137
00-950 Warszawa, Poland
E-mail: zelazko@impan.impan.gov.pl

Received April 12, 1996 Revised version April 17, 1996 (3654)

New publication from the Institute of Mathematics

Banach Center Publications, Volume 33

Singularities and Differential Equations

Editors of the Volume

Stanisław Janeczko, Wojciech M. Zajączkowski, Bogdan Ziemian

1996, 501 pages, soft cover, ISSN 0137-6934 \$60 (\$30 for individuals)

Selected contributions:

- J. W. BRUCE and F. TARI, Implicit differential equations from the singularity theory viewpoint.
- W. DOMITRZ and S. JANECZKO, On Martinet's singular symplectic structures.
- Yu. V. EGOROV, On a linear hyperbolic equation with smooth coefficients without solutions.
- M. FILA and J. FILO, Blow-up on the boundary: a survey.
- R. ISHIMURA and Y. OKADA, The micro-support of the complex defined by a convolution operator in tube domains.
- N. M. IVOCHKINA, On the maximum principle for principal curvatures.
- A. KANEKO, On the global solvability of linear partial differential equations with constant coefficients in the space of real analytic functions.
- A. F. KÜNZLE, Singular Hamiltonian systems and symplectic capacities.
- G. M. LIEBERMAN, Study of global solutions of parabolic equations via a priori estimates III. Equations of p-Laplacian type.
- A. Némethi, Variation structures: results and open problems.

NGUYEN SI MINH and B. ZIEMIAN, A remark on Nilsson type integrals.

- A. G. Popov, Non-Euclidean geometry and differential equations.
- B. Sternin and V. Shatalov, Asymptotic solutions to Fuchsian equations in several variables.
- G. STRÖHMER and W. ZAJĄCZKOWSKI, Existence and stability theorems for abstract parabolic equations, and some of their applications.
- P. STRZELECKI, Stationary p-harmonic maps into spheres.
- J.-C. TOUGERON, Paramétrisations de petits chemins en géométrie analytique réelle.
- W. M. Zajączkowski, L_{∞} -estimate for solutions of nonlinear parabolic systems.

To be ordered through your bookseller or directly from Institute of Mathematics, Polish Academy of Sciences P.O. Box 137, 00-950 Warszawa, Poland, fax 48-22-6293997