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On invariant measures for power bounded positive operators
by

RYOTARO SATO (Okayama)

To the memory of Hisao Tominaga

Abstract, We give a counterexample showing that (J —T™)Leo N LY = {0} does
not imply the existence of a strictly positive function » in Ly with T = u, where T is a
power bounded positive linear operator on Ly of a o-finite measure space. This settles a
conjecture by Brunel, Horowitz, and Lin.

1. Introduction. Let (X, X', m) be a o-finite measure space and T a
positive linear operator in Ly = Ly(X,Z,m). T is called a contraction
if |7 € 1, power bounded if sup, |T"| < oo, and Cesdro bounded if
sup,, |[n~t 305, TF|| < co. Many ergodic theorems for positive Ly contrac-
tions require the existence of a finite invariant measure equivalent to the
original one, i.e., a strictly positive v € Ly with Tu = . This problem has
attracted many top researchers, and one of the conditions equivalent to the
existence of such a w € Ly, obtained by Brune! 1], is that
(1) (I =T") Lo NLE, = {0}.

For any T positive and Cesdro bounded, condition (1) is seen, by using the

known fact that n~"||T"| — 0 as n — oo, to be equivalent to the following

condition;
(3

L rpmk
- g T 4
Sucheston {7] started a systewatic study of power bounded positive linear
operators in Ly, and Fong [4] studied the problem of existence of strictly
positive fixed points under an additional assumption of a null disappearing
part. The problem in general was studied by Derriennic and Lin (3] (see
also Sato [61), who proved that for any T' positive and Cesaro bounded, an

(2)  limsap >0 for any A € I with m(4) > 0.

H.

00

1991 Mathematics Subject Clussification: Primary 47A38.
Key words and phrases: power bounded and Cesiro bounded positive operators, in-
variant maeasures, [y Spaces,

[183]



184 R. Sato

equivalent conditicn for the existence of a strictly positive fixed point in Ly
is

n
(3) m({ lim sup % ZT*’“IA > O}) >0 for any A € X with m(4) >0,
™ k=1
and implicitly asked if also the weaker condition (2) (hence (1)) is sufficient.
For more detailed arguments in this topic we refer the reader to Krengel's
book [5].

Recently Brunel, Horowitz and Lin [2) showed that (1) implies the exis-
tence of a strictly positive subinvariant function in L1, but left the problem
of invariance unselved. Further they proved that the condition

(4) (weak*-closure (I — T™)Le) N LT, = {0}

is necessary and sufficient for the existence of a strictly positive invariant
function in ;. The purpose of this note i to construct a power bounded
positive linear operator in L; satisfying (1) which has no u € L; with
Tu = # 0.

2. The construction of an operator

THEOREM. If Ly has infinite dimension, then for any € > 0 there exists
@ positive linear operator T in Ly and 0 < v € LY, with v = T**v, such
that

@) 1< T <72 < ... <2+,
(ii) limy, |[T™ully = 0 for every u € Ly,
(i) v(f) >0 for all 04 f € LT,
Hence (I - T*)Loo N Ly, = {0}, and T has no v € Ly with Tu = w3 0.

Proof. An easy standard argument shows that it is sufficient to con-
struct T in Ly = L1(X, 2, m), where X = 10,1,2,...}, m({k}) = 1 for
each k¥ € X, and T is the subsets of X. First of all, for 0 < o < 1 with
2a/(1—a) < ¢ let us choose a sequence ay, ay, .. . of positive reals such that

o
(5) o= Z kag,
k=1
1
(6) (—L—’“—ﬂs——ﬁ for all k > 1,
ag 2
where

/31::Eak<a<1.

k=1
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For u € L, define

;’C: un (k = 0)3
m ru) = { T ey (30

Then T maps L1 into itself, as

[Tl < 3 b O)S as + )] < 2l
k=1 k=1 k=2

From the relations §(Tw)fdm = (Tu, f) = (,T"f) = {u(T*f)dm for
u & Ly and f € Ly it follows at once that

Tmeanf(n)  (k=0),
(8) T f(k) = { £(0) (k=1),

FO)+ Sk 1) (k22),
so that T*1(0) = 300 | Gy = f1, T*1(1) = 1 and T*1(k) = 2 for k > 2; It
n > 2 then, upon writing f = T*("~1s0 that T*"1 = TH(T*n=11) = T+ f,

