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uniformly to the identity and T, defined by Ty, = Bn_loTo ofl, converges uni-
formly to Tp as n — oo. Now T%(z) is given by T}(0a(z)) exp(nth{fn(2))),
which may be seen to converge uniformly in z to Tj(z) as n — co. Then we
have shown that T}, converges to Tp in the C1 topology. Since the invariant
density of T}, is given by exp(~-n~1F(8(z)))o(8(x)}, the conclusion of the
theorem follows. m

I thank Chris Bose for suggesting the problem and for useful discussions
leading to its solution.
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A non-locally convex topological algebra with all
commutative subalgebras locally convex

by

W. ZELAZKO (Warszawa)

Ahbstract. We copstruct a complete multiplicatively pseudoconvex algebra with the
property announced in the title. This solves Problem 25 of [6).

All vector spaces and algebras in this paper are either real or complex.
A topological algebra A is a (Hausdorfl) topological vector space provided
with awn associative jointly continucus multiplication. It is said to be locally
convex or locally pseudoconvex if the underlying topological vector space has
this property. A locally pseudoconvez space X is a topological vector space
whose topology is given by means of a family (]| - ||o) of py-homogeneous
seminorms, 0 < p, < 1, i.e. non-negative functions # — |||, such that
lo + ylle < |la)le + [¥lle and [Az]a = |AP>||2]lo for all z,y in X, all
scalars A, and all indices « (see [3] and [4]). A locally psendoconvex algebra
A s called multiplicatively pseudoconver (briefly: m-pseudoconvex) if its
topology is given by means of a family of submultiplicative p,-homogeneous
seminorms, i.e. seminorms satisfying [|zylla < lzlo/ly)|e for all z,y in A
and all indices «. For more information on topological algebras the reader
is referred to [2], [4] or [5].

In [6] we asked whether a topological algebra with the property that all
of its commutative subalgebras are locally convex must itself be a locally
convex algebra (Problem 25}, In this paper we give a negative answer to this
question by constructing a complete m-pseudoconvex algebra which is not
locally convex bud all of whose conunutative subalgebras have this property.
In the coustruetion wo use some methods introduced in 1] and [7].

Let X be areal or complex vector space and let p satisfy 0 < p < 1. The
maximal p-convex topology T8, on X is the vector space topology given
by means of all p-homogeneous seminorms. It is known (see [1], Theorem 1)
that this topology makes every vector space into a complete (Hausdorfl)
topological vector space. Let (he)aes be a Hamel basis for X, so that each
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element = in X can be uniquely written as z = Ea@&ahm where only
finitely many scalar coefficients £, are different from zero. Let R be the set
of all numerical a-tuples r = (ry)nea with all ro > 1. We claim that the
topology 7., on X is given by all p-homogeneous norms of the form

(1) |l = > €alPra, TER
aca
In fact, let ||-|| be an arbitrary p-homogeneous seminorm on X. We have

to show that it is continuous with respect to some norm of the form (1).
But for every z in X we have

lall = || 3 €ata

where r is given by 7, = max{l, ||k ||}, and we are done. It is known ([1],
Proposition 2) that in the case of an uncountable Hamel basis the topology
Thax 18 N0t locally convex.

To start our construction choose an uncountable linearly ordered set
a with order relation denoted by = (it can be the ordered set of the first
uncountable ordinal number), and define A4; as the vector space spanned by a
tamily of vectors (€q )acq 50 that (€4)neq is its Hamel basis. Fix a p satisfying
0 < p < 1 and provide 4; with the topology TE ax; S0 that we obtain a
complete Hausdorff locally pseudoconvex space and it is not locally convex
since It has an uncountable Hamel basis. Put a* = {(a, 8) €a X a: & > 5}
(note that for (@, ) in a* we always have a # 8), and denote by Ap the
vector space spanned by a family of vectors (eq,s)(a, B)ea+ (which is a Hamel
basis for it). We equip it with the locally convex topology given by all norms
of the form

@) 1219 = Y laslt¥ort?, e R
(e, B)Ea*

where 1 =3 &, sea p € Ap. Finally, we define A4 to be the direct sum of Ag
and A; provided with the direct sum topology. This topology can be given
by means of the family

(3) lzlle = max{(Jul)?, ||}, x < R,

of p-homogeneous seminorms, where z = 1 -- ¥, 4 € Ag, v € Ay, Thus we
obtain a locally pseudoconvex space which is not locally convex, since its
subspace 4; is not.

We make A into an algebra by setting uz = zu = 0 for all o in A and
all u in Ao, €3 = 0 for all o and eqep = —ege, = eag for all a = 4.
Multiplication defined in this way is assoclative since the product of any
three elements is zero. Moreover, the square of any element in A is zero

and zy = —yz for any two elements in A. This follows from the following

< 3 ealPllhall < 2|,
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formula for multiplication of elements & = 3 £,e4 and y = 5 ngeg in A;:

(4) zy= Y [(£alig — €pa)eap.
{a,f)€n"
It can be easily seen that Ag is the centre of A4, i.e. it is the maximal subset
of elements commuting with all elements in A.
Qur result reads as follows:

THEOREM. The algebro A is o complete m-pseudoconvex algebra which is
not locally convex, but all of its commutative subalgebras are locally conves.