(8) gives
. - g T*n=11(0) (k=1),
(9)  T*"1k) =T"f(k) = {T*(nml)l(o) LT — 1) (k> 2);
and since T™1 = T 1oy + (1 ~ 1{0}) =(l- 1{0}) +T*(1 —1g0y) by (8),
we have
[a] o0
SO Tm(0) =2 ST (1 - 140y)(0).
n=1 n=1
We now prove the fundamental equality

ion o
(%) ST - 1)) = et ol £ =
==

To do this, we set
[+7)
Jo = l{fn,n-}-l,...} and  fBp = Z Gk (” 2 1)‘
k=,

Then T4y = ft, T fu = Bnliop + fusr, and Yot Bn = c. Thus

T fy = fhloy + fa
T*2 fy = fFalgoy -+ T (Biliop) + fa

T*' i = Bnlgoy + T (Bn-alioy) + -+ (B 140y} + Frts
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and

ST f = B+ Ba)loy + T ((Br -+ Ba1)liop) +

+ T D (Bi1oy) + (Fo 4 F Fara)

Since By + ...+ Bamg < Yosoq Bi = @, putiting gy = Ei\:;l fi for N > 1 we
obtain
N-1 N-2
ZT*kfl <ay TVl +gy =alp t+a > TYfi+gn
k=1 i=0 3=0
N-1
<alpyt+a Z T fi+gn.
7=0

By definition g5 (0) = 0 = f1(0), so

N N--1
Y rHraO) <atay TYA)
k=1 i=0

Define ey = Ele T £1(0). Then cy < a+ acy~g for N > 1, with

Za.z<a<m-m

since 0 < @ < 1. Hence by induction we have ¢y < a/(1 — ) for every
N > 1, so that

S ot (0) <
k=1
We have the equality
n n—1 n—j _
S 7= (LT )+ (n21).
k=1 G=0 k=1

Evaluating at 0, using g,(0) = 0, and by the convergence already proved of
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oo T £1(0) we obtain, for n > 2,

o0 n—1 n—j
S TraO 2 e+ (X 8) TV R0)
foms 1 j=1 k=1l

n-j

=a+ Z (Zﬁk)T* 31 £,(0)

—a+ Z o1 11 (0)

=2

as n tends to infinity. Hence
o0
(1-a)Y T f(0) 2 e
k=1

which completes the proof of ().
‘We then notice by induction that

7" o = s3pT"18)  (n 21,

In fact, for n = 1 it follows from T*1(0) = f1 < 1, T*1(1) = 1, and
T*1(k) = 2 for k 2> 2. The induction step follows from (8) and (9). Using
this together with (x) and (9) we see that for n > 2,

n—1
o= TI0) + 1T oo

kel

HT*n—le — T*{n—l)l(o) 4 ”T*(n—l)lnw —

20
< ZT*H +1|T*1Hm=—-—+2<s+2

which proves (i).
To prove (ii), take a positive real v so that
(10) [31~Zak<fy< “31
fere]
and define a function w in L by
(11} w(0) =« and w(k)=ax fork=1.

y (7), (6) and (10),

miw(k)=§ak = f1 <7y =w(0)
k=1 kezel
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and
Tw(.’c) = akw(O) + 'w(k -+ 1) = agY + Gkl

=(7+Gk+1)ak5(7+1”ﬁl)ak fork > 1.
aj 2

Thus, letting § = max{By~1,7+ (L — 51)27'}, we have
(12) 0<Tw<éw onX, and 0<E<L

Tt follows that limy, | T wi|; < limy, 6°[|lw]ly = 0. Siuce T" is power bounde,
(i) follows from an approximation argument.

To prove (iii), let LIM denote any Banach Jimit on Le (== £ow), and
define a bounded linear functional ¥ on Lo, by the relation

(13) u(f) = F0)+ 3 Buf(k) -+ (1 - o) LIM(S)
k=1
for all f € Lo
By (5) we see that 0 < v € L%, with [[v]] = v(1) = 2; further (8) gives

T F) = T 5(0)+ 3 e F(8) + (L~ o) LIM(T" )

k=1

apf(6) + (3 B ) FO) + D Bf(h — 1)
k=1 k=2
1 - a)(£(0) + LIM(f))

i
Nk

bl

=1

"

(ar + Br1)f (k) + af (0) + (1~ ) £(0) + (1 — &)) LIM(f)

o1

= N Buf (k) + £(0) + (1~ o) LIM(f) = v(f).

Hence v = T**v, and clearly v(f) = v(T*f) > 0 for all 0 % f &€ L7, This
completes the proof.

Remark. By a slight modification of the construction of 1" we may
sharpen (i) in the theorem as

O 1< |7 < |T? <...<1+eg,
where € is an arbitrary positive number.
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