Proof First we prove that A is complete. We already know that A,
is complete, so it remains to show that so is Ag. Let (z,)uepr be a Cauchy
net in Ao, Ty = 314 gycar Egj’%ea,ﬁ. Observe first that the linear functionals
=7 ¢np€an — Lap are continuous in Ay for all (o, 3) € a*. Thus the
limits
(%) tp=lmel), (wf)ed,

all exist and are finite. © .
We now show that only finitely many coefficients &, ;5 can be different

from zero. If not, there is a sequence (o, 5;) in a* with Ec(,g), , # 0. Without
loss of generality we can assume that all o; are different (ctherwise we could
assume that all §; are different and perform the proof in a similar way).

Define an element r in R by setting ro, = max{l, |§£‘0)1 3, 1Y and ry = 1if
a # oy for all 4. Take the corresponding norm || - H&‘” of the form (2). Then
(quugo))ue[, is a numerical Cauchy net, and so the (finite) limit

C = lim ||z, ||
B

exists. Take any natural n > C. There exists an index pg in b with

(6) lzul{® <n+1 forall pi po.
Take the indices cj,..., 2,43 For sufficiently large g, which can be as-
sumed to be larger than ug, we have

! (u} | 1 ‘

——E’-‘gj’ﬂ—*>§ for 1< < 2n+2,

1£ai1f@i|

so that for such u we have

|£(Il)ﬁ
Q-4
o | > S0 R sy,
i |£o¢‘-,,3i]
which contradicts (6) and proves that only finitely many numbers in (5} can

be different frowm. zero,
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Thus zq = E(a’ma* gg‘??@emg is in Ay. We show that the net (z,) tends
t0 Zg, proving the completeness of Ag. To this end, upon replacing (z,)
by (zu - @o), it is sufficient to show that if a Cauchy net (z,) satisfies

lim,, 5((!'” 23 = 0, then it tends to the zero element in Ap. Assume that this is
not the case. Since for each continuous seminorm || - || on Ag the numerical

net (f|lz,]) also satisfies the Cauchy condition, there is an r in R such that
the finite himit

(7 b 2, [ = M > 0
i
exists. Define the support of an element z = "¢, geqa,g in Ag to be the set

supp(z) = {(a,8) € a* : {45 # 0}, so that each non-zero element has a
non-void support. Clearly supp(z} 1 supp(y) = @ implies

(8) lz+ 9l = [l + iy
for all r. Now for the (fixed) r of (7) we find a g in b with
(9) 2 — 24 IV < M2 for all p = po.

Put S = supp(z,,) and define a (continuous) projection on A by setting
Pz = Z Enpeap fora = Zfa,ﬁem,g.
(alﬁ)ESU

Denote by I the identity operator on Ag. Clearly Pz and (I — P)z have
disjoint supports for all z in 4y. The formula (8) now implies

lizn — 2o 1§ = 1Py — wyy + (1 - P)z#”go)
=[Pz, — m.m“EO) +1I( ~ P)%HEP)
and, consequently, (9) implies
(10) I = P)a, i < M/2 for o= o,
Since lim,, fc(:% = 0 for all (a,8) € a* and the set Sy is finite, we have
lim,, ||,P:c#i[£0} = 0. The formulas (7), (8) and (10) now imply
M = lim [lou[" = lim ||Pa, | + lim ||(I - P)a, |
# H
= lm {7 - P)e,[|V < M2,
m
a contradiction proving the completeness of Ap and so of A,
We now show that all norms (3) are submultiplicative, which means that

A is m-psendoconvex. Let YEA z=u+w,y=v+z with w,v € A and
w,z € Ap. We have zy = v and so for all r in R we have

llzylle = (Jlv]| ).
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Writing w = 3_ £aea,v = 3 mpeg and using (4), we obtain

lzy|ls = (H Z(fanﬁ - gﬁ"}a)ea,ﬁ“
-

(03 »

r

= (3 leams —Eﬁnahi”’*r;/p)p < (X tal |77‘6'7.3¥/P,r.;/ﬁ)p

o3 a,8€a
< 3 €alPlnplPrars = P11 < lelkliyl
afiEn

and A is m-pseudoconvex.

We already know that A is not locally convex. It remains to be shown
that all comnmtative subalgebras of A are locally convex. It is sufficient to
show that all maxiwal commutative subalgebras of A are locally convex.
Let A be such a subalgebra. It must contain the centre Ag, and we claim
that it contains only one element in A; together with its scalar multiples.
So suppose that it contains two linearly independent elements z and y of
Ay. Since xy = —yx, we must have zy = yz = 0. Let z = > €ues and
Yy = > ngep. Observe that if £, # 0 then 74 % 0 because otherwise (4)
implies zy # 0 (the coefficient of e, 5 in the Hamel expansion of zy is
nou-zero for some $). Choose oy in a 50 that &,, # 0 # Tlay- Lhere must
also be some qp with €., # 0, otherwise z and y would be propartional.
Since @y == () the relation (4) implies

Sy _ an
77041 Nexa

= A

for some scalar A. If £,, # 0, then, by the same reasoning, we can replace
a2 by as in the above. But this means that = = Ay and we are done. Now
A is the direct sum of Ay and the one-dimensional algebra spanned by some
element x in Ay, so it is locally convex. The conclusion follows.
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